
SOA based physics data processing (PDP)

Clas12 Reconstruction and Analysis

Framework

6/13/2010†JLAB data acquisition and analysis group, ‡Christopher Newport University

V. Gyurjyan†, S. Paul‡, S. Heddle‡

PDP environment

 Large user base

 Deployment

 Scalability

 Maintenance

 Propagation of updates

 Short response time to bugs

 Long life time

 Dynamic user base

 Aging technologies

 Author-drop rate

 Evolving

 Drop inefficient/unsatisfying software module(s)

 Integrate new module(s)

 Diversification

PDP Application basic Requirements

 Agility

 Scalability

 Maintainability

 Easy deployment

solution

• Modularity

• Loose coupling

• Distribution

solution

Divide and conquer

SOA Defined

 An architecture (NOT a technology) based on well defined, reusable components:

services.

 Services are loosely coupled.

 Services with functional context that are agnostic to a composed application logic.

 Agnostic services participate in multiple algorithmic compositions.

 Application design based on available services.

Service

6/13/2010

 Atomic unit of an SOA.

 Encapsulates a logic, or a process.

 Autonomous

 Location Transparent.

 It is defined by the messages it can accept and the responses it can give.

 Implements standard contract/interface.

 Composable

 They can be integrated to provide higher-level, complex services.

 Reusable

 Stateless

 Discoverable

 Loose coupling between services.

ClaRA

 SOA based physics data production application development framework, written in pure Java.

 Service development environment.

 Increase intrinsic interoperability of services by standardizing data exchange interface.

 Complex service composition.

 Clear separation between PDP application designer and service programmer.

 Build and run PDP applications without an access to the source code of individual services.

 Increase federation.

 Services and ClaRA based applications are united while maintaining their individual autonomy and self

governance.

 Multi-Threaded event processing.

 Distributed event processing.

 Ease of application deployment.

 PDP application diversification and agility.

PDP Application Design Data Centric Approach

 Focus on data that is moving and transforming in the system.

 Data flow defines the essential aspect of an application.

Data1S1 Data2S2 Data3S3

Object Centric Data Centric

Data encapsulation Data exposure

Object/method exposure Object/method encapsulation

Intermix of data and algorithm Separate data and algorithm

Tightly coupled Loosely coupled

ClaRA Design Architecture

PDP Service Bus

Service layer

Data1S1 Data2S2 Data3S3
Administration

Service

Registration

Service

PCEP Layer

• Rule invocation

• Identification

• Filtration

• Subscription

S1

S2

S3 S4

S5

S6 S7

S8

S9

S

S S S S

Orchestration Layer

• Data flow control

• Load balancing

• Error recovery

ClaRA Cloud

FE
Container

Container

1

Container

2

Container

n

C++

Service

Platform 1

FE
Container

Container

1

Container

2

Container

n

C++

Service

Platform 2

FE
Container

Container

1

Container

2

Container

n

C++

Service

Platform n

ClaRA Containers

Front-End Container

• Pub-sub server

• Registration

• Discovery

• Administration

• Reporting

Administration

• Service deployment

• Service removal

• Service recovery

Monitoring

• CPU (Unix only)

Service
Containers

Container

Node/JVM

Node/JVM
C++

Service

ClaRA Java Service Container

Core

service

engine E
ng

in
e

in
te

rf
ac

e

M
es

sa
ge

 p
ro

ce
ss

in
g

Service Coupling

 A functional service context is independent from the outside logic.

 Contract-To-Functional coupling between services.

 Service has a name.

 Service receives data and sends data.

 Consumer-To-Contract coupling between consumers and services.

 User/consumer sends data to the named service.

 Sending the data will trigger execution of the receivers service.

Service

A

Service Interface

 Simple, decoupled from technology and implementation details.

 Input/output data types

 Object

 EvIo

 Primitive types

 Arrays of primitive types

 Limited semantic/metadata information

 Description

 Author

 Version

Service abstraction

 Technology information (hidden)

 Programmatic logic information (hidden)

 Functional information (exposed through service contract meta data)

 Quality of service information (available from the platform registration

services)

Service types

 Entity services

 Generic

 Highly reusable

 Utility services

 Self contained

 Legacy systems

 Composite services

 Primitive compositions

 Self governing service compositions

 Complex compositions

 Controlled aggregate services

Service Composition
 Primitive composition

 Represents message exchanges across two or more services.

 Requires composition initiator.

 Task services are examples of primitive composition.

 Complex composition

 Orchestrated task services seen as a single service.

Orchestration Layer

Service Discovery

 Design time

 Runtime

Service

Provider
Service

Consumer

Service

Registry

Register service

Exchange messages

Discover service

Multi-Threading

 Only one process is active on the ClaRA platform node.

 Single ClaRA container (JVM) on a node.

 Service containers run in their own threads.

 A single service container executes contained service engines in separate threads.

 A service engine must be thread safe if it is planned to run in a multi-threaded mode.

 ClaRA based PDP application gets inherent multi-threading and distributed

processing, with the relative processing time :

∆TR = (∆TA +∆tn) / Nc*Nn

Advantages Multi-Threading over Multi-Processing

 Small memory footprint, less L1/L2 caching, lower probability for missing a cache,

less RAM access, better performance.

 Multi-Processing bookkeeping complexity.

 Users must keep track of input/output data distribution and data reconsolidation.

Service deployment and monitoring Interfaces

PDP Application Designer Interfaces

Clas12 Reconstruction

Clas12 Track Reconstruction Services, and Tracking Application Design

Front-End Container

• Pub-sub server

• Registration

• Discovery

• Administration

• Reporting

Event

Service

EvIO

Hits

Cluster

Finder

Region

Segment

Finder

Track

Candidate

Finder

BST strip

Intersect

Finder

BST

Intercept

Link

BST

Intercept

Helix fit

FST track

Segment

Finder

Forward

Kalman

Filter

Central

Kalman

Filter
Container 1

PCEP Layer

Other Services

Service deployment monitoring

Composite Reconstruction Service Multi-Threading

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 2 4 6 8 10 12 14 16

1/
∆
T
p
[1
/m
s
e
c
]

Number of parallel processing threads

ClaRA Multi-Threading
2x4 Xeon 3.0Ghz, 8GB

51.4

Data labels show relative

processing time per event

in msec (∆Tp)

28.3

19.4

15.0

12.2

10.4

9.2

8.45

7.18

Composite Reconstruction Service Distributed Processing

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0 1 2 3 4 5 6 7 8

1
/∆
T
p
[1
/m
s
e
c
]

Number of parallel processing nodes

ClaRA distributed processing
2x1 Xeon 2.0 GHz, 2GB

87.0 msec

12.4 msec

Conclusion

 SOA based physics data production application development framework, written in pure Java.

 Separation between PDP application designer and service programmer.

 Service development environment.

 Increase intrinsic interoperability of services by standardizing data exchange interface.

 Increase federation.

 Multi-Threaded event processing.

 Distributed event processing.

 Ease of application deployment.

 Increase application diversification and agility.

 Designed and deployed service based Clas12 full track reconstruction application, showing

~750micor second per event relative processing time on the ClaRA platform using 10 JLAB

farm nodes.

Tutorial

Building a service

Java
public class SqrtEngine implements ICService {

public Object executeService(int type,Object input) {

if(type==DOUBLE){

return Math.sqrt((Double)input);

} else {

return null;

}

}

public String getName() {

return "SqrtByVG";

}

public String getDescription() {

return "Simple sqrt";

}

public String getAuthor() {

return "Vardan Gyurjyan";

}

public int getInputType() {

return DOUBLE;

}

public int getOutputType() {

return DOUBLE;

}

public String getversion() {

return "1.0";

}

}

C++
#include <string>

#include "CService.h"

using namespace std;

static string name = "";

static string phost = "";

static string pname = "";

class Average : public CService {

public:

// constructor

Average(string name, string platformHost, string platformName) :

CService(name, platformHost, platformName) {

};

// service engine

Cio* executeService(int type, Cio* o) {

if (type == DOUBLE_ARRAY) {

Cio* output = new Cio();

double avg;

double** data = static_cast<double**> (o->getData());

for (int i = 0; i < o->getLength(); i++) {

avg = *data[i] + avg;

}

avg = avg / o->getLength();

output->setData(&avg);

delete(data);

return output;

}

};

int main(int argc, char** argv) {

string description = "Simple average calculation";

string author = "gurjyan";

string version = "1.0";

int inputType = DOUBLE_ARRAY;

int outputType = DOUBLE;

// create an instance

Average* a = new Average(name, phost, pname);

// register service

a->registerService(name, description, author, version,

inputType, outputType);

while (1) {

sleep(1);

}

return (EXIT_SUCCESS);

};

#ifndef _CIO_H

#define _CIO_H

class Cio {

public:

Cio() {};

void* getData(){return data;};

void setData(void* d){data = d;};

int getLength(){return length;};

void setLength(int d){length = d;};

int getEndean(){return indean;};

void setEndean(int d){indean = d;};

int getOffset(){return offset;};

void setOffset(int d){offset = d;};

private:

void* data;

int length;

int indean;

int offset;

};

#endif /* _CIO_H */

#ifndef _CCONST_H

#define _CCONST_H

static const int EVIO = 199;

static const int OBJECT = 200;

static const int BYTE = 201;

static const int SHORT = 202;

static const int INT = 203;

static const int FLOAT = 204;

static const int DOUBLE = 205;

static const int STRING = 206;

static const int BYTE_ARRAY = 207;

static const int SHORT_ARRAY = 208;

static const int INT_ARRAY = 209;

static const int FLOAT_ARRAY = 210;

static const int DOUBLE_ARRAY = 211;

static const int STRING_ARRAY = 212;

static const int OBJECT_ARRAY = 213;

#endif /* _CCONST_H */

C++

Tutorial

Simple deployment

Exercise

Front-End Container

• Pub-sub server

• Registration

• Discovery

• Administration

• Reporting

Administration

• Service deployment

• Service removal

• Service recovery

Monitoring

• CPU (Unix only)

• Services

AAA Service

Container

Node/JVM

CEP

Service

Consumer

Node/JVM

Data Throughput

125

40

7

85

46

0

20

40

60

80

100

120

140

0 20 40 60 80 100 120

M
B

y
te

/
se

c
.

KByte

Clara data throughput

Ankaa

Clara

Ifl5-Clara-Ifl5

Clemente

cl-gib-cl

Data Rate

1250

400

70

850

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 20 40 60 80 100 120

H
z

KByte

Clara data rates

Ankaa

Clara

ifl5-Clara-ifl5

Clemente

cl-gib-cl

