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PDP environment

 Large user base

 Deployment

 Scalability

 Maintenance

 Propagation of updates

 Short response time to bugs

 Long life time

 Dynamic user base

 Aging technologies

 Author-drop rate

 Evolving

 Drop inefficient/unsatisfying software module(s)

 Integrate new module(s)

 Diversification 



PDP Application basic Requirements

 Agility

 Scalability

 Maintainability

 Easy deployment

solution

• Modularity

• Loose coupling

• Distribution

solution

Divide and conquer



SOA Defined

 An architecture (NOT a technology) based on well defined, reusable components: 

services.

 Services are loosely coupled.

 Services with functional context that are agnostic to a composed application logic.

 Agnostic services participate in multiple algorithmic compositions.

 Application design based on available services. 



Service 

6/13/2010

 Atomic unit of an SOA.

 Encapsulates a logic, or a process.

 Autonomous  

 Location Transparent.

 It is defined by the messages it can accept and the responses it can give.

 Implements standard contract/interface. 

 Composable

 They can be integrated to provide higher-level, complex services.

 Reusable

 Stateless

 Discoverable 

 Loose coupling between services.



ClaRA

 SOA based physics data production application development framework, written in pure Java.

 Service development environment.

 Increase intrinsic interoperability of services by standardizing data exchange interface.

 Complex service composition.

 Clear separation between PDP application designer and service programmer.

 Build and run PDP applications without an access to the source code of individual services.

 Increase federation. 

 Services and ClaRA based applications are united while maintaining their individual autonomy and self 

governance.

 Multi-Threaded event processing.

 Distributed event processing.

 Ease of application deployment.

 PDP application diversification and agility.



PDP Application Design Data Centric Approach

 Focus on data that is moving and transforming in the system.

 Data flow defines the essential aspect of an application. 

Data1S1 Data2S2 Data3S3

Object Centric Data Centric

Data encapsulation Data exposure

Object/method exposure Object/method encapsulation

Intermix of data and algorithm Separate data and algorithm

Tightly coupled Loosely coupled



ClaRA Design Architecture

PDP Service Bus 

Service layer

Data1S1 Data2S2 Data3S3
Administration
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Orchestration Layer  

• Data flow control

• Load balancing

• Error recovery



ClaRA Cloud
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ClaRA Containers

Front-End Container

• Pub-sub server

• Registration

• Discovery

• Administration

• Reporting

Administration 

• Service deployment

• Service removal

• Service recovery

Monitoring

• CPU (Unix only)

Service 
Containers

Container

Node/JVM

Node/JVM
C++

Service



ClaRA Java Service Container
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Service Coupling 

 A functional service context is independent from the outside logic.

 Contract-To-Functional coupling between services.

 Service has a name.

 Service receives data and sends data.

 Consumer-To-Contract coupling between consumers and services.

 User/consumer sends data to the named service.

 Sending the data will trigger execution of the receivers service. 

Service

A



Service Interface

 Simple, decoupled from technology and implementation details. 

 Input/output data types

 Object

 EvIo

 Primitive types

 Arrays of primitive types

 Limited  semantic/metadata information

 Description

 Author

 Version



Service abstraction

 Technology information (hidden)

 Programmatic logic information (hidden)

 Functional information (exposed through service contract meta data)

 Quality of service information (available from the platform registration 

services)



Service types

 Entity services

 Generic 

 Highly reusable

 Utility services

 Self contained 

 Legacy systems

 Composite services

 Primitive compositions 

 Self governing service compositions

 Complex compositions

 Controlled aggregate services  



Service Composition
 Primitive composition

 Represents message exchanges across two or more services.

 Requires composition initiator.

 Task services are examples of primitive composition.

 Complex composition

 Orchestrated task services seen as a single service.

Orchestration Layer



Service Discovery

 Design time

 Runtime

Service

Provider
Service

Consumer

Service

Registry

Register   service

Exchange messages

Discover    service



Multi-Threading

 Only one process is active on the ClaRA platform node.

 Single ClaRA container (JVM) on a node.

 Service containers run in their own threads.

 A single service container executes  contained service engines in separate threads. 

 A service engine must be thread safe if it is planned to run in a multi-threaded mode. 

 ClaRA based PDP application gets inherent multi-threading and distributed 

processing, with the relative processing time :

∆TR = (∆TA +∆tn ) / Nc*Nn



Advantages Multi-Threading over Multi-Processing

 Small memory footprint, less L1/L2 caching, lower probability for missing a cache, 

less RAM access, better performance.  

 Multi-Processing bookkeeping complexity. 

 Users must keep track of input/output data distribution and data reconsolidation.   



Service deployment and monitoring Interfaces



PDP Application Designer Interfaces



Clas12 Reconstruction



Clas12 Track Reconstruction Services, and Tracking Application Design

Front-End Container

• Pub-sub server

• Registration

• Discovery

• Administration

• Reporting

Event
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EvIO
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Service deployment monitoring



Composite Reconstruction Service Multi-Threading
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Composite Reconstruction Service Distributed Processing

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0 1 2 3 4 5 6 7 8

1
/∆
T
p
[1
/m
s
e
c
]

Number of parallel processing nodes

ClaRA distributed processing
2x1 Xeon 2.0 GHz, 2GB

87.0 msec

12.4 msec



Conclusion 

 SOA based physics data production application development framework, written in pure Java.

 Separation between PDP application designer and service programmer.

 Service development environment.

 Increase intrinsic interoperability of services by standardizing data exchange interface.

 Increase federation. 

 Multi-Threaded event processing.

 Distributed event processing.

 Ease of application deployment.

 Increase application diversification and agility.

 Designed and deployed service based Clas12 full track reconstruction application, showing 

~750micor second per event relative processing time on the ClaRA platform using 10 JLAB 

farm nodes.



Tutorial

Building a service



Java
public class SqrtEngine implements ICService {

public Object executeService(int type,Object input) {

if(type==DOUBLE){

return Math.sqrt((Double)input);

} else {

return null;

}

}

public String getName() {

return "SqrtByVG";

}

public String getDescription() {

return  "Simple sqrt";

}

public String getAuthor() {

return "Vardan Gyurjyan";

}

public int getInputType() {

return DOUBLE;

}

public int getOutputType() {

return DOUBLE;

}

public String getversion() {

return "1.0";

}

}



C++
#include <string>

#include "CService.h"

using namespace std;

static string name = "";

static string phost = "";

static string pname = "";

class Average : public CService {

public:

// constructor

Average(string name, string platformHost, string platformName) :

CService(name, platformHost, platformName) {

};

// service engine

Cio* executeService(int type, Cio* o) {

if (type == DOUBLE_ARRAY) {

Cio* output = new Cio();

double avg;

double** data = static_cast<double**> (o->getData());

for (int i = 0; i < o->getLength(); i++) {

avg = *data[i] + avg;

}

avg = avg / o->getLength();

output->setData(&avg);

delete(data);

return output;

}

};

int main(int argc, char** argv) {

string description = "Simple average calculation";

string author = "gurjyan";

string version = "1.0";

int inputType = DOUBLE_ARRAY;

int outputType = DOUBLE;

// create an instance

Average* a = new Average(name, phost, pname);

// register service

a->registerService(name, description, author, version, 

inputType, outputType);

while (1) {

sleep(1);

}

return (EXIT_SUCCESS);

};



#ifndef _CIO_H

#define _CIO_H

class Cio {

public:

Cio() {};

void* getData(){return data;};

void  setData(void* d){data = d;};

int getLength(){return length;};

void  setLength(int d){length = d;};

int getEndean(){return indean;};

void  setEndean(int d){indean = d;};

int getOffset(){return offset;};

void  setOffset(int d){offset = d;};

private:

void* data;

int length;

int indean;

int offset;

};

#endif /* _CIO_H */

#ifndef _CCONST_H

#define _CCONST_H

static const int EVIO                         = 199;

static const int OBJECT                    = 200;

static const int BYTE                         = 201;

static const int SHORT                      = 202;

static const int INT = 203;

static const int FLOAT                       = 204;

static const int DOUBLE                   = 205;

static const int STRING                     = 206;

static const int BYTE_ARRAY           = 207;

static const int SHORT_ARRAY        = 208;

static const int INT_ARRAY              = 209;

static const int FLOAT_ARRAY         = 210;

static const int DOUBLE_ARRAY     = 211;

static const int STRING_ARRAY       = 212;

static const int OBJECT_ARRAY       = 213;

#endif /* _CCONST_H */

C++



Tutorial

Simple deployment



Exercise

Front-End Container

• Pub-sub server

• Registration

• Discovery

• Administration

• Reporting

Administration 

• Service deployment

• Service removal

• Service recovery

Monitoring

• CPU (Unix only)

• Services

AAA Service

Container

Node/JVM

CEP

Service

Consumer

Node/JVM



Data Throughput
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Data Rate
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