
Elliott Wolin

CLAS12 Software Workshop

U of Richmond

25-May-2010

 Many opportunities for sharing

 Maybe with Halls A and C, but they are different

 CLAS12 and Hall D very similar

 Online – almost identical

 Offline – similar, but different computing models

 CLARA – SOA architecture

 JANA – multi-threaded analysis framework

 EVIO – binary I/O of in-memory tree model

 Event Display – bCNU plus customizations

 cMsg – generic publish/subscribe IPC

 CODA – JLab DAQ package

 EPICS – for online control systems

 RootSpy – display of distributed ROOT hist

 ROOT, MySQL, PHP, etc.

 Event display

 CNU student working on Hall D event display

 Developments could benefit CLAS12 as well

 RootSpy

 CNU student from Yelena will start soon

 Developments will benefit both halls

 elog

 alarm system – BEAST?

 backup and restore – from ORNL?

 Archiver – from ORNL?

 EPICS displays – Labview? CSS?

 JavaIOC – in development

 online farm management

 online event processing/monitoring

 online databases

 controls database – IRMIS?

 Calibration constants database

 DST format

 Magnetic field storage on disk

 Track swimming in inhomogeneous field

 Kalman filter package

 Matrix package using SIMD instructions

 PWA analysis framework

 Geant4

 Geometry database and XML representation

 Original C package just did binary buffer I/O
 You had to manually set the bits and bytes

 Now implements in-memory object model
 Includes auto-serialization to binary buffer
 no more setting bits and bytes by hand!

 C++ and Java (different in-memory models)
 Implements XML-like tree in memory
 C++ - Custom STL-based
 Java – based on JTree

 Machine/architecture independent

 Automatically handles endian conversions

 Tree consists of container nodes and leaf nodes

 Container nodes only hold other nodes

 Leaf node contains array of one primitive type
 int32_t, int 16_t, float, double, string, etc.

 Nodes can have 2- or 1-word header on disk

 Nodes with 2-word headers (“banks”) have user-
settable int16_t “tag” and int8_t “num”

<event content="bank" data_type="0x10" tag="1“ num="204">

<bank1 content="segment" data_type="0x10" tag="2" num="1">

<uint32 data_type="0x1" tag="2748">

0xffffffff 0xfffffffe 0xfffffffd 0xfffffffc 0xfffffffb

0xfffffffa 0xfffffff9 0xfffffff8 0xfffffff7 0xfffffff6

0xfffffff5 0xfffffff4 0xfffffff3 0xfffffff2 0xfffffff1

0xfffffff0 0xffffffef 0xffffffee 0xffffffed 0xffffffec

0xffffffeb 0xffffffea 0xffffffe9 0xffffffe8 0xffffffe7

0xffffffe6 0xffffffe5 0xffffffe4 0xffffffe3 0xffffffe2

</uint32>

<int32 data_type="0xb" tag="1">

-1 -2 -3 -4 -5

-6 -7 -8

</int32>

<float32 data_type="0x2" tag="2">

-1.000000 -2.000000 -3.000000 -4.000000 -5.000000

-6.000000 -7.000000 -8.000000 -9.000000 -10.000000

-11.000000 -12.000000

</float32>

#include <evioUtil.hxx>

int main(int argc, char **argv) {

try {

// create evio file channel object for reading, argv[1] is filename
evioFileChannel chan(argv[1], “r”);

// open the file
chan.open();

// loop over events
while(chan.read()) {

// create tree from contents of file channel object
evioDOMTree tree(chan);

// print tree
cout << tree.toString() << endl;

}

// eof reached...close file
chan.close();

} catch (evioException *e) {
cerr << endl << e->toString() << endl << endl;
exit(EXIT_FAILURE);

}

// done
exit(EXIT_SUCCESS);

}

 CODA raw event I/O

 Serialize objects to binary array

 Transport via cMsg or other protocols (e.g. CLARA)

 Storage on disk (e.g. DANAEVIO)

 Geant4 output

 Input to event display

 Convert from EVIO to XML

 Then can use XML browser

 Convert from XML to EVIO

 Doesn’t handle string arrays yet…

 Extract, copy events

 Use XML browser after conversion from binary

 Eliminate event blocking

 Vastly simplifies I/O code

 Random-access I/O

 Using in-memory index created when file opened

 Improve in-memory tree query (esp. in Java)

 Goal is same power in C++ and Java

 Can implement multiple query models

 Code sharing is win-win-win
 CLAS12 – Hall D – JLab/DOE

 Many opportunities for joint code development
 No-brainer in online
 Quite feasible in offline

 Many packages already shared
 Some with joint code development

 EVIO package
 Easily modified to meet future CLAS12 and Hall D needs

