s12 econstruction and nalysis

Framework

SOA based physics data processing (PDP)

V. GyurjyanT, S. Paul¥, S. Heddlet

TJLAB data acquisition and analysis group, iChristopher Newport University 6/13/2010

U 114

-

PDP environment

® Large user base

Deployment
Scalability
Maintenance
Propagation of updates

Short response time to bugs

* Long life time

Dynamic user base
Aging technologies
Author-drop rate

° Evolving

Drop inefficient/unsatisfying software module(s)
Integrate new module(s)

Diversification

PDP Application basic Requirements

: Aglhty . Modularity

‘ Scalablhty * Loose coupling
® Maintainability m e Distribution

* Easy deployment

U

Divide and conquer

SO Defined

An architecture (NOT a technology) based on well defined, reusable components:

services.

Services are loosely coupled.

Services with functional context that are agnostic to a composed application logic.
Agnostic services participate in multiple algorithmic compositions.

Application design based on available services.

/
Service

® Atomic unit of an SOA.

® Encapsulates a logic, or a process.

® Autonomous

® Location Transparent.

® Itis defined by the messages it can accept and the responses it can give.
* Implements standard contract/interface.

* Composable

® They can be integrated to provide higher-level, complex services.
® Reusable
® Stateless
® Discoverable

® Loose coupling between services.

6/13/2010

(lakA

SOA based physics data production application development framework, written in pure Java.
Service development environment.

Increase intrinsic interoperability of services by standardizing data exchange interface.
Complex service composition.

Clear separation between PDP application designer and service programmer.

® Build and run PDP applications without an access to the source code of individual services.

Increase federation.

® Services and ClaRA based applications are united while maintaining their individual autonomy and self

governance.
Multi-Threaded event processing.
Distributed event processing.
Ease of application deployment.

PDP application diversification and agﬂity.

PDP Application Destgn Data Centric Approach

® Focus on data that is moving and transforming in the system.,

e Data flow defines the essential aspect of an application.

@ Datal @ Data? @ Data3)

Object Centric Data Centric

Data encapsulation Data exposure
Object/method exposure Object/method encapsulation
Intermix of data and algorithm Separate data and algorithm

Tightly coupled Loosely coupled

4 N
(faRA Deston Architecture

PCEP Layer Orchestration Layer

* Rule invocation * Data flow control

* Identification * Load balancing
* Filtration * Error recovery

* Subscription

Administration Registration
S

Service Service

Service layer

PDP Service Bus

e

ClakA Containers

e

ClaRA Java Service Contamer

service Coupling

e A functional service context is independent from the outside logic.

e (Contract-To-Functional coupling between services.
e Service has a name.

® Service receives data and sends data.

® (Consumer-To-Contract coupling between consumers and services.
e User/consumer sends data to the named service.

° Sending the data will trigger execution of the receivers service.

—=

Service Interface

* Simple, decoupled from technology and implementation details.
* Input/output data types

® Object

°* Evlo

® Primitive types

® Arrays of primitive types
® Limited semantic/metadata information

® Description

® Author

® Version

Service abstraction

Technology information (hidden)
® Programmatic logic information (hidden)

* Functional information (exposed through service contract meta data)

Quality of service information (available from the platform registration

services)

Service types

o Entity services
® (eneric

* Highly reusable
* Utility services
¢ Self contained
® Legacy systems
® Composite services
® Primitive compositions
Self governing service compositions
° Complex compositions

Controlled aggregate services

Service Composicion

® Primitive composition
° Represents message exchanges across two or more services.
° Requires composition initiator.

e Task services are examples of primitive composition.

b2

° Complex composition

® QOrchestrated task services seen as a single service.

Service Discovery

° Design time

¢ Runtime

Discover /service

e

Service

Service

Registry

Register ervice

Service

Consumer

Exchange messages

Provider

Multi-Threading

Only one process is active on the ClaRA platform node.

Single ClaRA container (JVM) on a node.

Service containers run in their own threads.

A single service container executes contained service engines in separate threads.

A service engine must be thread safe if it is planned to run in a multi-threaded mode.

ClaRA based PDP application gets inherent multi—threading and distributed

processing, with the relative processing time :

ATg = (AT, +At,)/ NN,

Advantages Multr-Threadimg over Multi-Processing

* Small memory footprint, less L1/L2 caching, lower probability for missing a cache,

less RAM access, better performance.

° Multi—Processing bookkeeping complexity.

e Users must keep track of input/output data distribution and data reconsolidation.

e

service deplovment and monitoring Interfaces

New Container Alt

At SeTvice Host Tyvpe StartTime

Stop Container At clara jlab.org : Sernvice 2010/03M6 16:07:53
= curtana : Semnvice 2010/03M16 16:09:24

Exit curtana : JSenvice 2010/03/16 16:10:23
[EEE curtana ; JSemvice 2010/03M16 16:10:31

Name Input | Output Description Container
CCCISqByWe Double [Double |[Vardan Gyurjyan ~ [Simple sait oot
CCCiByteArrayvG [Double |Object |Vardan Gyurjyan 5K ByteArry CCC
CCCI/LogByG |Double [Double |Vardan Gyurjyan Log [

e

PDP Application Destgner Interfaces

ClasI2 Reconstruction

Ulas12 Track Reconstruction Services, and Tracking Application Design

Service deplovment monitoring

ClaRA Service Designer
File

Containers

StartTime
505_container dararmz 2 3 JService 2010j05/07 15.21:53
sosEventFeeder dafarmz3 ; JService 2010/05/07 15:26:23

Semvices

_ Name Input_ _Auther Wer] Deseription Container
505_container/EvioT oAllHits Evio Sebouh Paul (1.0 |gets hits from an Evio Event S05_conta...
=05_container/ClusterFindar Object Sebouh Paul |1. Finds clusters. Input is an arraydist of all DChits, output is an arrayist of all clusters S0S_conta...
505_container/RSegmentFinder Object Sebouh Faul (1.0 |takes in an array of DCcluster (clusters), and returns an array of DCTrackSegment (region segments) SO5_conta...
505_container/TrackCandidatefinder |Object Sebouh Faul [1.0 |finds track candidates (ForwardTrack) by linking region segments (OCTrackSegment) S05_conta...
505_container/FSThitsToTrackSegments |Object Sebouh Paul (1.0 |creates track segments from SVT hits S05_comta...
=05_container/ForwardiKalmanFilter Object Sebouh Paul (1. runs a kalman filter on each track in an array of ForwardTracks. Also takes in an Arraylist of SiTrackSegments. While the Kalman filter is running, t... S05_conta...
505_container/FindinterBsT Object Sebouh Paul (1.0 [finds intersections between the strips where the BST was hit S05_conta...
505_container/LinkintersectionsBST Ohbject Sebouh Paul 1.0 |takes in array of Arraylists of intersections of hit strips, and outputs an Arraylist of Linkedinter objects S05_conta...
505_container/RefitHelixBST Object Sebouh Paul takes in an Arraylist of Linkedlnter, and refits the hit positions to a helix S0S_conta
SOS_c_ontainer_,fKaImanFi\terBST Object Sebouh Paul [1. Funs a kalman filter on tracks found in the BST, and returns an arrayist of tracks. S05_conta...

1/ATp [1/msec]

Uomposite Reconstruction Service Multi-Threadmg

ClaRA Multi-Threading

2x4 Xeon 3.0Ghz, 8GB
0.16
/’

0.14)

' 7
0,12 { ||

8.45
0.1 9.2
10.4
0.08 “/ !
/122 Data labels show relative
lQh t’ L
0.06 1 Pro ce¢ssing time per even
»0 in msec (ATp)
0.04 4/ 194
/
0.02 28.3
/
5]1.
0
0 2 4 6 8 10 1

Number of parallel processing threads

Composite Reconstruction Service Distributed Processimg

1/ATp [1/msec]

ClaRA distributed processing
2x1 Xeon 2.0 GHz, 2GB

/./.12'4 msec

/l

=y

/./

e

87.0 msec

1

2 3 4

Number of parallel processing nodes

6

Concluston

SOA based physics data production application development framework, written in pure Java.
Separation between PDP application designer and service programmer.

Service development environment.

Increase intrinsic interoperability of services by standardizing data exchange interface.
Increase federation.

Multi-Threaded event processing.

Distributed event processing.

Ease of application deployment.

Increase application diversification and agility.

Designed and deployed service based Clas12 full track reconstruction application, showing
~750micor second per event relative processing time on the ClaRA platform using 10 JLAB

farm nodes.

Tutorral
Buildmg a service

Java

public class SqrtEngine implements ICService {
public Object executeService(int type, Object input) {
if(type==DOUBLE) {
return Math.sqrt((Double)input);
}else {

return null;

b

public String getName() {
return "SqrtByVG";

}

public String getDescription() {
return "Simple sqrt";

}

public String getAuthor() {
return "Vardan Gyurjyan";

}

public int getInputType() {
return DOUBLE;

}

public int getOutputType() {
return DOUBLE;

}

public String getversion() {

return "1.0";

/ #include <string>

#include "CService.h" C+ +

using namespace std;
static string name = "";
static string phost = "";

— nn,

static string pname = "";

class Average : public CService {
public:
// constructor
Average(string name, string platformHost, string platformName) :

CService(name, platformHost, platformName) {

}s

// service engine
Cio* executeService(int type, Cio* o) {
if (type == DOUBLE_ARRAY) {
Cio* output = new Cio();
double avg;
double** data = static_cast<double**> (0->getData());
for (inti = 05 i < o->getLength(); it++) {
avg = *datali] + avg;

h
avg = avg / o->getLength();
output->setData(&avg);
delete(data);

return output;

int main(int argc, char** argv) {
string description = "Simple average calculation";
string author = "gurjyan";
string version = "1.0";
int inputType = DOUBLE_ARRAY;
int outputType = DOUBLE;

// create an instance
Average* a = new Average(name, phost, pname);

// register service
a->registerService(name, description, author, version,
inputType, outputType);
while (1) {
sleep(1);
b

return (EXIT_SUCCESS);
}s

#ifndef _CIO_H

#Hdefine

[++

_CIO_H

#ifndef _CCONST_H

class Cio {
public:
Cio() {};
void* getData() {return data;};
void setData(void* d){data = d;};
int getLength() {return length;};
void setLength(int d){length = d;};
int getEndean() {return indean;};
void setEndean(int d){indean = d;};
int getOffset() {return offset;};
void setOffset(int d) {offset = d;};
private:
void* data;
int length;
int indean;
int offset;

}s

Hendif /* _CIO_H */

#Hdefine _CCONST_H
static const int EVIO =199;
static const int OBJECT = 200;
static const int BYTE =201;
static const int SHORT =202;
static const int INT =203;
static const int FLOAT =204,
static const int DOUBLE = 205;
static const int STRING = 206;
static const int BYTE_ARRAY = 207;
static const int SHORT_ARRAY =208;
static const int INT_ARRAY = 209;
static const int FLOAT_ARRAY =210;
static const int DOUBLE_ARRAY = 211;
static const int STRING_ARRAY =212;
static const int OBJECT_ARRAY =213;

Hendif

/* _CCONST_H */

Tutorial
Simple deployment

e

Exercise

Node/JVM

e

Data Throughput

Clara data throughput
140
120 Dl
. /

85

MByte/sec.

. ///‘
60

/ 46
40 — 40

A%

20

\7

40 60 80 100 120

KByte

e=@== Ankaa
e=fll=Clara

e [f]5-Clara-Ifl5
=== Clemente
=i - gib-cl

e

Data Rate

Hz

4500

4000

3500

3000

2500

2000

1500

1000

500

Clara data rates

e=@== Ankaa

efll= Clara

\ == ifl5-Clara-ifl 5
e=pé= Clemente

\. 1250 == cl-gib-cl

~r—— 400
20 40 60 80 100 120
KByte

