
Elliott Wolin

CLAS12 Software Workshop

U of Richmond

25-May-2010

 Many opportunities for sharing

 Maybe with Halls A and C, but they are different

 CLAS12 and Hall D very similar

 Online – almost identical

 Offline – similar, but different computing models

 CLARA – SOA architecture

 JANA – multi-threaded analysis framework

 EVIO – binary I/O of in-memory tree model

 Event Display – bCNU plus customizations

 cMsg – generic publish/subscribe IPC

 CODA – JLab DAQ package

 EPICS – for online control systems

 RootSpy – display of distributed ROOT hist

 ROOT, MySQL, PHP, etc.

 Event display

 CNU student working on Hall D event display

 Developments could benefit CLAS12 as well

 RootSpy

 CNU student from Yelena will start soon

 Developments will benefit both halls

 elog

 alarm system – BEAST?

 backup and restore – from ORNL?

 Archiver – from ORNL?

 EPICS displays – Labview? CSS?

 JavaIOC – in development

 online farm management

 online event processing/monitoring

 online databases

 controls database – IRMIS?

 Calibration constants database

 DST format

 Magnetic field storage on disk

 Track swimming in inhomogeneous field

 Kalman filter package

 Matrix package using SIMD instructions

 PWA analysis framework

 Geant4

 Geometry database and XML representation

 Original C package just did binary buffer I/O
 You had to manually set the bits and bytes

 Now implements in-memory object model
 Includes auto-serialization to binary buffer
 no more setting bits and bytes by hand!

 C++ and Java (different in-memory models)
 Implements XML-like tree in memory
 C++ - Custom STL-based
 Java – based on JTree

 Machine/architecture independent

 Automatically handles endian conversions

 Tree consists of container nodes and leaf nodes

 Container nodes only hold other nodes

 Leaf node contains array of one primitive type
 int32_t, int 16_t, float, double, string, etc.

 Nodes can have 2- or 1-word header on disk

 Nodes with 2-word headers (“banks”) have user-
settable int16_t “tag” and int8_t “num”

<event content="bank" data_type="0x10" tag="1“ num="204">

<bank1 content="segment" data_type="0x10" tag="2" num="1">

<uint32 data_type="0x1" tag="2748">

0xffffffff 0xfffffffe 0xfffffffd 0xfffffffc 0xfffffffb

0xfffffffa 0xfffffff9 0xfffffff8 0xfffffff7 0xfffffff6

0xfffffff5 0xfffffff4 0xfffffff3 0xfffffff2 0xfffffff1

0xfffffff0 0xffffffef 0xffffffee 0xffffffed 0xffffffec

0xffffffeb 0xffffffea 0xffffffe9 0xffffffe8 0xffffffe7

0xffffffe6 0xffffffe5 0xffffffe4 0xffffffe3 0xffffffe2

</uint32>

<int32 data_type="0xb" tag="1">

-1 -2 -3 -4 -5

-6 -7 -8

</int32>

<float32 data_type="0x2" tag="2">

-1.000000 -2.000000 -3.000000 -4.000000 -5.000000

-6.000000 -7.000000 -8.000000 -9.000000 -10.000000

-11.000000 -12.000000

</float32>

#include <evioUtil.hxx>

int main(int argc, char **argv) {

try {

// create evio file channel object for reading, argv[1] is filename
evioFileChannel chan(argv[1], “r”);

// open the file
chan.open();

// loop over events
while(chan.read()) {

// create tree from contents of file channel object
evioDOMTree tree(chan);

// print tree
cout << tree.toString() << endl;

}

// eof reached...close file
chan.close();

} catch (evioException *e) {
cerr << endl << e->toString() << endl << endl;
exit(EXIT_FAILURE);

}

// done
exit(EXIT_SUCCESS);

}

 CODA raw event I/O

 Serialize objects to binary array

 Transport via cMsg or other protocols (e.g. CLARA)

 Storage on disk (e.g. DANAEVIO)

 Geant4 output

 Input to event display

 Convert from EVIO to XML

 Then can use XML browser

 Convert from XML to EVIO

 Doesn’t handle string arrays yet…

 Extract, copy events

 Use XML browser after conversion from binary

 Eliminate event blocking

 Vastly simplifies I/O code

 Random-access I/O

 Using in-memory index created when file opened

 Improve in-memory tree query (esp. in Java)

 Goal is same power in C++ and Java

 Can implement multiple query models

 Code sharing is win-win-win
 CLAS12 – Hall D – JLab/DOE

 Many opportunities for joint code development
 No-brainer in online
 Quite feasible in offline

 Many packages already shared
 Some with joint code development

 EVIO package
 Easily modified to meet future CLAS12 and Hall D needs

