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CDF  Data Flow



CSL: Consumer-Server/Logger
•The final component in CDF Data Acquisition chain before 
data is archived to tapes
•Primary functions of the CSL

–receives data from final stage trigger and sorts it into “physics 
streams”
–records meta-data information into a  database
–sends fraction of events for real time monitoring of data 
quality

• Buffering capacity: 
– 24 TB of disk arrays can handle 3 days of buffering data 
with 80 MB/s

• Staging capacity:
– Stager (archiving data to FCC) can digest 100 MB/s 
continuously for more then 24 hours (dry-run test)

• CSL was upgraded in 2006



CDF Software: AC++ framework
•AC++ provides a unified framework for event reconstruction, 
post-reconstruction analysis, online triggering, calibration 
and monitoring
•Used both in online and offline environment
•Module concept: generic operations for processing physics 
event

– initialization;  run dependent initialization; physics event 
analysis; end run;  program termination; module “talk-to” 
processing

•Module types: input modules, output modules, filter modules, 
specialized modules
• AC++ executables  allow to configure  input for modules (“talk-
to”) using TCL scripts w/o recompiling. TCL provides complex 
menu structures and menu items of different types. 
•Based on C++   



CDF software: management
• more then 15 million lines of code organized into 294 
packages layered into fixed hierarchical tree of dependencies 
(managed by SoftRelTools)
•packages are grouped depending on place in hierarchy tree: 
binaries-modules-algorithms-data objects-interfaces-
infrastructures-standard utilities and services
•great attention was paid to physical design. Developers 
followed strict rules and guidelines enforced by integration 
leaders. CDF managed to avoid any cyclic package dependency, 
all CDF offline applications can be linked in one pass, with no 
libraries listed more then once. 
•Tools: CVS, SoftRelTools, code browser
•Many developers leave a project after one year of service. 
Special attention was paid to ensure sufficient overlap between 
code developer and who will take over maintenance.



CDF software: development
• Releases: major releases (every two month during 
development stage, once a year at operation stage) – integration 
releases – development release
• Each release followed by well defined validation procedures 
(code and physics validation) and regression testing
•Release integration was managed by code librarians and 
integration leaders 
• Code performance has not been an issue. Wasteful copying was 
eliminated early in development. Choosing efficient algorithms 
gains more performance then hand optimizing the code 
• Problems: memory leaks were traced with standard tools; 
uninitialized memory was a bigger problem, hard to debug.  
• Crash rate of farm operations of the reconstruction is less then 1 
crash per million events.



 CDF computing facilities

• GRID enabled farms: 
– CDFGrid   (5K)
– NamGRID (300 MIT + 150 KISTI)

• Jobs running on GRIDs
– Offline Calibration
– Reconstruction (production)
– Ntupling,
– MC 
– User analyses



Data production: offline 
calibrations

•Calibration constants for use at 
reconstruction level: offline calibrations
•Each sub-detector system has associated 
calibration constants that are stored in a 
database. The constants may change from 
run to run (not implemented on runsection 
scale)
•Offline calibration are calculated on specially 
processed physics data after data taking 
• ~1/5 of data is reconstructed to get 
calibration constants 



Data production: reconstruction

•raw data are processed to produce higher 
level objects for each sub-detector applying 
different reconstruction algorithms: 

– tracks, jets,  muons and electrons, etc.
•the whole process is called “production”
•only one executable: ProductionExe (AC++)
•only higher level objects are kept in the 
production output file to reduce event size



Adding user analysis layer: Ntupling
•  run general analysis AC++ executable over 
reconstructed data and save data in simple ROOT-
based format. ROOT ntuple are analyzed using 
ROOT-base scripts
•PRO: 

–dataset size reduced 70%
–simplified format
–corrections to reconstruction are done as 
needed

•CONS:
–different physics groups run the same 
algorithms to produce different datasets: data 
redundancy and excessive CPU usage   



User analyses
• Users access three types of ntuples and analyze 
data using ROOT-based scripts

– STNtuple
– TopNtuple
– BSTNtuple

• unrestricted access to ntuples
• In special cases, when access to raw/produced 
data is justified and unavoidable for particular 
analysis, it takes much more coordination effort to 
provide such access. 



CDF software: lessons learned
•  Code:

– Need to work harder to enforce better coding practice 
– critical design pieces should be reviewed by experts 
–  develop and maintain validation plan/code in parallel with 

major algorithms 
– Plan for maintenance: documentation, transitions, training

•  Algorithms
–  have speed/size target for each algorithm, subject to 

review and negotiation
•  Operations

–  offline software shifts (run validation, checking 
reported software errors, do bug fixes) were helpful



Data storage: mass storage 
system at Fermilab

• tertiary storage system (Enstore)
• data media: tapes  
•Enstore is integrated with disk caching 
software called dCache, both share 
namespace PNFS
• access data directly  on-site
• access data through disk caching software 
called dCache on-site and off-site



Data storage: Enstore
•Enstore provides a generic interface for 
experiments to efficiently use mass storage 
systems as easily as if they were native file 
systems
• client-server architecture allows hot 
swapping hardware, dynamic software 
configuration, it is platform independent, 
easily extendable. Most of the operations are 
transparent to users.
•http://www-ccf.fnal.gov/enstore/design.htm



Data storage: PNFS namespace
•PNFS is a global namespace developed jointly by Fermilab, 
DESY, and NGDF
•PNFS is used by Enstore and dCache to distribute filenames and 
other storage metadata
•PNFS has UNIX file system like directory structure, can be 
mounted on on-site computers just like nfs, or accessed indirectly 
through various Enstore and dCache protocols 
•Files are accessed directly by their PNFS name. When a user 
copies a data file from a local disk to Enstore or dCache system,  
the destination is specified in terms of PNFS name. The data file 
gets copied to a storage volume and a corresponding metadata 
entry is created in the PNFS directory.



Data storage: dCache system
•Files on tapes can be  accessed via dCache, 
distributed storage solution. dCache hides the 
complexity of data movement from user, so the end-
user sees only the large amount of storage. The flow of 
data in dCache is carefully controlled to minimize the 
impact of chaotic data access. 
•When reading files from dCache,   data are retrieved 
from tapes and stored  on local disks providing high-
performance access to frequently used files.
•Files transferred to dCache are written to the tape after 
some time limit or data accumulation, transparently to 
user  



Data storage: SAM
•SAM is another data storage solution

–store and retrieve files and associated 
metadata
–file catalog
–file caching
–job submission, for local or grid-aware 
systems,  which is coupled with file 
delivery system

•CDF is accessing data using SAM, while file 
caching is done by dCache   



Data storage: media type
• CDF media type: LTO3, LTO4 
tapes 

– currently LTO-4 (800GB native 
capacity, 120 MB/sec max 
transfer rate)
– moving toward  higher density 
of data: recent advances in LTO 
technology allow to store more 
data in the same size cartridge. 
CDF started with 9940B tapes 
(200GB) that migrated to LTO-4 
tapes

•CONS: expensive



Data storage: CDF data
•CDF using slots in the tape robotic libraries, 
located in FCC and GCC:

–CDF-LTO3
–CDF-LTO4F1
–CDF-LTO4G1
–CDF-9940B-D0

• CDF raw data: 1222 TB on tapes (periods 
0-27 run range 138425-287261)



Data storage: lessons
• need better plan for resource 
allocation/recycling 

– tapes may be need recycling in the 
nearest future
– diskpool for temporary output is 50% 
junk data but no tools/policy on how to 
clean up
– jobs waiting for files from tape and 
wasting CPU



• Simulation framework
– design and infrastructure
– generators and decay packages
– detector simulation
– trigger simulation 

• Simulation performance
• Simulation: User's view

Simulation at CDF 



• SF is integrated into AC++ application framework
•  design is based on a mixture  generic programming and OOP 
=> SF is easily extensible and time efficient
• CDF uses the same geometry for reconstruction, simulation, 
and visualization
• The same data objects are used for simulation and real data 
reconstruction 
•Software provided to submit large scale MC jobs to GRIDs 
according to complicated run dependent job plan
• Use of random number generators is unified throughout SF 
(CLHEP package), each AC++ module has at least one 
independent random stream to ensure statistically independent 
production of large MC samples. Each random stream initialized 
with random seeds provided with user job plan.   

Simulation Framework (SF): design and 
infrastructure 



Part of MC job plan: One run MC segment



generators: what do we need?
• CDF is a multipurpose detector
• broad physics program

–Top – precision EWK program
–Search for new phenomena
–Tests of perturbative QCD
–B physics

• Need to be able to plug in ANY event generator 
into SF with minimum efforts by demand. Would 
like to read arbitrary event generator output and 
pass it through detector simulation.



SF: generators
• cdfSim allows to generate physics events with 
different generators: 

–Herwig 6.4 – PYTHIA 6.2 – ISAJET 7.51 – 
WGRAD – WBBGEN – GRAPPA (GRACE for 
ppbar) – VECBOS – Bgenerator(quarks only) – 
HeavyQuarkGen – MinBiasGenerator 
(parametrization for diff.physics) – Single Particle
– Les Houches Accords – universal interface 
between matrix element generators and MC 
programs – implemented in PYTHIA and GRAPPA

• Decay packages: QQ 9.1(obsolete) – EvtGen - 
Tauola



SF: Generators – implementation details

• Generator and decayer sequence is 
incorporated within AC++ framework
• Generator related AC++ module has an interface 
to generator/decay package controlling the access 
to the underlying FORTRAN routines
• Generators/decay packages communicate via 
HEPEVT common block. After event has been 
processed, HEPEVT is converted to persistent 
object and added to the event record
• can use output of stand-along generators 
(generation mode 3)



Generator modules within AC++



• Detector simulation is integrated into AC++ 
application framework
• Implemented as an abstract factory – easy to extend 
• Detector simulation  elements:

– geometry description
– configuration menu
– digitizer
– event data object

• Tracking of particles through matter is based on 
GEANT3 tracking. Fast parametric simulation available 
for some sub-detectors

SF: Detector Simulation 



SF: Detector Simulation



SF: Simulated subdetectors
• cdfSim allows configuration of subdetectors with 
different geometry levels and different physics 
processes, depending on desired accuracy vs. time 
efficiency (parametric and full simulation)

–Silicon detector (SVX, ISL)
–Central Open-cell Tracking chamber(COT)
–Muon detectors (CMU,CMP,CMX,IMU)
–Time-of-flight system 
–EM and HAD calorimeters
–Cherenkov luminosity counter(CLC)
–Very forward detectors(Miniplug, BSC,RPS)



SF: COT simulation
• GARFIELD drift model
• W-> µν
• data(points): high Pt muons (>18 

GeV/c) 
• MC(hist): Pythia, DM GARFIELD, tuned
• a) Residual ΔY
• b) Track multiplicity of primary tracks
• c) Charge/Pt of primary tracks



SF:Silicon detector simulation
• Silicon microstrip detector with 

double sided readout
• Charge deposition models (CDM) affect 

cluster efficiency and intrinsic resolution
– geometric/parametric/physical

• To get impact paramrter right:
– complicated geometry
– alignment
– beam parameters 

• MC(hist) single particles compared to 
15 GeV/c muons data(points)

• a) Intrinsic resolution (layer 2, cluster 
width 2, calculated using unbinned 
likelihood fit)

• b) Cluster profile for layer 4



SF: Calorimeter simulation
• Particle propagated from interaction point through 
detector volume up to first inelastic interaction, then 
control passed to GFLASH (G.Grindhammer, M.Rudowitcz 
and S.Peters, NIM A290(1990)469)

–fast robust tunable simulation of EM and HAD 
showers (in CDF it is 100 times faster then G3 
shower), ideal for simple geometry with repetative 
sampling structure.
– uses G3 material/geometry information
–generates longitudinal and lateral shower profile
–distributes energy spots according to lateral profile 
and sampling fluctuations



SF: Calorimeter simulation

• High P response in central calorimeter
•MC (open circles) compared to 57 GeV testbeam data 
(hist)



SF: Cerenkov luminosity counters
 CLC is used to measure luminosity at 

CDF. CLC acceptance to ppbar 
inelastic process is estimated from 
simulation and gives major 
contribution to lumi uncertainty

Generation and propagation of 
Cherenkov photons is simulated by 
GEANT3. Geometry in front and 
around CLC is described with high 
detail level

Uncertainty due to CLC simulation in 
the luminosity measurement is less 
then 4%

Amplitude distributions in CLC counters 
(3 layers); MC(dots) compared to data 
(red and blue hist. corresponding to 
west and east sides respectively) 



SF: Muon system simulation
• Challenging geometry (below: location 

of central muon component in azimuth 
ϕand pseudorapidity η)

• W-> µν data(points) compared to 
MC(hist.) single muons

• a) number of CMUP muons for each 
stack in the north wall

• b) Ratio MC/data



SF: user's perspective

• Running MC jobs is quite transparent to user. 
There is no need to look at the code. There are 
infrastructure scripts that allow manipulating MC 
submission to GRID while taking care of complicated 
schema of run dependent job plans
•User actions:

– Configure TCL script for physics processes to be 
generated and detectors to be simulated
– Generate job plan of jobs that will be run on GRID 
depending on run range and the number of desired 
events
– Submit MC job to GRID and get the output back



CDF offline: lessons

• Plan for scalability more then you currently expect
– CPU gets faster
– loads get bigger (more jobs are submitted)
– systems run longer then expected
– datasets get bigger
– scalability in DB access, job control, data access

• Frequent system downtimes were unexpected, not all 
services are easily restored (CDF has major downtimes 
for security upgrades every 60 days)



CDF offline: performance
•  Current processing time 

per event
– reconstruction ~1 sec
– ntupling ~2 sec 
– MC ~4 sec

• PLOT: average CPU time 
per event for 
reconstruction vs. 
average inst. lumi  per run

•  Great improvement after 
tracking upgrade and 
switching to more 
powerful machines


