

ced₁₂ Seeing Tracks Through Thick and Thin[†]

David Heddle, Andrew Blackburn, George Ruddy Christopher Newport University

[†]As in *thick* and *thin* clients

- 1. Introduction
- 2. Thick & Thin
- 3. Architecture
- 4. Features
- 5. Availability & Plans

1. Introduction

- ced₁₂ = cLAS eVENT dISPLAY (for 12 GeV)
- It is an *event* display, not a *detector* display
 - Primary role is *not* to visualize the detector.
 - Primary roles: Help *debug* and *diagnose* the detector (online) and to assist in analysis (offline).
 - Unfaithful (to the geometry) displays are often more useful that faithful displays. Especially when there is a lot of "air."
 - 2D often more useful than 3D.

- 1. Introduction
- 2. Thick & Thin
- 3. Architecture
- 4. Features
- 5. Availability & Plans

2. Thick and Thin

- Thick: Traditional, full-featured Desktop
 Application
- Thin: <u>Same</u> full-featured Web 2.0 application delivered in a browser[†]
- We will deliver both, using (approximately) the same code base

[†]With, perhaps, some minor security related annoyances, such as no access to local file system—e.g., ced_{12} will not be able to upload your *Quicken* files to the CLAS calibration database. Honest.

Web 1.0 v. Web 2.0

• Web 1.0

- Web delivers documents
- Web apps are stateless
- HTML based; browser renders

• Web 2.0[†]

- Web delivers Rich Internet Applications (RIAs)
- Applications maintain state
- Data centric; browser contains and delivers

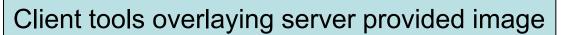
Rich Internet Applications

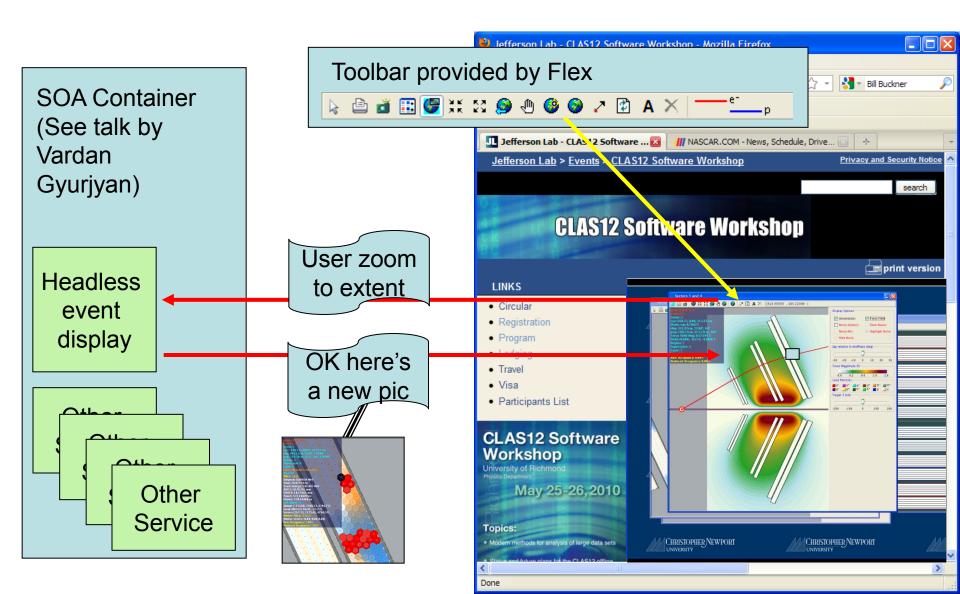
- 1. Browser *delivers* virtual machine and *provides* real estate.
- 2. Compiled application runs in vendor VM.
- 3. VM, not browser, renders.
- Browser's primary role has changed! It is a VM container.

[†]Web 2.0 is here *now*. Sometimes it provides dramatic new interfaces. Sometimes, as in the case of *NetFlix*, it takes a decent site and redoes it in a way that produces a much more appealing desktop-like response and experience.

RIA Technologies

- Adobe FLEX (2004) FLASH player is VM. ~97 percent penetration across all platforms.¹
- Microsoft Silverlight (2007) So far, little penetration.⁶⁶⁶
- SUN JavaFX (too late—little chance to succeed.)
- HTML 5 (Interesting—essentially dumps the VM responsibilities onto the browser developers.)³

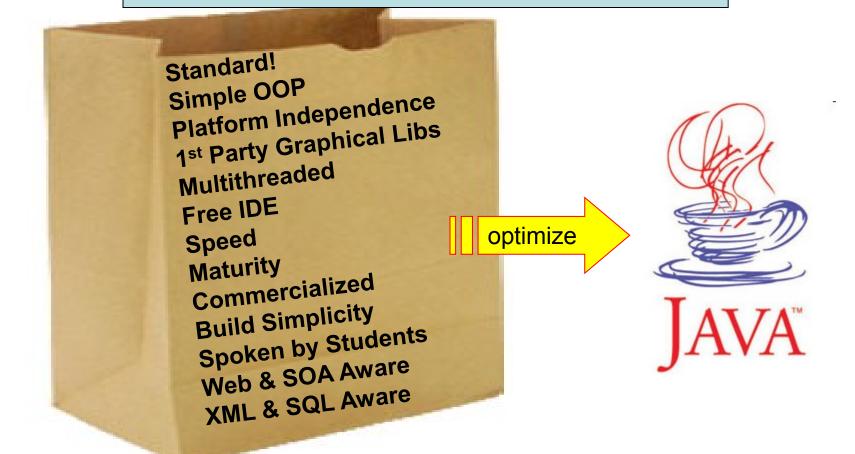

¹ The best reason for adopting FLEX; ~nobody will have to download anything.


⁶⁶⁶ But yes, I agree, that is one hard-to-ignore 800lb gorilla.

³ Spec to reach the W3C Candidate Recommendation stage 2012, and W3C Recommendation in the year **2022** or later! Many parts of the spec are stable and may be implemented early. (Source: *wikipedia*)

Google Maps Paradigm

CHRISTOPHER NEWPORT



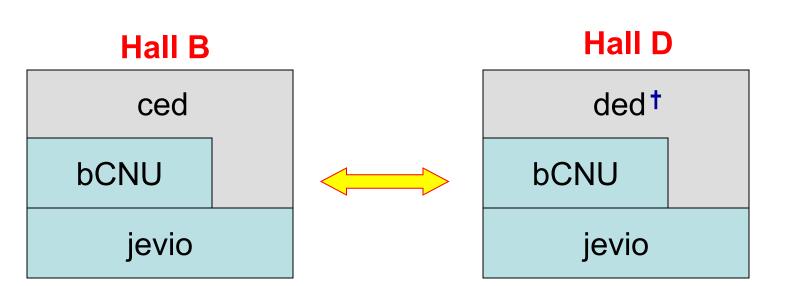
- 1. Introduction
- 2. Thick & Thin
- 3. Architecture
- 4. Features
- 5. Availability & Plans

3. Architecture

CLAS 6 (and 12?) Software Motto: *"Standard is Better than Better"*[†]

[†]If you were to say: "in *practice* it appears that the CLAS 6 motto was: *Complicated is Better than Better*," I, for one, could not say that you were being uncharitable.

Two Plus One Libraries

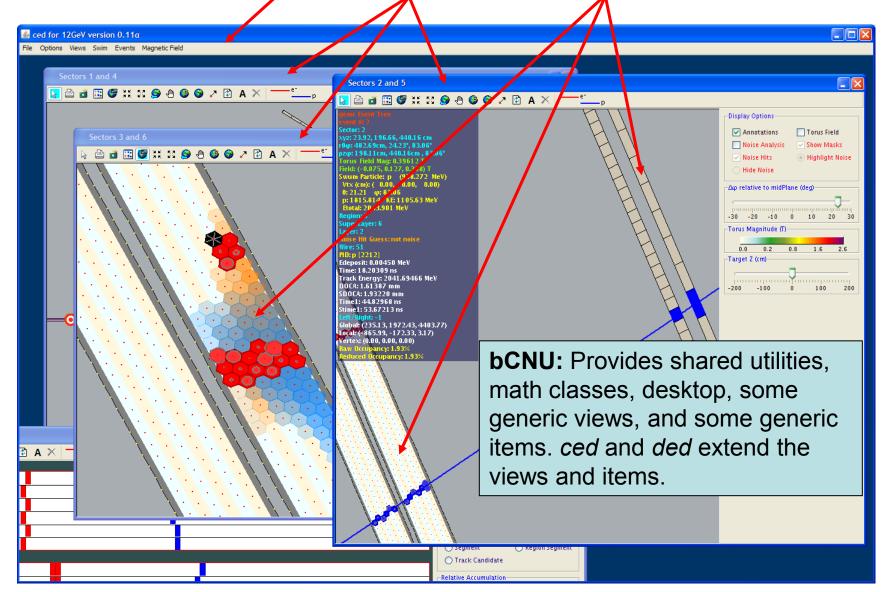

Library	Purpose	Comments		
jevio	JAVA I/O for JLab CODA evio format	Developed by CLAS software group—adopted and taken-over by JLAB DAQ group for JLAB site-wide use.		
bCNU ¹	Multiple Document Interface (MDI) Framework	CLAS SWG JAVA Swing-based graphical package. <i>bCNU</i> provides framework and base classes, but knows nothing about any specific detector.		
jogl²	JAVA bindings to OpenGL (3D)	One of two well-known free 3D solutions for JAVA. Requires platform specific jars and shared libraries.		

On this platform we are building Hall B and Hall D event displays

¹ bCNU, i.e., "be seein' you!" (unless that is too cheesy, in which case it stands for Hall **b** and **CNU** collaboration. Your call.)

² This is the "plus one." It differs from the other two in that a) we didn't develop it and, more importantly, b) it is quasi-platform dependent.

Shared Hall B/D Code Base



OPHER NEWPORT

Goal: common (or potentially common) features developed in *bCNU* (or migrated to *bCNU*) with the intent that the *ced/ded* code base < $\frac{1}{4}$ the size of the *bCNU* code base.

† ded (pronounced "*dee-e-dee*") is the Hall D event display. This naming convention is bloody awful, since you would then think *ced* is the Hall C event display, and that *ced* should really be *bed*. But there it is.

Multiple Document Interface (MDI): Desktop, Views, & Items

- 1. Introduction
- 2. Thick & Thin
- 3. Architecture
- 4. Features
- 5. Availability & Plans

4. Features (Current *ced* Views)

View	Comment
All DC	All the drift chambers—approximate geometry
Sector	Split sectors 1/4, 2/5, 3/6. Faithful geometry. Currently DC and OTOF.
Monte Carlo	Table of "event generator" records (if any present) showing what tracks were generated
Event	Drag 'n drop, expandable tree-view of the event so that banks can be examined quickly (bCNU)
Noise	A view with fake data used for testing/explaining the noise detection algorithm.
Log	Info/Warning/Error messages for debugging (bCNU)
Socket	Establish and manage evio over a socket (bCNU)
XML	Drag 'n drop, tree-view of any XML file (bCNU)

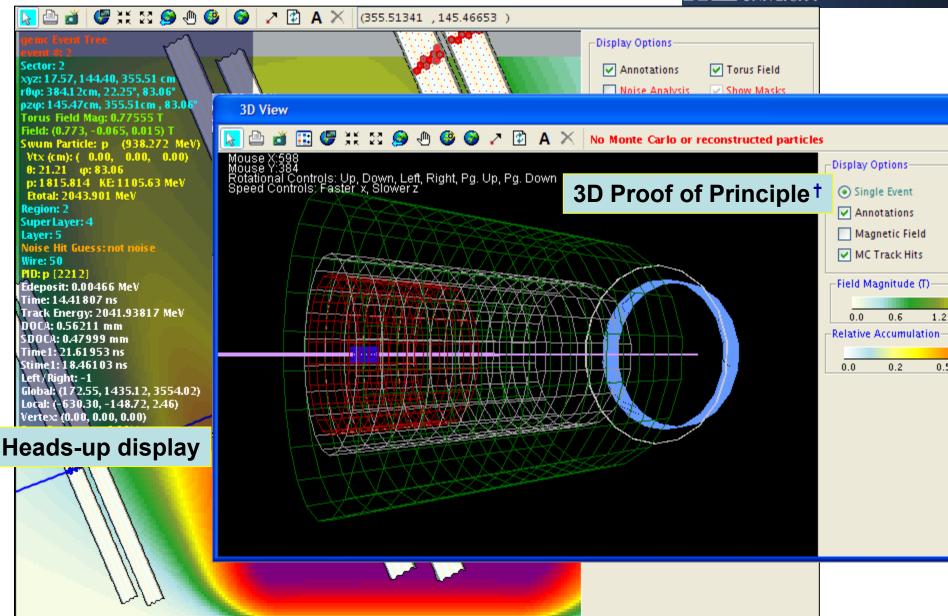
Some Selected Features

Feature	Comment
Zoom, pan, etc	Expected features for view manipulation (bCNU)
Snap shot	High quality .png image of active area (bCNU)
Heads-up	Mouse-over information displayed on a semi-transparent heads-up display (to preserve real estate) (bCNU)
Moving target	Trivial: target z-location can be changed
Magnetic Field	Uses same field as GEMC
Accumulate	Accumulation mode for looking for hot spots/dead zones
Swim	Runge-Kutta 4 th order for swimming particles (bCNU)
Noise	Improved display of results of noise detection
Clusters/ segments/ candidates	Highlight clusters, segments, track candidates, etc. from the <i>socrat</i> family of track-finders (or any track-finder that stores results in same banks)
Auto rotate	Rotate to initial ϕ of track to see if it lines up with DOCAs

Some Snapshots

Monte Carlo View

	nte Carl	o Events										
Id	name	m (MeV)	x₀ (cm)	y₀ (cm)	z₀ (cm)	p (MeV)	θ	φ	KE (MeV)	Et (MeV)		
211	n*	139.570	0.000	0.000	65.000	4760.691	5.539	-15.289	4623.166	4762.736	~	
211	n-	139.570	0.000	0.000	65.000	299.873	7.415	168.100	191.192	330.762		
22	Y	0.000	0.000	0.000	65.000	209.421	20.266	-31.128	209.421	209.421	_	
22	Y	0.000	0.000	0.000	65.000	731.363	2.132	-107.388	731.363	731.363	_	
211	n*	139.570	0.000	0.000	65.000	1975.081	8.854	133.358	1840.436	1980.007		
-211	n-	139.570	0.000	0.000	65.000	901.423	29.806	170.250	772.594	912.164	- 1	
2212	р	938.272	0.000	0.000	65.000	377.886	36.661	-32.203	73.238	1011.510		0
		States of the local division of the local di										
sing CN	D vie g san U ewor	ne		And Constant								


More Snapshots

Noise Analysis

Itelee / Inalyele				
		Event View	/	
	ه 🗰 t\ced\dat	a\test.ev	event#: 12	
			num events: 10000	
		en (ints): 11 tag: 400 num: 12 datalen (byte		ray Data
		en (ints): 11 tag: 400 num: 13 datalen (byte en (ints): 11 tag: 400 num: 14 datalen (byte	and the function	526] -4.5641612
		en (ints): 11 tag: 400 num: 15 datalen (byte	an), 40 Frankhar	527] -4.7771458 528] -5.0160836
		en (ints): 11 tag: 400 num: 16 datalen (byte en (ints): 11 tag: 400 num: 17 datalen (byte	es): 40 [mother	529] -4.9629501
		ag: 55 num: 0 datalen (bytes): 0 [CND] <#c	children: 0>	530] -3.8373860
		ag: 50 num: 0 datalen (bytes): 0 [CTOF] <#	Fernioren, 02	531] -4.0010420
	lan (ata)	56 tag: 500 num: 0 datalen (bytes): 10666 544 tag: 500 num: 1 datalen (bytes): 2172		532] -4.2391999 533] -4.2691126
		2181 tag: 500 num: 100 datalen (bytes): 217		534] -4.5887432
CEU12GEV	B2s len (ir	ts): 544 tag: 500 num: 23 datalen (bytes):	: 2172 [sector] <	535] -4.7229978
🖃 🗁 cedDevelopment		its): 544 tag: 500 num: 24 datalen (bytes):		536] -4.6443698
i∎iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii		its): 544 tag: 500 num: 25 datalen (bytes): its): 544 tag: 500 num: 26 datalen (bytes):		537] -4.8246501
iaia ced iaiaisvn		23937 tag: 500 num: 200 datalen (bytes):		538] -5.0483304
.svn .∎	BANK of DOUBLE64s	en (ints): 1087 tag: 500 num: 1 datalen (by	tes): 4344 [Edep [!	539] -5.2783288
		en (ints): 1087 tag: 500 num: 2 datalen (by		540] -5.4474770
🖨 🧑 data		en (ints): 1087 tag: 500 num: 3 datalen (by		541] -5.7613397
🚊 💼 📩 .svn		en (ints): 1087 tag: 500 num: 4 datalen (by		542] -6.0842036
🗈 a_zedrofield.ev		en (ints): 1087 tag: 500 num: 5 datalen (by		543] 4.48237902
🗈 b.ev		en (ints): 1087 tag: 500 num: 6 datalen (by en (ints): 1087 tag: 500 num: 7 datalen (by		►
🗈 das 12_torus_fieldn		en (ints): 1087 tag: 500 num: 7 datalen (by		
····· 🖹 clas12_torus_fieldn		en (ints): 1087 tag: 500 num: 9 datalen (by		
🗈 sector_1_wires.dat 🗈 sptorus_map.dat		en (ints): 1087 tag: 500 num: 10 datalen (b		ogress
sptorus_map.binar		C 1 2 4007 1 500 44 1 1 1 4		
test.ev	structure BANK	tag 500	length 4348 by	/tes
	data type DOUBLE64	number 6	description local_y	

[†]For those who know about such things, the "lightweight *v*. heavyweight" issue is not a problem.

- 1. Introduction
- 2. Thick & Thin
- 3. Architecture
- 4. Features
- 5. Availability & Plans

5. Availability: Obtaining ced[†]

svn scheckout[URL] Where [URL] is: https://clas12svn.jlab.org/repos/trunk/clas12/cedExport

 \rightarrow cedExport, with ced.sh for launching on linux, unix or Mac OSX. And ced.bat for launching on the other 95% of all computers. There is no build

procedure--such is the beauty of JAVA.

From then on, use **svn** update \rightarrow the latest.

On linux, launch the script via: bash ced.sh

[†]You need a JLab CUE account.

<rant> Forgot your password? Look on the little piece of paper in your desk!
Since we all have multiple accounts, all with out-of-phase über-unbreakable
mandatory password shelf lives, we (well, not me) have resorted to writing them
down. Everything is much more secure! </rant>

Last Slide: Development Plans

Feature	Comment	Status	LoE (months)
Use SOA deployed @ CNU	CNU purchased two servers (Feb, 2010)	Started	Continuous
More geometries	Infrastructure ready	Started	As geometries become available
Image Service	Headless <i>ced</i> ₁₂ produces images upon demand	Not started	2
Web 2.0 (RIA) version	Fully functional web version	Started	18
3D Views	jogl support added to bCNU	Started	6
2D Views	Calorimeter, etc.	Started	3
Simple inter- process comm.	Non-firewall penetrating event passing (bare sockets and cMsg)	Completed	3