
CLAS12 Software Workshop, 05/25/10

•The offline Analysis Framework at CDF
•Elena Gerchtein, FNAL

•
• Offline data processing
• Software framework
• Software management
• Data storage
• Simulation framework
• Summary: CDF Offline performance

CDF Data Flow

CSL: Consumer-Server/Logger
•The final component in CDF Data Acquisition chain before
data is archived to tapes
•Primary functions of the CSL

–receives data from final stage trigger and sorts it into “physics
streams”
–records meta-data information into a database
–sends fraction of events for real time monitoring of data
quality

• Buffering capacity:
– 24 TB of disk arrays can handle 3 days of buffering data
with 80 MB/s

• Staging capacity:
– Stager (archiving data to FCC) can digest 100 MB/s
continuously for more then 24 hours (dry-run test)

• CSL was upgraded in 2006

CDF Software: AC++ framework
•AC++ provides a unified framework for event reconstruction,
post-reconstruction analysis, online triggering, calibration
and monitoring
•Used both in online and offline environment
•Module concept: generic operations for processing physics
event

– initialization; run dependent initialization; physics event
analysis; end run; program termination; module “talk-to”
processing

•Module types: input modules, output modules, filter modules,
specialized modules
• AC++ executables allow to configure input for modules (“talk-
to”) using TCL scripts w/o recompiling. TCL provides complex
menu structures and menu items of different types.
•Based on C++

CDF software: management
• more then 15 million lines of code organized into 294
packages layered into fixed hierarchical tree of dependencies
(managed by SoftRelTools)
•packages are grouped depending on place in hierarchy tree:
binaries-modules-algorithms-data objects-interfaces-
infrastructures-standard utilities and services
•great attention was paid to physical design. Developers
followed strict rules and guidelines enforced by integration
leaders. CDF managed to avoid any cyclic package dependency,
all CDF offline applications can be linked in one pass, with no
libraries listed more then once.
•Tools: CVS, SoftRelTools, code browser
•Many developers leave a project after one year of service.
Special attention was paid to ensure sufficient overlap between
code developer and who will take over maintenance.

CDF software: development
• Releases: major releases (every two month during
development stage, once a year at operation stage) – integration
releases – development release
• Each release followed by well defined validation procedures
(code and physics validation) and regression testing
•Release integration was managed by code librarians and
integration leaders
• Code performance has not been an issue. Wasteful copying was
eliminated early in development. Choosing efficient algorithms
gains more performance then hand optimizing the code
• Problems: memory leaks were traced with standard tools;
uninitialized memory was a bigger problem, hard to debug.
• Crash rate of farm operations of the reconstruction is less then 1
crash per million events.

 CDF computing facilities

• GRID enabled farms:
– CDFGrid (5K)
– NamGRID (300 MIT + 150 KISTI)

• Jobs running on GRIDs
– Offline Calibration
– Reconstruction (production)
– Ntupling,
– MC
– User analyses

Data production: offline
calibrations

•Calibration constants for use at
reconstruction level: offline calibrations
•Each sub-detector system has associated
calibration constants that are stored in a
database. The constants may change from
run to run (not implemented on runsection
scale)
•Offline calibration are calculated on specially
processed physics data after data taking
• ~1/5 of data is reconstructed to get
calibration constants

Data production: reconstruction

•raw data are processed to produce higher
level objects for each sub-detector applying
different reconstruction algorithms:

– tracks, jets, muons and electrons, etc.
•the whole process is called “production”
•only one executable: ProductionExe (AC++)
•only higher level objects are kept in the
production output file to reduce event size

Adding user analysis layer: Ntupling
• run general analysis AC++ executable over
reconstructed data and save data in simple ROOT-
based format. ROOT ntuple are analyzed using
ROOT-base scripts
•PRO:

–dataset size reduced 70%
–simplified format
–corrections to reconstruction are done as
needed

•CONS:
–different physics groups run the same
algorithms to produce different datasets: data
redundancy and excessive CPU usage

User analyses
• Users access three types of ntuples and analyze
data using ROOT-based scripts

– STNtuple
– TopNtuple
– BSTNtuple

• unrestricted access to ntuples
• In special cases, when access to raw/produced
data is justified and unavoidable for particular
analysis, it takes much more coordination effort to
provide such access.

CDF software: lessons learned
• Code:

– Need to work harder to enforce better coding practice
– critical design pieces should be reviewed by experts
– develop and maintain validation plan/code in parallel with

major algorithms
– Plan for maintenance: documentation, transitions, training

• Algorithms
– have speed/size target for each algorithm, subject to

review and negotiation
• Operations

– offline software shifts (run validation, checking
reported software errors, do bug fixes) were helpful

Data storage: mass storage
system at Fermilab

• tertiary storage system (Enstore)
• data media: tapes
•Enstore is integrated with disk caching
software called dCache, both share
namespace PNFS
• access data directly on-site
• access data through disk caching software
called dCache on-site and off-site

Data storage: Enstore
•Enstore provides a generic interface for
experiments to efficiently use mass storage
systems as easily as if they were native file
systems
• client-server architecture allows hot
swapping hardware, dynamic software
configuration, it is platform independent,
easily extendable. Most of the operations are
transparent to users.
•http://www-ccf.fnal.gov/enstore/design.htm

Data storage: PNFS namespace
•PNFS is a global namespace developed jointly by Fermilab,
DESY, and NGDF
•PNFS is used by Enstore and dCache to distribute filenames and
other storage metadata
•PNFS has UNIX file system like directory structure, can be
mounted on on-site computers just like nfs, or accessed indirectly
through various Enstore and dCache protocols
•Files are accessed directly by their PNFS name. When a user
copies a data file from a local disk to Enstore or dCache system,
the destination is specified in terms of PNFS name. The data file
gets copied to a storage volume and a corresponding metadata
entry is created in the PNFS directory.

Data storage: dCache system
•Files on tapes can be accessed via dCache,
distributed storage solution. dCache hides the
complexity of data movement from user, so the end-
user sees only the large amount of storage. The flow of
data in dCache is carefully controlled to minimize the
impact of chaotic data access.
•When reading files from dCache, data are retrieved
from tapes and stored on local disks providing high-
performance access to frequently used files.
•Files transferred to dCache are written to the tape after
some time limit or data accumulation, transparently to
user

Data storage: SAM
•SAM is another data storage solution

–store and retrieve files and associated
metadata
–file catalog
–file caching
–job submission, for local or grid-aware
systems, which is coupled with file
delivery system

•CDF is accessing data using SAM, while file
caching is done by dCache

Data storage: media type
• CDF media type: LTO3, LTO4
tapes

– currently LTO-4 (800GB native
capacity, 120 MB/sec max
transfer rate)
– moving toward higher density
of data: recent advances in LTO
technology allow to store more
data in the same size cartridge.
CDF started with 9940B tapes
(200GB) that migrated to LTO-4
tapes

•CONS: expensive

Data storage: CDF data
•CDF using slots in the tape robotic libraries,
located in FCC and GCC:

–CDF-LTO3
–CDF-LTO4F1
–CDF-LTO4G1
–CDF-9940B-D0

• CDF raw data: 1222 TB on tapes (periods
0-27 run range 138425-287261)

Data storage: lessons
• need better plan for resource
allocation/recycling

– tapes may be need recycling in the
nearest future
– diskpool for temporary output is 50%
junk data but no tools/policy on how to
clean up
– jobs waiting for files from tape and
wasting CPU

• Simulation framework
– design and infrastructure
– generators and decay packages
– detector simulation
– trigger simulation

• Simulation performance
• Simulation: User's view

Simulation at CDF

• SF is integrated into AC++ application framework
• design is based on a mixture generic programming and OOP
=> SF is easily extensible and time efficient
• CDF uses the same geometry for reconstruction, simulation,
and visualization
• The same data objects are used for simulation and real data
reconstruction
•Software provided to submit large scale MC jobs to GRIDs
according to complicated run dependent job plan
• Use of random number generators is unified throughout SF
(CLHEP package), each AC++ module has at least one
independent random stream to ensure statistically independent
production of large MC samples. Each random stream initialized
with random seeds provided with user job plan.

Simulation Framework (SF): design and
infrastructure

Part of MC job plan: One run MC segment

generators: what do we need?
• CDF is a multipurpose detector
• broad physics program

–Top – precision EWK program
–Search for new phenomena
–Tests of perturbative QCD
–B physics

• Need to be able to plug in ANY event generator
into SF with minimum efforts by demand. Would
like to read arbitrary event generator output and
pass it through detector simulation.

SF: generators
• cdfSim allows to generate physics events with
different generators:

–Herwig 6.4 – PYTHIA 6.2 – ISAJET 7.51 –
WGRAD – WBBGEN – GRAPPA (GRACE for
ppbar) – VECBOS – Bgenerator(quarks only) –
HeavyQuarkGen – MinBiasGenerator
(parametrization for diff.physics) – Single Particle
– Les Houches Accords – universal interface
between matrix element generators and MC
programs – implemented in PYTHIA and GRAPPA

• Decay packages: QQ 9.1(obsolete) – EvtGen -
Tauola

SF: Generators – implementation details

• Generator and decayer sequence is
incorporated within AC++ framework
• Generator related AC++ module has an interface
to generator/decay package controlling the access
to the underlying FORTRAN routines
• Generators/decay packages communicate via
HEPEVT common block. After event has been
processed, HEPEVT is converted to persistent
object and added to the event record
• can use output of stand-along generators
(generation mode 3)

Generator modules within AC++

• Detector simulation is integrated into AC++
application framework
• Implemented as an abstract factory – easy to extend
• Detector simulation elements:

– geometry description
– configuration menu
– digitizer
– event data object

• Tracking of particles through matter is based on
GEANT3 tracking. Fast parametric simulation available
for some sub-detectors

SF: Detector Simulation

SF: Detector Simulation

SF: Simulated subdetectors
• cdfSim allows configuration of subdetectors with
different geometry levels and different physics
processes, depending on desired accuracy vs. time
efficiency (parametric and full simulation)

–Silicon detector (SVX, ISL)
–Central Open-cell Tracking chamber(COT)
–Muon detectors (CMU,CMP,CMX,IMU)
–Time-of-flight system
–EM and HAD calorimeters
–Cherenkov luminosity counter(CLC)
–Very forward detectors(Miniplug, BSC,RPS)

SF: COT simulation
• GARFIELD drift model
• W-> µν
• data(points): high Pt muons (>18

GeV/c)
• MC(hist): Pythia, DM GARFIELD, tuned
• a) Residual ΔY
• b) Track multiplicity of primary tracks
• c) Charge/Pt of primary tracks

SF:Silicon detector simulation
• Silicon microstrip detector with

double sided readout
• Charge deposition models (CDM) affect

cluster efficiency and intrinsic resolution
– geometric/parametric/physical

• To get impact paramrter right:
– complicated geometry
– alignment
– beam parameters

• MC(hist) single particles compared to
15 GeV/c muons data(points)

• a) Intrinsic resolution (layer 2, cluster
width 2, calculated using unbinned
likelihood fit)

• b) Cluster profile for layer 4

SF: Calorimeter simulation
• Particle propagated from interaction point through
detector volume up to first inelastic interaction, then
control passed to GFLASH (G.Grindhammer, M.Rudowitcz
and S.Peters, NIM A290(1990)469)

–fast robust tunable simulation of EM and HAD
showers (in CDF it is 100 times faster then G3
shower), ideal for simple geometry with repetative
sampling structure.
– uses G3 material/geometry information
–generates longitudinal and lateral shower profile
–distributes energy spots according to lateral profile
and sampling fluctuations

SF: Calorimeter simulation

• High P response in central calorimeter
•MC (open circles) compared to 57 GeV testbeam data
(hist)

SF: Cerenkov luminosity counters
 CLC is used to measure luminosity at

CDF. CLC acceptance to ppbar
inelastic process is estimated from
simulation and gives major
contribution to lumi uncertainty

Generation and propagation of
Cherenkov photons is simulated by
GEANT3. Geometry in front and
around CLC is described with high
detail level

Uncertainty due to CLC simulation in
the luminosity measurement is less
then 4%

Amplitude distributions in CLC counters
(3 layers); MC(dots) compared to data
(red and blue hist. corresponding to
west and east sides respectively)

SF: Muon system simulation
• Challenging geometry (below: location

of central muon component in azimuth
ϕand pseudorapidity η)

• W-> µν data(points) compared to
MC(hist.) single muons

• a) number of CMUP muons for each
stack in the north wall

• b) Ratio MC/data

SF: user's perspective

• Running MC jobs is quite transparent to user.
There is no need to look at the code. There are
infrastructure scripts that allow manipulating MC
submission to GRID while taking care of complicated
schema of run dependent job plans
•User actions:

– Configure TCL script for physics processes to be
generated and detectors to be simulated
– Generate job plan of jobs that will be run on GRID
depending on run range and the number of desired
events
– Submit MC job to GRID and get the output back

CDF offline: lessons

• Plan for scalability more then you currently expect
– CPU gets faster
– loads get bigger (more jobs are submitted)
– systems run longer then expected
– datasets get bigger
– scalability in DB access, job control, data access

• Frequent system downtimes were unexpected, not all
services are easily restored (CDF has major downtimes
for security upgrades every 60 days)

CDF offline: performance
• Current processing time

per event
– reconstruction ~1 sec
– ntupling ~2 sec
– MC ~4 sec

• PLOT: average CPU time
per event for
reconstruction vs.
average inst. lumi per run

• Great improvement after
tracking upgrade and
switching to more
powerful machines

