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Abstract

The neutron magnetic form factor Gn
M has been extracted from the ratio of quasi-

elastic e-n to e-p scattering from a deuterium target using the CLAS detector. The
measurement covers the range 0.5 to 4.8 (GeV/c)2 in four-momentum transfer squared.
High precision was achieved by use of the ratio technique, with which many uncertain-
ties cancel. A dual-cell target was used, featuring a deuterium cell and a hydrogen cell,
which allowed a simultaneous in-situ calibration of the neutron detection efficiency.
Neutrons were detected using the CLAS Time-of-Flight system and the Forward Elec-
tromagnetic Calorimeter. Data were taken at two different electron beam energies,
allowing up to four semi-independent measurements of Gn

M to be made at each value
of Q2. The data were compared to previous measurements, and with several theoreti-
cal and phenomenological models. It is found that for Q2 > 1 (GeV/c)2 the standard
dipole parametrization gives a good representation of the data over a wide range of
Q2.
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Chapter 1

Introduction

1.1 Electromagnetic Form Factors

Neutrons and protons are fundamental building blocks of the visible matter in the
universe. If the proton and neutron were simple, structureless Dirac particles like the
electron, they would have a magnetic moment given by:

µN =
q

m
|~s| (1.1)

where q,m,and ~s are the nucleon’s charge, mass and spin respectively (using natural
units ~ = c = 1). In particular, the proton magnetic moment should be equal in
magnitude to µN , where µN = e

2Mp
, and the neutron magnetic moment should vanish.

Otto Stern’s measurement of the proton magnetic moment in 1933, which showed
that the proton magnetic moment was µp = 2.79µN , indicated that the proton was
not a structureless Dirac particle. Subsequent measurement of the neutron magnetic
moment (µn = −1.91µN) confirmed the non-Dirac nature of the neutron. Beginning in
the 1950s, electron scattering experiments by Hofstadter and others showed evidence
of charge and magnetization distributions inside the proton. Form factors, called Gp

E

and Gp
M were introduced to parametrize the proton internal structure revealed in the

electron scattering experiments.

1.1.1 Electron-Nucleon scattering in the Single Photon Ex-
change Approximation

From the Feynman rules for quantum electrodynamics (QED), the amplitude for
electron-nucleon scattering in the single-photon exchange approximation is given by:

−iM = jµ−igµν

q2
Jν (1.2)

In this expression, jµ is the electron transition current, Jν is the proton transition
current and gµν is the metric tensor. This is illustrated in Fig 1.1 for an electron of

1
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initial(final) momentum k(k′) and a nucleon of initial(final) momentum p(p′). The
four-momentum transferred in the reaction is q = k − k′.

k k′

p p′

q = k − k′

Figure 1.1: Elastic electron-nucleon scattering in the single-photon exchange approx-
imation

The electron is an elementary spin-1
2

particle. The form of its transition current
is known:

jµ = −eue(k
′)γµue(k)eiq·x (1.3)

In this expression, ue(k) and ue(k
′) are Dirac spinors representing the incident

and scattered electron, and the γµ are the usual Dirac matrices.
The nucleon is a composite particle, with non-trivial internal structure, so the

simple form of Eqn 1.3 must be replaced with a more complicated form:

Jµ = −eu(p′)Γµu(p)eiq·x (1.4)

Γµ must be constructed such that Jµ transforms like a 4-vector. The ingredients avail-
able to construct such an expression for Γµ are functions of p, p′, q and combinations
of Dirac gamma matrices. It can be shown that the most general nucleon current,
subject to the requirements of current conservation, parity conservation and Lorentz
invariance, can written as:

Jµ = eu(p′)
[

F1(Q
2)γµ +

κ

2M
F2(Q

2)iσµνqν

]

u(p)eiq·x (1.5)

where κ is the nucleon anomalous magnetic moment, M is the nucleon mass and F1

and F2 are scalar functions of Q2 (with Q2 = −q2) called the Dirac and Pauli form
factors respectively. The form factors parametrize our ignorance of the details of the
internal structure of the nucleon.

Long wavelength photons (Q2 → 0) do not resolve the interior structure of the
nucleon, so in that limit, the nucleon current must reduce to that of a point particle
of appropriate charge and magnetic moment. This requirement fixes the values of the
form factors at Q2 = 0:

F p
1 (0) = 1, F p

2 (0) = 1 (1.6)

F n
1 (0) = 0, F n

2 (0) = 1. (1.7)

The superscripts label the isospin state of the nucleon.
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With this expression for the nucleon electromagnetic current, the cross section
for elastic electron-nucleon scattering can be calculated (in the lab frame, where the
nucleon is initially at rest):

dσ

dΩ
= σMott

[(

F 2
1 +

κ2Q2

4M2
F 2

2

)

+
Q2

2M2
(F1 + κF2)

2 tan2(
θ

2
)

]

, (1.8)

where θ is the electron scattering angle, and σMott is the Mott cross section (using
natural units, ~ = c = 1):

σMott =
α2E ′ cos2( θ

2
)

4E3 sin4( θ
2
)

(1.9)

Eqn 1.8 is inconvenient due to the F1F2 term. If the so-called Sachs’ form factors
are defined as:

GE ≡ F1 − κQ2

4M2 F2 (1.10)

GM ≡ F1 + κF2, (1.11)

then Eqn 1.8 can be rewritten as:

dσ

dΩ
= σMott

(

G2
E +

τ

ǫ
G2

M

)

(

1

1 + τ

)

(1.12)

In this equation, τ = Q2

4M2 and ǫ = (1 + 2(1 + τ) tan2( θ
2
))−1. The Sachs’ form factors

GE and GM are known as the electric and magnetic form factors, respectively. The
Q2 = 0 limit of these form factors can be found by combining Eqn 1.11, Eqn 1.6 and
Eqn 1.7, giving:

Gp
E(0) = 1, Gp

M(0) = µp (1.13)

Gn
E(0) = 0, Gp

M(0) = µn, (1.14)

where µp and µn are the proton and neutron magnetic moment (µp = 1+κp, µn = κn),
respectively.

Early measurements of the elastic form factors showed that Gp
E could be param-

eterized using the so-called dipole form:

GD(Q2) =
1

(1 + Q2/∆)2
(1.15)

where ∆ = 0.71 (GeV/c)2. Furthermore the other elastic form factors, with the
exception of Gn

E , were found to be well approximated by scaling Gp
E:

Gp
E(Q2) ≈ GD(Q2) (1.16)

Gp
M(Q2) ≈ µpGD(Q2) (1.17)

Gn
M(Q2) ≈ µnGD(Q2) (1.18)
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It is a standard practice when showing form factor data to scale the data points to
the dipole. The dipole does not describe Gn

E , which is frequently parametrized using
the Galster fit:

Gn
E(Q2) =

µnτGD

1 + ητ
(1.19)

where τ = Q2/4M2
n and η = 5.6.

1.1.2 Interpretation of Elastic Form Factors

The introduction of the Sachs’ form factors removed the interference term from the
cross section, simplifying experimental analysis. The Sachs’ form factors also have
a somewhat more direct physical interpretation. In the non-relativistic region Q2 ≪
M2

N , the Sachs’ form factors can be interpreted as Fourier transforms of the charge
and magnetization distributions:

GE(Q2) =

∫

ρ(r)ei~q·~rd3r (1.20)

The dipole form GD(Q2) discussed in the previous section corresponds to an expo-
nential fall-off in the spatial charge and magnetization distributions.

The integrand in the equation can be expanded in powers of q to obtain the RMS
charge radius of the nucleon:

GE =

∫

ρ(r){1 − 1

2
(qr)2 cos2 θ + . . .}r2 sin θdrdθdφ (1.21)

Differentiating with respect to ~q 2 and taking the limit q2 → 0 gives:

< r2 >= −6
dGE(q)

dq2

∣

∣

∣

∣

q2=0

(1.22)

At higher Q2, this simple interpretation is complicated by relativistic effects. However,
a simple connection between the form factors and the electromagnetic structure of
the nucleon still exists in a special reference frame, called the Breit, or “Brick Wall”
frame. In this frame, defined by the condition p = −p′, where no energy is transferred
to the nucleon, it can be shown that the form factors are related to the charge and
magnetic moment distributions in the nucleon in momentum-space [1].

In this frame,

J0(Q2) = ρ(Q2) = 2MeGE(Q2) (1.23)

J1(Q2) ± iJ2(Q2) = ∓2 |q| eGM(Q2). (1.24)

so that there is a connection between the components of the nucleon current 4-vector
and the elastic form factors.
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p

−p

k

−k

Figure 1.2: Elastic electron-nucleon scattering in the Breit frame

The measurement of the elastic form factors of the nucleon is a topic of great inter-
est. The elastic form factors encode fundamental information about hadron structure,
and the nucleon is the only hadron for which precise form factor measurements are
possible. Hence, the elastic form factors provide the most stringent test for models
of the transverse structure of hadrons.

1.1.3 Models and Theoretical Predictions

1.1.3.1 IJL model

The model of Iachello, Jackson and Lande [2] uses isospin symmetry to relate the
proton and neutron form factors, which are decomposed into linear combinations of
isoscalar and isovector terms [3]:

Gp
M(Q2) = (F is

1 + F iv
1 ) + (F is

2 + F iv
2 ) (1.25)

Gp
E(Q2) = (F is

1 + F iv
1 ) +

Q2

4M2
(F is

2 + F iv
2 ) (1.26)

Gn
M(Q2) = (F is

1 − F iv
1 ) + (F is

2 − F iv
2 ) (1.27)

Gn
E(Q2) = (F is

1 − F iv
1 ) +

Q2

4M2
(F is

2 − F iv
2 ) (1.28)

The virtual-photon/nucleon interaction is modeled as a combination of a direct
photon-nucleon coupling, described by a dipole form factor of the form g(Q2) =
(1 + γQ2)−2, and VMD pole terms for isoscalar (ω and φ) and isovector (ρ) meson
couplings. The model interactions are illustrated if Fig 1.3.

The meson-nucleon coupling parameters and the direct coupling parameters were
obtained by fitting to the form factor data available at the time. The model was found
to give an adequate description of the proton form factors, and successfully predicted

the fall-off of the ratio
µpGp

E

Gp
M

recently observed in polarization-transfer measurements

at Jefferson Lab [4, 5].
The prediction of the IJL model for Gn

M is shown (scaled to the dipole) in Fig 1.5.
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γ∗
γ∗

V

Figure 1.3: Photon-Nucleon interactions in the IJL model
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Figure 1.4: The prediction of the IJL model for
µpGp

E

Gp
M

, compared to recent data from

JLab. The open squares are from [4], the filled circles from [5]
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Figure 1.5: The prediction of the IJL model for Gn
M , scaled to the dipole
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1.1.3.2 Lomon/GK fit

The Gari-Krümpelmann model [6] attempts to model the nucleon form factors in a
manner which incorporates the VMD model at low Q2 and perturbative QCD at high
Q2. The Dirac and Pauli form factors are decomposed into isoscalar and isovector
parts, as described in Section 1.1.3.1. As in the IJL model, the isoscalar and isovector
form factors are modeled as being due to a photon/vector-meson/nucleon interaction
and a direct photon-nucleon coupling (see Fig 1.3):

F iv
1 (Q2) =

[

m2
ρ

m2
ρ + Q2

gρ

fρ
+

(

1 − gρ

fρ

)]

F1(Q
2) (1.29)

κV F iv
2 (Q2) =

[

m2
ρ

m2
ρ + Q2

κρgρ

fρ

+

(

κV − κρgρ

fρ

)]

F2(Q
2) (1.30)

F is
1 (Q2) =

[

m2
ω

m2
ω + Q2

gω

fω
+

(

1 − gω

fω

)]

F1(Q
2) (1.31)

κSF is
2 (Q2) =

[

m2
ω

m2
ω + Q2

κωgω

fω
+

(

κS − κωgω

fω

)]

F2(Q
2) (1.32)

The φ meson is taken to be completely decoupled from the nucleon, in accord
with the Zweig rule. The F1 and F2 terms are chosen to satisfy the meson-dynamics
prediction [7] of a monopole type dependence at low Q2:

F1 ∼ F2 ∼
Λ2

1

Λ2
1 + Q2

(1.33)

with Λ1 ∼ 0.8GeV . At large Q2, perturbative QCD makes predictions for the Q2

dependence of the form factors [8]:

F1 ∼
[

1

Q2 log(Q2/Λ2
QCD)

]2

(1.34)

F2 ∼ F1

Q2
(1.35)

To interpolate between these two limiting Q2 regimes, Gari and Krümpelmann
use intrinsic form factors of the form:

F1(Q
2) =

Λ2
1

Λ2
1 + Q̃2

Λ2
2

Λ2
2 + Q̃2

(1.36)

F2(Q
2) =

Λ2
1

Λ2
1 + Q̃2

[

Λ2
2

Λ2
2 + Q̃2

]2

(1.37)

where

Q̃2 = Q2
log(

Λ2

2
+Q2

Λ2

QCD

)

log(
Λ2

2

Λ2

QCD

)
(1.38)
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Figure 1.6: The Gn
M prediction of the Lomon’s extended GK model, scaled to the

dipole

Lomon [9, 10] extended the GK model by including φ coupling to the nucleon,
adding the ρ′(1450) and replacing the ρ pole term with a dispersion relation term [11].
The meson-nucleon coupling constants and cut-off scale factors (Λ1, Λ2, ΛQCD) were
determined by fitting to the world data on Gp

M ,Gp
E,Gn

M ,Gn
E and the recent JLab

results for
µpGp

M

Gp
E

. The Gn
M values generated by the best-fit parameters [10] are shown

in Fig 1.6.

1.1.3.3 Miller model

The model of Miller [12] treats the nucleon as a relativistic bound state of three
constituent quarks surrounded by a pion cloud. Poincaré invariance is imposed using
light-front dynamics, in which fields are quantized at a fixed light-cone time τ =
x0 + x3 ≡ x+. The advantage of using the light-cone for form-factor calculations is
that light-cone boost operators are independent of interactions (the initial and final
state nucleons in elastic scattering are connected by a boost operator). The model
uses a relativistic quark model first proposed by [13] and [14]. Quark effects are
dominant at large Q2. Pion cloud effects, important at low Q2, are implemented
using a cloudy-bag approach. The results of Miller’s Light Front Cloudy Bag model
(LFCBM) for Gn

M are shown in Fig 1.7.

1.1.3.4 Wagenbrunn model

The model of Wagenbrunn et al. [15] uses a constituent quark model in which the
interaction between two quarks is modeled by single Goldstone boson exchange [16].
Poincaré invariance is obtained by using the “point-form”, a third variety of rela-
tivistic dynamics, in which the fields are quantized on the surface of a hyperboloid
t2 − ~x2 = κ2 . The results of the point-form CQM are shown in Fig. 1.8.
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Figure 1.7: The Gn
M prediction of the Miller model, scaled to the dipole
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Figure 1.8: The Gn
M prediction of the Wagenbrunn model, scaled to the dipole
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1.1.3.5 Lattice-based calculation

Isovector and isoscalar form factors can be defined as linear combinations of the
standard form factors:

Gv = Gp − Gn (1.39)

Gs = Gp + Gn (1.40)

The QCDSF collaboration [17] have made quenched lattice calculations of the
isovector and isoscalar form factors. Present computer power does not allow the
calculations to be performed at realistic quark masses, so the calculations were per-
formed with quark masses 5-10 times higher than the physical value. Three different
values of the lattice spacing were used. Ashley et al. [18] use results obtained from
chiral perturbation theory to perform the extrapolation down to physical values of
the quark masses. All of the electromagnetic form factors are assumed to have a
dipole form:

G(Q2) =
G(0)

(1 + Q2/Λ)2
(1.41)

At each value of the pion mass and lattice spacing, the QCDSF form factor result was
fitted with a dipole form. The dipole mass (Λ in Eqn 1.41) is fitted as a function of
the pion mass, using a functional form determined from chiral perturbation theory,
as shown in Fig 1.9. The value of the isovector and isoscalar dipole mass determined
from this extrapolation are used to calculate Gn

M , with the results shown in Fig 1.10.
A range of values is shown.

1.1.3.6 Kelly Fit

Kelly [19] fit a selection of world data with a function of the form:

Gn
M(Q2) =

∑n
k=0 akτ

k

1 +
∑n+2

k=1 bkτk
(1.42)

where τ = Q2/4M2
p and the ak,bk are coefficients of the fit. This form contains only

even powers of Q in the denominator, ensuring that < r2 > is finite, and the degree
of the polynomial in the denominator is higher than the numerator, ensuring the Q−4

behavior predicted by pQCD at large Q2. The results of the fit are shown in Fig 1.11.



CHAPTER 1. INTRODUCTION 11

Figure 1.9: Fits to values of the isovector dipole mass, as a function of m2
π. The

lattice calculations are indicated by the open boxes, and the extrapolated value at
the physical pion mass is shown with the x.
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Figure 1.10: The range of Gn
M values (scaled to the dipole) predicted from the lattice

calculations of Ashley et al [18].
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Figure 1.11: Results of the fit by Kelly to world Gn
M data.
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1.2 Previous Gn
M measurements

The lack of a free neutron target complicates measurements of the neutron form
factors. The deuteron is the simplest target nucleus, and most previous Gn

M measure-
ments have used deuteron targets. For inclusive e-d scattering, used in Ref [20–24],
a longitudinal-transverse separation of the scattering cross section must be made,
followed by a subtraction of the proton contribution. This subtraction introduces sig-
nificant model dependence due to the choice of deuteron model and treatment of final
state interactions. The proton-subtraction error is avoided in exclusive quasi-elastic
measurements where the neutron in D(e, e′n)p is also observed [25–27]. The price
that is paid for removing the proton subtraction uncertainty is that this method re-
quires knowledge of the neutron detection efficiency. Anti-coincidence measurements
of d(e, e′NOT −p) where the absence of a scattered proton is required have also been
performed [28].

Most recent unpolarized measurements of Gn
M measure the ratio of the cross sec-

tion ratio for D(e, e′n)p to D(e, e′p)n scattering [29–31]. Taking this ratio reduces
the sensitivity to the nucleon structure and radiative corrections. This is the same
technique used in the present e5 analysis. As with the D(e, e′n)p exclusive mea-
surements, this technique requires accurate determination of the neutron detection
efficiency. Fig 1.12 shows the world data on Gn

M from unpolarized electron-deuteron
experiments.

Neutron form factor information, typically at lower values of Q2, can also be
extracted from measurements on polarized targets. Recent Gn

M results from measure-
ments using polarized targets are shown are shown in Fig 1.13. Typically, a polarized
3He target is used. The 3He nucleus is dominated by a spatially symmetric S-wave
state in which the two proton spins cancel, so that the 3He spin is carried by the neu-
tron. Spin-dependent response functions can be extracted from the 3He(e,e’) cross
section, which under the right kinematic configuration contains terms proportional
to Gn

M .

1.3 Experimental technique

The value of Gn
M was extracted from a measurement of the ratio of quasi-elastic e-n

to e-p scattering from a deuterium target:

R =
dσ
dΩ

(D(e, e′n))
dσ
dΩ

(D(e, e′p))
(1.43)

This ratio is nearly equal to the ratio of the free nucleon e-n to e-p cross sections:

R = a(Q2)

G2

En
+τG2

Mn

1+τ
+ 2τG2

Mn tan2(Θ
2
)

G2

Ep
+τG2

Mp

1+τ
+ 2τG2

Mp tan2(Θ
2
)

(1.44)
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Figure 1.12: World data on Gn
M from unpolarized electron-deuteron measurements.

The figure is from [32]
.

Figure 1.13: World data on Gn
M from polarized target measurements. The figure is

from [32]
.
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Deviations from this “free ratio” assumption are parametrized by the factor a(Q2),
which can be calculated from deuteron models, and are small at large Q2. Once the
model corrections have been applied to R, the results of previous measurements of
the elastic proton scattering cross section and the neutron electric form factor can be
used to extract Gn

M . The ratio method has several advantages. It is insensitive to the
luminosity, electron acceptance, reconstruction efficiency and trigger efficiency. The
dominant contribution to radiative corrections in elastic electron-nucleon scattering
comes from additional photons which couple to the electron, so when the ratio is
taken, the radiative corrections very nearly cancel. Sensitivity to the details of the
deuteron wave function are also reduced by taking the ratio.

Use of the ratio model requires making an exclusive measurement of e-n scattering,
and so requires an accurate measurement of the neutron detection efficiency. Accurate
matching of the scattered neutron and proton acceptance is also required. The e5
running period used a dual-cell target, containing collinear deuterium and hydrogen
cells. Use of the hydrogen cell allows a simultaneous in-situ measurement of the
neutron detection efficiency. The ratio method also requires information on the other
three form factors, or more precisely, the proton elastic scattering cross section and
Gn

E . The proton cross section has been well measured in the past, and as only the total
elastic cross section is needed for the proton, two-photon exchange issues (relevant
to the extraction of the proton form factors from elastic scattering data) are not
important. While the uncertainties on Gn

E are large, Gn
E is small compared to the

other form factors, and its contribution to the value of the ratio diminishes as Q2

becomes larger.



Chapter 2

Experiment Analysis

2.1 Event Reconstruction

The analysis of the e5 data was performed with a modified version of the CLAS
reconstruction software, derived from the “release-4-3” code. The detectors were cal-
ibrated (EC timing and energy, SC timing and energy, DC drift time to drift distance
conversion) using the standard packages. A set of special “road files” generated for
the e5 target and magnetic field configurations was used as an input template to the
RECSIS event reconstruction code. RECSIS returned particle charge, momentum,
and position values for charged particles in the drift chamber. Details of the tracking
code can be found in [33]. Information from other detector packages, such as hit
locations and times in the EC and SC, were matched to the DC tracks by the SEB
package. The SEB package was modified to write summary information to a MySQL
database after processing each file. The reconstructed events were written to BOS
files, along with some of the raw event information, to the JLab tape silo.

2.2 Run Selection

Files were selected for analysis by examining two quantities recorded in the cooking
database, the ratio of protons to electrons originating in the hydrogen target cell, and
the ratio of time-based tracks to hit based tracks. The cuts were selected to remove
files in which either of these quantities differed too much from the average. Files
selected for analysis were required to satisfy:

0.9 < Np

Ne
< 1.2 Ebeam = 4.2GeV (2.1)

0.85 < Np

Ne
< 1.0 Ebeam = 2.6GeV (2.2)

where Np is the number of protons and Ne is the number of electrons.
These cuts are illustrated in Fig. 2.1 and Fig. 2.2.

16
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Figure 2.1: The ratio of the number of protons to the number of electrons for events
originating in the hydrogen target versus run number. The data are from the 4.2
GeV beam energy data set. The cuts applied are shown in red.
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Figure 2.2: The ratio of the number of protons to the number of electrons for events
originating in the hydrogen target versus run number. The data are from the 2.6
GeV beam energy data set. The cuts applied are shown in red.
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Figure 2.3: The ratio of the number of time-based tracks to the number of hit-based
tracks versus run number. The data are from the 4.2 GeV beam energy data set. The
cuts applied are shown in red.

Files selected for analysis were also required to satisfy:

0.6 < Ntbt

Nhbt
< 0.8 Ebeam = 4.2GeV (2.3)

0.75 < Ntbt

Nhbt
< 0.85 Ebeam = 2.6GeV (2.4)

where Ntbt is the number of time-based tracks, and Nhbt is the number of hit-based
tracks. These cuts are illustrated in Fig. 2.3 and Fig. 2.4.

2.3 Neutron Detection Efficiency Measurement

The hydrogen cell of the e5 target allows for an in-situ measurement of the neutron
detection efficiency of the EC and SC detector systems. The reaction ep → eπ+(n)
on protons in the hydrogen cell is used as a source of tagged neutrons. Candidate
events are selected which have one negative track and one positive track.

2.3.1 Electron Identification

Events with well identified electrons were selected according to the following criteria:

1. Vertex Cut

The z-component of the electron vertex position determined by tracking must
satisfy −3.0 < vz < 3.0 cm. This cut ensures that the electron originated in
the hydrogen cell of the target, and removes some of the contamination from
events in the target entrance/exit windows.
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Figure 2.4: The ratio of the number of time-based tracks to the number of hit-based
tracks versus run number. The data are from the 2.6 GeV beam energy data set. The
cuts applied are shown in red.

2. EC fiducial cut

The location of the electron hit on the EC face plane must be at least 10 cm
away from any of the three edges of the EC. This cut removes events in which
energy from the electron shower leaks out the sides of the calorimeter (95% of
the shower is concentrated within 4 cm transverse to the incident track [34]).

3. EC minimum energy deposit

The energy deposited in the inner layer of the EC is required to satisfy ECinner >
50 MeV. This cut rejects minimum ionizing particles (MIP) by requiring an en-
ergy deposit larger than a MIP would make in traversing the inner layer.

4. EC energy/momentum match

The sampling fraction of the EC has been parameterized in terms of the incident
electron momentum:

f(p) = 0.23p+0.071p2
−0.032p3

p
p < 1.0GeV/c (2.5)

(2.6)

f(p) = 0.272 p > 1.0GeV/c (2.7)

The electron energy determined from the track momentum measured in the DC
and the energy deposited in the EC must satisfy the relation:

−0.2 < E − Edep

f(p)
< 0.15GeV/c (2.8)
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Figure 2.5: The difference between electron energy determined from tracking and
sampling-fraction corrected energy deposited in EC. The cut values are shown in red.
The data is a sample of the 2.6 GeV data set.

This cut is illustrated for a sample of the 2.6 GeV data set in Fig 2.5.

5. CC hit and photo-electron cut

A hit in the CC, correlated with the DC track, was required, with a minimum
of 1.0 for the estimated number of photo-electrons produced, based on the ADC
response. This cut is illustrated in Fig 2.6.

2.3.2 π+ Identification

Positive tracks were identified as π+ by comparing the particle velocity measured from
a combination of tracking and time-of-flight information to the velocity expected for
a π+ of the measured momentum.

The particle velocity was determined from:

βtrack =
lπ

c∆t
(2.9)

where lπ is the track length of the π+ candidate measured by the DC, and

∆t = tπ − t0 (2.10)

where tπ is the time reported by the SC for the particle, and t0 is the event start
time, found from:

t0 = telectron − lelectron

c
. (2.11)

where telectron is the electron time reported by the SC and lelectron is the electron track
length (from the vertex to the SC plane) determined from tracking.
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Figure 2.6: The horizontal axis shows 10 times the estimated number of photoelec-
trons produced in the CC. The cut is shown in red. The data is a sample of the 2.6
GeV data set.

The particle velocity can also be determined from its measured momentum and
an assumption regarding its species:

βπ =
|~p|

√

~p2 + M2
π

(2.12)

A cut was placed on the difference of these two β values, which required:

−0.04 < ∆β < 0.04. (2.13)

This cut is illustrated in Fig 2.7.
A CC veto was applied, rejecting any π+ candidate track that had an associated

hit in the Cerenkov detector.

2.3.3 Neutron selection

Once the event had been identified as having a good electron and π+, the missing
mass in the event was calculated. The 4-momentum of the initial state particles was
known:

ein = E0(1, 0, 0, 1) (2.14)

P = (Mp, 0, 0, 0) (2.15)

where ein is the incoming electron 4-momentum (E0 is the incident beam energy),
and P is the 4-momentum of the target proton. The final-state was assumed to be
composed of an electron,π+ and neutron. The electron and π+ 4-momenta were known
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Figure 2.7: The distribution of the difference between β determined from path length
and time-of-flight and β determined from the measured momentum and the assump-
tion that the particle is a π+. The cuts are shown in red. The data is from the 2.6
GeV data set.

from tracking, so the neutron 4-momentum could be determined from conservation
of 4-momentum:

Xn = ein + P − eout − πout (2.16)

where Xn is the neutron 4-momentum and eout, πout are the momentum of the scat-
tered electron and pion. The missing mass was found from:

MM =
√

X2 (2.17)

The missing mass for each event was required to satisfy:

0.9 < MM < 0.95GeV/c2 (2.18)

The missing mass cut is illustrated in Fig 2.8.

2.3.4 Efficiency Measurement in the Forward Calorimeter

2.3.4.1 Neutron selection and sector-wise efficiency measurement

The direction of the neutron in the ep → eπ+(n) reaction was determined from
Eqn 2.16. A ray was drawn from the electron-π+ vertex position to a plane parallel
to the EC face. If the point-of-intersection lay outside the triangle defined by the
EC face, the event was dropped. An additional fiducial cut required that the point-
of-intersection lie more than 60 cm from any EC edge was enforced. In the cases
where the reconstructed neutron was expected to intersect the fiducial region of one



CHAPTER 2. EXPERIMENT ANALYSIS 23

missing_mass
Entries  3236409
Mean    1.019
RMS     0.118

0.8 0.9 1 1.1 1.2 1.3
0

5000

10000

15000

20000

25000

missing_mass
Entries  3236409
Mean    1.019
RMS     0.118

2
Missing Mass in GeV/c

 (n)+π e →e p 

Figure 2.8: Missing mass in the ep → eπ+(n) reaction. The neutron selection cut is
shown in red. The data is from the 2.6 GeV data set.

of the EC modules, the EC module was searched for neutral hits (hits which have no
associated charged tracks) in the vicinity of the expected point-of-intersection. A cut
rejecting neutral hits found more than 30 cm (as measured in the EC plane) from the
expected point-of-intersection was applied. This cut is illustrated in Fig 2.9.

In the case where a neutral hit was found which satisfied the ∆R cut, an additional
cut required at least 15 MeV of energy deposited in the calorimeter.

An event in which a good electron and π+ were found, and for which the expected
point-of-intersection was within the EC fiducial region was labeled a reconstructed
event. A reconstructed event which contained a neutron hit which satisfied the ∆R
cut and the minimum energy deposited cut was labeled a found event. The events
were binned in neutron momentum and the detection efficiency in each momentum
bin was calculated as:

ηi =
fi

ri
(2.19)

where ηi is the efficiency in the ith momentum bin, and fi and ri are the number of
found and reconstructed neutron events in the ith momentum bin, respectively. The
distribution of accepted neutrons in each momentum bin follows a binomial distribu-
tion (in each trial, the neutron is either found or not found), with the probability of
success being the efficiency at that momentum. The variance on r for the binomial
distribution is given by:

V =

(

r

r − 1

)

r

(

f

r

) (

1 − f

r

)

(2.20)

where r is the number of trials (the number of reconstructed neutrons) and f is the
number of successes (the number of found neutrons). The estimate for the efficiency
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Figure 2.9: The distribution of the distance ∆R between the expected point-of-
intersection and the observed hit location for neutron candidate events in the EC.
The cut applied is shown in red. The data is a sample from the 2.6 GeV dataset.

is f
r
, so the estimate on the error on the efficiency in the ith bin is given by:

σi =

√

(

fi

ri

)

1 − fi

ri

ri − 1
(2.21)

Fig 2.10 and Fig 2.11 show plots of the neutron detection efficiency in each of the
six EC modules, for the 2.6 GeV and 4.2 GeV data sets. Fig 2.12 shows a comparison
of the neutron detection efficiency integrated over all six EC modules measured in
each data set.

2.3.4.2 Efficiency parameterization in the EC

The neutron detection efficiency in each sector was parameterized as a function of
the neutron momentum with polynomials of the form:

η(p) = a0 + a1p + a2p
2 + a3p

3 (2.22)

for p < pt, and:
η(p) = f (2.23)

for p ≥ pt. pt was a parameter of the fit, and the parameter f was determined by
requiring that η(p) be continuous at p = pt. The fit parameters were obtained using
a maximum likelihood method. The following terms will be used in the description
of the fitting procedure:
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Figure 2.12: A comparison of the neutron detection efficiency in the EC, as measured
at two different beam energies. In this figure, the efficiency has been integrated over
all six sectors
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ri = number of entries in ith momentum bin of the reconstructed neutron
histogram

fi = number of entries in ith momentum bin of the found neutron histogram
ηi = efficiency in ith momentum bin, defined above.

It is assumed that the number of found neutrons expected to be seen in the ith

momentum bin is:
µi = ηiri. (2.24)

From the Poisson distribution, the probability to see fi counts when µi counts are
expected is:

Pi =
µfi

i

fi!
e−µi (2.25)

The probability to observe the entire found neutron distribution is then given by the
product of the probability of observing fi counts in each bin:

P =
∏

i

µfi

i

fi!
e−µi (2.26)

The parameters in the function η(p) are chosen such that P is maximized. Consider
the (negative) natural log of P :

− ln P = −
∑

i

{fi ln µi − ln fi! − µi} (2.27)

The second term,
∑

i ln fi!, does not depend on any of the parameters, so it can be
treated as a constant. The 5 parameters for η(p) are then obtained by minimizing:

− ln P = −
∑

i

{fi ln µi − µi} + constant (2.28)

This minimization procedure was performed, using MINUIT, in each of six sectors.
In an effort to account for any possible dependence of the neutron detection efficiency
on the position of the neutron hit on the EC face, the EC face was subdivided into
smaller units. Each of the three EC views is composed of 36 strips. This division
segments the EC face into 362 = 1296 triangular pixels. Sets of 12 adjacent strips
in each view were collected together in software to reduce the number of divisions
per view to 3. These 3 superstrips divide the EC face into 32 = 9 superpixels, as
illustrated in Fig 2.13.

The uncertainty on the fit at a given momentum was found from the error matrix
returned by MINUIT:

σ2
η =

∑

i,j

ǫij
∂η

∂ai

∂η

∂aj
(2.29)

where η is the value of the fitted function function, ai is the ith parameter of the
fit, and ǫij are the values of the error matrix returned by MINUIT. The results of
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Figure 2.13: Division of the EC face into 9 superpixels. Pixel 1 is located nearest the
beam line.

Figure 2.14: The sector-based fits to the EC neutron detection efficiency for the 4.2
GeV data are shown in red. The uncertainty on the fit, scaled up by a factor of 10,
is shown by the magenta band. The horizontal axis shows the neutron momentum in
GeV/c.
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the sector-based fits for the 4.2 GeV data are shown in Fig 2.14. Similar results are
obtained in the 2.6 GeV case.

The efficiency function on each superpixel, ηsp, was taken to be the product of the
efficiency function for that sector multiplied by a scale factor:

ηsp(p) = αηsector(p) (2.30)

The scale factor α for each superpixel was found by minimizing the function:

χ2 =
∑

i

(

ǫi − αη(pi)

σi

)2

(2.31)

In this equation, ǫi is the measured efficiency in the ith momentum bin for that
superpixel, η(pi) is the efficiency function for the sector evaluated at the center of the
ith momentum bin and σi is the error on the measured efficiency in the ith momentum
bin for that superpixel. The value of the scale factor is given by:

α =

∑ ǫiη(pi)
σ2

i
∑ η(pi)2

σ2

i

(2.32)

The uncertainty on the scale factor is given by:

σ2
α =

∑

σ2
i

(

∂α

∂ǫi

)2

(2.33)

=
1

∑ η(pi)2

σ2

i

(2.34)

Appendix B contains plots of the measured efficiency and efficiency fits for each
of the nine superpixels in each of the six sectors for the 2.6 GeV and 4.2 GeV data
sets. The values of the scale factor and error on the scale factor are indicated on the
plots.

2.3.5 Efficiency Measurement in the Time of Flight system

2.3.5.1 Neutron selection and sector-wise efficiency measurement

The direction of the neutron in the ep → eπ+(n) reaction was determined from
Eqn 2.16. A ray was drawn from the electron-π+ vertex position to each of the planes
parallel to the four SC panels in the sector into which the neutron was moving. The
point-of-intersection of the neutron in each plane was calculated, and the plane which
had the shortest vertex to point-of-intersection distance was used to determine the SC
panel hit. This was done to resolve paddle-overlap issues near the panel edges. The
point-of-intersection was required to be located on one of the SC paddles in the struck
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Figure 2.15: The energy deposited in the SC by candidate neutron events. The
cut applied is shown in red. Only events with energy greater than 5 MeVee were
considered for further analysis. The data shown are a sample from the 2.6 GeV data
set.

panel. An additional fiducial cut required that the expected point-of-intersection to
be more than 10 cm from either of the two ends of the paddle. In the cases where
the reconstructed neutron was expected to intersect the fiducial region of one of the
SC panels, that SC panel was searched for neutral hits uncorrelated with any charged
track. Events which had SC hits on paddles other than the expected paddle or one
of the two paddles adjacent to the expected paddle were rejected. In the case where
the neutron was expected to strike a paddle at the edge of a panel, the edge paddles
in the adjacent panel where searched as well.

Because generating an SC hit requires an interaction in only a single scintillator,
the photon background is higher in the SC than in the EC. Photon rejection was
accomplished by cuts on energy deposited and timing. Fig 2.15 shows a plot of the
distribution of energy deposited in candidate SC neutron events. A large spike of very
low energy events is seen. A cut requiring Edep > 5 MeVee (MeV, electron equivalent)
was applied to reject low energy photon background. Because the same Emin cut was
applied to SC neutrons in the quasi-elastic analysis, the exact location of this cut
could be chosen somewhat arbitrarily.

After rejecting the low energy events, a timing cut was applied. The expected
time-of-flight of the neutron was calculated from:

texpected =
|~v − ~x|

βc
(2.35)

where ~v is the electron-π+ vertex position and ~x is the location of the expected point-
of-intersection of the neutron at the SC paddle. The measured neutron time-of-flight
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Figure 2.16: The ∆t distribution for candidate neutron events in the SC. The black
curve shows ∆t before application of the Edep cut. The green curve shows ∆t after
the Edep cut. The cuts applied are shown in red. The data shown are a sample from
the 2.6 GeV data set.

was calculated from:
tmeasured = tsc − t0 (2.36)

where tsc is the hit time reported by the SC and t0 is the event start time defined in
Eqn 2.11. A cut was applied requiring

−0.8 < ∆t < 2.0ns (2.37)

where ∆t = tmeasured − texpected. The effect of the timing cut is illustrated in Fig 2.16
The events were binned in neutron momentum and the efficiency and uncertainties

were calculated as in Eqns 2.19 and 2.21. Fig 2.17 and Fig 2.18 show plots of the
neutron detection efficiency in each of the six SC sectors (integrated over all paddles),
for the 2.6 GeV and 4.2 GeV data sets. Fig 2.19 shows a comparison of the neutron
detection efficiency integrated over all six SC modules measured in each data set.

2.3.5.2 Efficiency parameterization in the SC

The neutron detection efficiency in each sector was parameterized as a function of
the neutron momentum with a polynomial of the form:

η(p) = a0 + a1p + a2p
2 + a3p

3 (2.38)

for p < pt and:
η(p) = f (2.39)
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Figure 2.19: A comparison of the neutron detection efficiency in the SC, as measured
at two different beam energies. In this figure, the efficiency has been integrated over
all six sectors
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Figure 2.20: The sector-based fits to the SC neutron detection efficiency for the 4.2
GeV data are shown. The uncertainty on the fit is shown by the magenta band. The
horizontal axis in each panel shows the neutron momentum in GeV/c.

for p ≥ pt. pt was a parameter of the fit, and f was determined by requiring η(p) to
be continuous at pt.

The global efficiency histogram in each sector(containing data from all paddles
in the sector) was fitted by this polynomial form using a least-squares fit over the
momentum range 0.0 < p < 1.8 GeV/c for the 2.6 GeV data set, and 0.0 < p < 2.8
GeV/c for the 4.2 GeV data set. The uncertainty on the fit at a given momentum
was found from the error matrix returned by MINUIT:

σ2
η =

∑

i,j

ǫij
∂η

∂ai

∂η

∂aj
(2.40)

where η is the value of the fitted function function, ai is the ith parameter of the
fit, and ǫij are the values of the error matrix returned by MINUIT. The fits and
associated errors for each of the six sectors in the 4.2 GeV data is shown in Fig 2.20.

In an effort to account for possible paddle-by-paddle variations in the neutron
detection efficiency, the efficiency on each paddle,ηp, was taken to be the product of
the efficiency function for that sector multiplied by a scale factor:

ηpaddle(p) = αηsector(p). (2.41)

The scale factor α for each paddle was found by minimizing the function:

χ2 =
∑

i

(

ǫi − αη(pi)

σi

)2

(2.42)
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In this equation, ǫi is the measured efficiency in the ith momentum bin for that
paddle, η(pi) is the efficiency function for the sector evaluated at the center of the it

momentum bin and σi is the error on the measured efficiency in the ith momentum
bin for that paddle. The equation for the value of the scale factor and its error are
the same as in the EC case.

Appendix C contains plots of the measured efficiency and efficiency fits for each
paddle in each of the six sectors for the 2.3 GeV and 4.2 GeV data sets. Badly-
performing paddles were rejected by requiring:

0.8 ≤ α ≤ 1.2 (2.43)

Paddles which failed to satisfy this requirement were switched off in software. Paddles
with less than 4 data points (for example, sector 4, paddle 29 in Fig C.4) were switched
off in software. This cut defined the high-paddle number cut-off. For the 4.2 GeV
data, the high-paddle cut-off is 25 or 26 depending on sector, while the cut-off in the
2.6 GeV data set is paddle number 27 or 28 depending on sector.

2.4 Proton Detection Efficiency Measurement

The hydrogen cell of the e5 target allows for an in-situ measurement of the proton
detection efficiency in the SC detector system. Elastic ep scattering is used as a
proton source. Candidate events were selected which had one negative track, and not
more than one positive tracks.

2.4.1 Electron Identification

The electron selection criteria described in Section 2.3.1 were applied. Once the event
was identified as having a good electron, the mass of the recoiling hadronic system
was calculated. The 4-momentum of the initial state particles was known:

ein = E0(1, 0, 0, 1) (2.44)

P = (Mp, 0, 0, 0) (2.45)

where ein is the incoming electron 4-momentum (E0 is the incident beam energy), and
P is the 4-momentum of the target proton. The final state was taken to be an electron
and a recoiling hadronic system. The scattered electron 4-momentum was known
from tracking, so the recoil 4-momentum could be determined from conservation of
4-momentum:

Xh = ein + P − eout (2.46)

where Xh is the 4-momentum of the hadronic system and eout is the scattered electron
4-momentum. The square of the invariant mass of the hadronic system was found
from:

W 2 = Xµ
hXh,µ. (2.47)
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Figure 2.21: The W 2 distribution in candidate ep elastic events (events with an
electron and zero or one charged track). The cuts applied are shown in red. The data
shown are a sample of the 2.6 GeV data set.

Elastic events were selected by applying a cut that required

0.75 < W 2 < 1.0(GeV/c2)2 (2.48)

The distribution of W 2 and the cuts applied are illustrated in Fig. 2.21.
For events which passed the W 2 cut (labeled reconstructed events), the paddle the

proton was expected to hit was calculated by swimming the proton from the electron-
beamline vertex position through the mini-torus and main torus magnetic fields out
to the SC. The point-of-intersection of the proton in each SC plane was calculated,
and the plane which had the shortest vertex to point-of-intersection distance was used
to determine the SC panel hit. The point-of-intersection was required to be located
on one of the SC paddles in the struck panel. An additional fiducial cut required
that the expected point-of-intersection to be more than 10 cm from either of the two
ends of the paddle. In those cases where the proton was expected to intersect the
SC fiducial region, the SC was searched for hits correlated with a positively-charged
track.

2.4.2 Proton Identification

Elastic events in which a positive track is found were subjected to a cut requiring
the coplanarity of the positive track and the electron. For elastic scattering, the
electron and proton azimuthal angles should be 180◦ apart. Fig 2.22 shows the |∆φ|
distribution for events which passed the W 2 cut. A cut requiring

178◦ < |∆φ| < 182◦ (2.49)
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Figure 2.22: The ∆φ distribution for candidate ep elastic events which passed the
W 2 cut. The horizontal axis is in degrees. The cuts applied are shown in red. The
data shown are a sample from the 2.6 GeV data set.

was applied.
The SC paddle which the proton hit was required to be the paddle predicted, or

one of the two adjacent paddles.

2.4.3 Efficiency calculation

Because of the one-to-one relationship between proton scattering angle and proton
momentum for elastic scattering, each SC paddle was illuminated by a narrow range
of proton momenta. As such, no momentum dependent fitting was attempted. The
efficiency on each paddle was calculated by integrating the found and reconstructed
protons over the small momentum range covered by the paddle. The errors assigned
were binomial, as described in Eqn 2.21. Figs 2.23 and 2.24 show plots of the average
proton detection efficiency on each SC paddle in each of the six sectors for the 2.6
and 4.2 GeV data sets.

2.5 Momentum Corrections

Fig 2.25 shows W 2 measured in ep elastic scattering as a function of electron azimuthal
angle. Because of uncertainties in the magnetic field map used to reconstruct tracks
in the drift chamber, the W 2 determination is flawed, leading to mis-located centroids
and strong φ dependence in some sectors.

Elastic scattering from the proton target is used to derive a multiplicative correc-
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Figure 2.25: W 2 as measured in ep elastic scattering in the 4.2 GeV data set, as a
function of electron azimuthal angle. The red line shows the square of the proton
mass.

tion to the electron momentum. Conservation of 4-momentum gives:

bµ + tµ = eµ + W µ (2.50)

where bµ is the 4-momentum of the incident beam, tµ is the 4-momentum of the target
proton, eµ is the 4-momentum of the scattered electron and W µ is the 4-momentum
of the recoiling proton. These vectors have the following values:

bµ = E0(1, ẑ) (2.51)

tµ = (Mp, 0, 0, 0) (2.52)

eµ = E(1, ê) (2.53)

where E0 is the incident beam energy, E is the scattered electron energy and ê is the
scattered electron direction. The proton invariant mass-squared is found from:

W µ = eµ − bµ − tµ (2.54)

= eµ − aµ (2.55)

where aµ ≡ bµ + tµ.

W 2 = (eµ − aµ)(eµ − aµ) (2.56)

= a2 − 2aµeµ (2.57)

The mass of the electron has been neglected. The assumption is made that tracking
has correctly measured the direction of the scattered electron, but that its energy
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Figure 2.26: W 2 as measured in ep elastic scattering in the 4.2 GeV data set, as a
function of electron azimuthal angle, after momentum corrections. The red line shows
the square of the proton mass.

may have been mismeasured, so that eµ is replaced by αeµ. A sample of ep elastic
events, selected according to the same criteria used in the proton detection efficiency
measurement was used to find optimal values for α. The data in each sector was
subdivided in θ and φ bins. In each bin, α was determined by minimizing:

χ2 =
∑

i

(

W 2
i − M2

p

σi

)2

(2.58)

All events in each bin were weighted evenly. Setting dχ2

dα
= 0 gives:

α =

∑

(aµeµ)(a2 − M2
p )

2
∑

(aµeµ)2
(2.59)

The results of this procedure are illustrated in Fig 2.26, which shows W 2 as a
function of electron azimuthal angle after application of the corrections. Notice the
reduced φ dependence and improved centroid location.

Table 2.1 shows the centroid location in each of the six sectors for the 4.2 GeV data
set before and after applying the correction. Table 2.2 shows the centroid locations
for the 2.6 GeV data set.
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Table 2.1: Comparison of uncorrected and corrected centroid values for W 2 deter-
mination from elastic ep scattering in the 4.2 GeV data set. Centroid locations are
given in GeV2

sector uncorrected centroid corrected centroid
1 0.8731 0.8784
2 0.8323 0.8697
3 0.8819 0.8838
4 0.8669 0.8763
5 0.8606 0.8734
6 0.8766 0.8809

Table 2.2: Comparison of uncorrected and corrected centroid values for W 2 deter-
mination from elastic ep scattering in the 2.6 GeV data set. Centroid locations are
given in GeV2

sector uncorrected centroid corrected centroid
1 0.8730 0.8793
2 0.8431 0.8790
3 0.8810 0.8825
4 0.8717 0.8793
5 0.8714 0.8792
6 0.8805 0.8821
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Figure 2.27: W 2 in (GeV/c2)2 for candidate D(e, e′n) and D(e, e′p) events after ap-
plication of electron-based cuts. A quasi-elastic peak is clearly seen, along with a
substantial inelastic background. Data from the 4.2 GeV running period is shown.

2.6 Quasi-elastic ratio measurement

2.6.1 Quasi-elastic electron selection

The cooked files containing all events seen in e5 were filtered down to a smaller set of
files containing only D(e, e′n) and D(e, e′p) candidates by applying a few cuts based
on the electron observed in each event. Events were required to have an electron
which satisfied all of the electron selection criteria described in Section 2.4.1. Events
which contained any negatively charged tracks in addition to the electron, or more
than one positively charged track were discarded. Events in which the z-component
of the electron vertex position was outside the deuterium target ( −12.5 ≤ z ≤ −8.25
cm) were discarded. After application of these cuts a substantial inelastic background
remained, as shown in Fig 2.27.

2.6.2 Quasi-elastic D(e, e′p) selection

To remove the inelastic background, an additional set of cuts were applied to the
proton candidates. A Q2 dependent cut in the W 2, θpq plane (θpq is the angle between
the virtual photon direction and the direction of the scattered nucleon at the vertex)
was used to isolate events in the quasi-elastic region. The cuts are shown in Fig 2.28
and Fig 2.30 for protons which satisfied the EC fiducial cut described in Section 2.6.5,
and in Fig 2.29 and Fig 2.31 for protons which satisfied the SC fiducial cuts described
in Sec 2.6.5. The allowed W 2 region is 0.5 ≤ W 2 ≤ 1.2(GeV/c2)2 in all Q2 bins.
The maximum allowed θpq varies from bin to bin and is summarized in Table 2.3 and
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Table 2.3: Q2-dependent θpq cuts for EC protons in the 4.2 GeV data.
Q2 range θmaximum

pq

1.5,1.75 3.5
1.75,2.0 3.0
2.0,2.5 2.75
2.5,3.0 2.5
3.0,4.5 2.25

Table 2.4: Q2-dependent θpq cuts for SC protons in the 4.2 GeV data.
Q2 range θmaximum

pq

1.0,1.5 4.5
1.5,2.0 4.0
2.0,2.5 3.5
2.5,3.0 3.0
3.0,4.5 2.5

Table 2.4 for the 4.2 GeV data, and in Table 2.5 and Table 2.6 for the 2.6 GeV data.

2.6.3 Quasi-elastic D(e, e′n) selection

In the D(e, e′n) channel the same electron selection criteria and Q2-dependent cuts in
the W 2, θpq plane used in the D(e, e′p) channel were applied. To suppress accidentals
in the SC, a cut requiring that the energy deposited in an SC paddle exceed 5 MeVee
was applied. This is the same energy deposited cut that was applied in the SC neutron
detection efficiency calibration.

2.6.4 Rejection of unreconstructed proton tracks

The energy-deposited spectrum of protons (from the D(e, e′p) reaction) traversing
the SC array is shown in Fig 2.32. The energy-deposited spectrum of quasi-elastic
neutron candidates in the SC is shown in Fig 2.33. The peak near Edep ≈ 0 is most
likely caused by low energy photons, and is excluded by the Emin > 5 MeVee cut

Table 2.5: Q2-dependent θpq cuts for EC protons in the 2.6 GeV data.
Q2 range θmaximum

pq

1.25,1.75 3.5
1.75,2.0 3.0
2.0,2.25 2.75
2.25,2.5 3.0
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Table 2.6: Q2-dependent θpq cuts for SC protons in the 2.6 GeV data.
Q2 range θmaximum

pq

0.5,0.75 6.0
0.75,1.0 5.0
1.0,1.5 4.0
1.5,2.5 3.5
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Figure 2.28: Quasi-elastic proton selection cuts for EC protons in the 4.2 GeV data
set. Events outside the red box are discarded. In each Q2 bin, the horizontal axis is θpq

(the angle between the virtual photon direction and the scattered proton direction)
in degrees and the vertical axis is W 2 in (GeV/c2)2
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Figure 2.29: Quasi-elastic proton selection cuts for SC protons in the 4.2 GeV data
set. Events outside the red box are discarded. In each Q2 bin, the horizontal axis is θpq

(the angle between the virtual photon direction and the scattered proton direction)
in degrees and the vertical axis is W 2 in (GeV/c2)2
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Figure 2.30: Quasi-elastic proton selection cuts for EC protons in the 2.6 GeV data
set. Events outside the red box are discarded. In each Q2 bin, the horizontal axis is θpq

(the angle between the virtual photon direction and the scattered proton direction)
in degrees and the vertical axis is W 2 in (GeV/c2)2
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Figure 2.31: Quasi-elastic proton selection cuts for SC protons in the 2.6 GeV data
set. Events outside the red box are discarded. In each Q2 bin, the horizontal axis is θpq

(the angle between the virtual photon direction and the scattered proton direction)
in degrees and the vertical axis is W 2 in (GeV/c2)2

applied to neutrons in both the calibration and quasi-elastic reactions. A second
peak in the neutron distribution is seen in the region of Edep ≈ 12 MeV. This second
peak is unexpected, and occurs at approximately the energy that would be expected
for protons.

A sample of events in the region of this peak (8 < Edep < 14 MeV) were inspected
visually using the event-display program CED. While some looked normal, others
appeared to have partial positive tracks in the sector opposite the electron, as shown
in Figs 2.34,2.35, and 2.36. All of these partial tracks were missing data in one or
more DC superlayers, and were not reconstructed by the tracking algorithm. The
unreconstructed proton tracks were rejected by counting the number of active DC
wires, in each DC region, inside a ±5◦ window around the expected proton trajectory.
SC neutron candidate events that had an energy deposited in the area around the
expected proton energy were rejected if they also had either: 1)7 active wires in
Region 1 and 9 or more active wires in either Region 2 or Region 3, or 2)more than 9
active wires in Region 2 and Region 3 were rejected. The effect of this cut is illustrated
in Fig 2.37.

2.6.5 Acceptance matching and fiducial cuts

To ensure that the σn/σp ratio is measured correctly, it is necessary to take some
care that the range of solid angle over which the neutrons are accepted is the same
as that over which the protons are accepted. A common fiducial region was enforced
by applying an identical fiducial cut to proton and neutron candidate events. In
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Figure 2.32: Energy deposited in the SC by protons from the D(e, e′p) reaction
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Figure 2.33: Energy deposited in the SC by quasi-elastic neutron candidates.
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Figure 2.34: CED representation of an unreconstructed proton event.

Figure 2.35: CED representation of an unreconstructed proton event.
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Figure 2.36: CED representation of an unreconstructed proton event.
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Figure 2.37: SC energy deposit spectrum for candidate neutral events before and
after applying DC wire-based unreconstructed proton rejection cut.
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each event, the expected nucleon 3-momentum (assuming a stationary target) was
determined from the electron kinematics. The possibility that the struck nucleon was
a neutron was considered first. This neutron was traced out to either the EC or SC
plane, depending on which analysis was being performed. If this expected neutron
failed to intersect a good SC paddle (a paddle with neutron detection efficiency greater
than 1% and whose neighbors also had efficiency greater than 1%), or a good EC pixel
(a pixel with neutron detection efficiency greater than 5%), the event was discarded
for the SC or EC analysis, respectively. Next, the possibility that the struck nucleon
was a proton was considered. A proton with the expected nucleon 3-momentum
was swum through the magnetic field out to the SC plane, where it was required to
strike an SC paddle whose efficiency was greater than 85%, and whose neighboring
paddles also had efficiency greater than 85%. Events which failed this cut were also
discarded for both the SC and EC analysis. The struck nucleon was required to
satisfy the .AND. of both of these conditions: expected neutron went into allowed
region, expected proton went into allowed region. The double particle-tracking used
to evaluate the fiducial cut is illustrated in Fig 2.38. The distribution of events in the
θexpected, φexpected plane for the EC neutron analysis of the 4.2 GeV data is shown in
Fig 2.39.

2.6.6 Efficiency corrections and Ratio calculation

2.6.6.1 Event-by-event efficiency corrections

Events which satisfy the quasi-elastic selection cuts and the fiducial cuts are filled into
two histograms, binned in Q2, one for neutron events and one for proton events. The
entries to these histograms were weighted by the reciprocal of the detection efficiency
of the detector element in which they were found: EC pixel or SC paddle for neutrons,
SC paddle for protons. Any events which are found in poorly performing detector
elements (EC neutron detection efficiency below 5%, SC neutron detection efficiency
below 1%, proton detection efficiency below 85%) are discarded. The average effi-
ciency correction, binned in Q2, for the detectors are shown in Fig 2.40,Fig 2.41 and
Fig 2.42.

2.6.6.2 Statistical Error Analysis for Neutron Histograms

The contents of each of the Q2 bins in the neutron histogram are:

bi =

Ni
∑

j=1

1

αjηj
(2.60)

where bi is the entry in the ith Q2 bin, Ni is the number of events seen in the ith Q2

bin, αj is the scale factor on the detector element in which the jth event was found
(SC paddle or EC superpixel), and ηj is the value of the efficiency fit evaluated at
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Figure 2.38: An illustration of the acceptance matching technique. From the scattered
electron (inbending red track) kinematics, the 3-momentum of a stationary target
nucleon was determined. This nucleon was required to strike the active region of
the acceptance if it were either a neutron (black track) or a proton (outbending red
track). This illustration shows an acceptable event from the 4.2 GeV EC neutron
measurement.

Figure 2.39: The distribution of neutron and proton events in the θexpected, φexpected

plane for the EC neutron analysis of the 4.2 GeV data. The gap in sector 3 is caused
by a dead TOF paddle and its adjacent paddles which were switched off in software.
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momentum pj. In each Q2 bin, only a limited number of detector elements contribute.
For the purpose of determining the statistical error on bi, the expression for the bin
content can be rewritten as:

bi =

Nd
∑

k=1

nk

αk
fk (2.61)

where the index k denotes the detector element in which the neutron was detected
(SC paddle or EC superpixel), Nd is the number of active detector elements in the ith

Q2 bin, nk is the number of counts seen in the kth detector element, αk is the scale
factor for the kth detector element, and

fk = 〈 1

η(p)
〉 (2.62)

is the reciprocal of the efficiency parameterization associated with the kth detector
element, averaged over the momentum range covered by the ith Q2 bin.

The uncertainty on bi can then be written as:

σ2
bi

=

Nd
∑

k=1

{

σ2
nk

(

∂bi

∂nk

)2

+ σ2
αk

(

∂bi

∂αk

)2

+ σ2
fk

(

∂bi

∂fk

)2
}

(2.63)

The σfk
term is small compared to the others and will be neglected. Setting σ2

nk
= nk

gives:

σ2
bi

=

Nd
∑

k=1

{

nk

(

fk

αk

)2

+ σ2
αk

(

nkfk

α2
k

)2
}

(2.64)

=

Nd
∑

k=1

nkf
2
k

α2
k

(

1 +
nkσ

2
αk

α2
k

)

(2.65)

2.6.6.3 Statistical Error Analysis for Proton Histograms

The contents of each of the Q2 bins in the proton histogram are:

bi =

Ni
∑

j=1

1

ǫj
(2.66)

where bi is the entry in the ith Q2 bin, Ni is the number of events seen in the ith Q2

bin and ǫj is the proton efficiency on the jth paddle. As in the neutron case, only a
few SC paddles are active in a given Q2 bin, so that the bin contents can be rewritten
as:

bi =

Nd
∑

k=1

nk

ǫk

(2.67)
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where the index k denotes the SC paddle in which the proton was detected, Nd is
the number of SC paddles active in the ith Q2 bin, nk is the number of protons
found in paddle k, and ǫk is the detection efficiency of the kth paddle. Recall that for
proton detection, the detection efficiency on each SC paddle is taken to be momentum
independent. The uncertainty on bi is then given by:

σ2
bi

=

Nd
∑

k=1

{

σ2
nk

(

∂bi

∂nk

)2

+ σ2
ǫk

(

∂bi

∂ǫk

)2
}

(2.68)

=

Nd
∑

k=1

{

nk

ǫ2
k

+
σ2

ǫk
n2

k

ǫ4
k

}

(2.69)

=

Nd
∑

k=1

nk

ǫ2
k

(

1 +
σ2

ǫk
nk

ǫ2
k

)

(2.70)

where we have set σ2
nk

= nk. The uncertainty on the efficiency σǫk
is taken to be the

binomial uncertainty on the appropriate bin in the efficiency histogram.

2.6.6.4 Statistical Error Analysis for Ratio Histograms

The σn/σp ratio histogram was constructed by dividing the neutron and proton his-
tograms bin-by-bin, so that the contents of each bin in the ratio histogram are:

Ri =
bneutron
i

bproton
i

(2.71)

where bneutron
i is the efficiency-weighted number of neutron events found in the ith

Q2 bin and bproton
i is the efficiency-weighted number of proton events found in the

ith Q2 bin. The uncertainty on each bin in the ratio histogram is given by the usual
propagation of errors formula:

σ2
R

R2
=

σ2
n

n2
+

σ2
p

p2
(2.72)

where R is the value of the ratio histogram in that bin, n is the weighted number of
neutron entries in that bin and p is the weighted number of proton entries in that bin
(n and p correspond to bneutron

i and bproton
i in Eqn 2.71.

2.6.6.5 Uncorrected Ratio Histograms

The σn/σp ratio histograms from the 4.2 GeV data set are shown in Fig 2.43 and
the ratio histograms from the 2.6 GeV data set are shown in Fig 2.44. Note that
a comparison of the σn/σp ratio at two different beam energies is not appropriate.
There are beam energy dependent terms in the elastic cross section, so even if identical
values of Gn

M were determined at the two beam energies, identical values of σn/σp

would not be found. Notice that the EC and SC ratio values at low Q2 values in
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Figure 2.40: The average efficiency correction applied to SC neutrons, binned in Q2

for the two beam energy settings.

each of these plots do not agree. Additional corrections need to be applied to the
measured ratio before Gn

M can be extracted.

2.7 Corrections to Quasi-elastic ratio

2.7.1 Uncalibrated SC paddles

The calibration reaction ep → eπ+(n) fully illuminates the EC face, allowing the
calibration of all the EC pixels. The reaction does not fully illuminate the range of SC
paddles where quasi-elastically scattered neutrons are found. A glance at Appendix C
will show that the calibration reaction provides calibration data on paddles numbered
as high as 25 in the 4.2 GeV data, and as high as 28 in the 2.6 GeV data. Neutron
candidates scattered from the D2 target can be found at higher paddle number than
the calibration cut-off. Fig 2.45 shows a plot of the number of neutron candidates
in each SC paddle for the 4.2 GeV data set. The neutron population extends up to
paddle number 30. The proton calibration reaction ep → ep illuminates the same set
of paddles as the quasi-elastic reaction, so there is no uncalibrated paddle problem
for protons.

2.7.2 Losses due to Fermi motion of the target

If the target nucleon were stationary, there would be a one-to-one relation between Q2

and nucleon scattering angle, and all of the uncalibrated paddles could be switched
off in software and all of the calibrated paddles used. When the target nucleon is
in motion, as it is in the deuterium nucleus, the one-to-one relationship between
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Figure 2.41: The average efficiency correction applied to EC neutrons, binned in Q2

for the two beam energy settings.
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Figure 2.42: The average efficiency correction applied to protons, binned in Q2 for
the two beam energy settings.
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Figure 2.43: The σn/σp ratio R, as measured in the 4.2 GeV data set for both EC
neutrons (red triangles) and SC neutrons (black triangles), binned in Q2.
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Figure 2.44: The σn/σp ratio R, as measured in the 2.6 GeV data set for both EC
neutrons (red triangles) and SC neutrons (black triangles), binned in Q2.
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Figure 2.45: Neutron candidate events from the D2 target, binned by SC paddle
number, from the 4.2 GeV data set.

Q2 and scattering angle in elastic scattering is broken. Simply switching off the
uncalibrated paddles will give an incorrect measure of the σn

σp
ratio at low Q2 (low Q2

corresponds to high SC paddle numbers) because of the effects of the target Fermi
motion. Neutrons which, based on the electron kinematics, would be expected to
strike a paddle near the edge of the calibrated region, may in fact strike uncalibrated
paddles due to the additional effect of the Fermi motion. Such a neutron would not
be counted, incorrectly lowering the cross-section ratio. A similar loss is not suffered
by the protons, because the calibrated proton paddles cover the range of the quasi-
elastic reaction. Note that there is no corresponding Fermi induced migration of
neutrons into the acceptance, due to the requirement that acceptable events must
have a predicted nucleon location inside the acceptance.

A similar effect is seen in the EC, where neutrons which are expected to strike
near the edge of the EC can be moved out of the EC acceptance by Fermi effects.
Again, a similar problem is not seen for the protons because the angular coverage of
the SC is significantly larger than that of the EC.

This phenomena of particles migrating out of the acceptance due to Fermi effects
can be removed in two ways. A fiducial cut which restricts the expected nucleon
location to regions of the acceptance sufficiently far away from the edge that Fermi
effects are not large enough to move the nucleon out of the acceptance could be
applied. Such a cut would have the effect of raising the value of the minimum Q2

accessible to the measurement. Alternatively, a Monte-Carlo calculation could be
used to estimate the fraction of nucleons expected to be removed from the acceptance
by Fermi effects. We have developed a Monte Carlo code to study this effect and also
tested our approach using the standard CLAS simulation package GSIM.
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Figure 2.46: The Hulthen distribution for the nucleon Fermi momentum in the
deuteron.

2.7.3 Quasi-elastic event generator

The angular distribution of neutrons and protons quasi-elastically scattered from the
deuteron was simulated using the Hulthen model of the deuteron wave function. The
Hulthen model prediction for the nucleon Fermi momentum distribution is shown in
Fig 2.46.

Equation 1.8 gives the elastic electron-nucleon scattering cross-section in terms of
the Lorentz invariant Q2 and the energy of the incident electron beam for a nucleon
at rest. This equation was used to evaluate quasi-elastic scattering from a moving
nucleon in a deuteron (off-shell effects were neglected). To do this, it was first nec-
essary to transform from the lab frame, in which both the electron and the nucleon
are in motion, to the nucleon rest frame. Fig 2.47 shows the effect of the boost to the
nucleon rest frame on the electron beam energy for a 4.2 GeV incident beam, binned
in the magnitude of the Fermi momentum and the cosine of the angle between the
Fermi momentum and the incident electron.

The lab frame and rest frame cross sections are related by:

dσ

dΩl
=

dσ

dΩr

dΩr

dΩl
(2.73)

=
dσ

dΩr

sin θr

sin θl

dθr

dθl
(2.74)

where the subscripts l, r denote the lab frame and rest frame respectively.
Equation 2.73 was integrated over polar angle:

∫

dθl

dσ

dθl

dθl =

∫

dθr

dσ

dθr

sin θr

sin θl

dθr

dθl

dθr (2.75)
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Figure 2.47: The horizontal axis shows the cosine of the angle between the momenta
of the incident 4.2 GeV electron and the moving nucleon (the angle in the lab frame).
The vertical axis shows the magnitude of the Fermi momentum in GeV/c. The color
z-axis shows the energy of the incident electron in the nucleon rest frame, in GeV.

The integration on the left in Eqn 2.75 is over an angular range roughly covering
the CLAS acceptance: full azimuthal coverage, 14 to 52 degrees in polar angle for
the 4.2 GeV incident beam energy, 12 to 52 degrees in polar angle for the 2.6 GeV
incident beam energy. The integration on the right is over the equivalent angular
range in the rest frame. The kinematic relations between the lab frame and the rest
frame are derived in Appendix D. The Brash parameterization of the form factors is
used in evaluation of the integral on the right. The integrated lab-frame cross-section
was determined for a range of pf , cos θf values. Fig 2.48 shows the integrated cross-
section as a function of the magnitude of the Fermi momentum and the cosine of
the angle between the incident electron and the Fermi momentum in the lab frame
for electron-neutron scattering, and Fig 2.49 shows the same for the electron-proton
case. The electron-neutron and electron-proton elastic scattering cross-sections as a
function of scattering angle in the rest frame are shown in Fig 2.50. Note that the
cross-section peaks for large Fermi momentum nucleons in the cos θpq ≈ 1 region,
where the electron beam energy in the nucleon rest frame is smallest.

Each cell in Fig 2.48 and Fig 2.49 was multiplied by the value of the Hulthen
function (shown in Fig 2.46) at the appropriate momentum. This generated a two-
dimensional histogram for which the relative weighting of the cells should give the
relative probability for quasi-elastic scattering at those values of pf and cos θ. Fig 2.51
and Fig 2.52 show the weight tables for electron-neutron and electron-proton scatter-
ing, respectively.

The kinematics of quasi-elastic scattering are treated using a spectator approxi-
mation in which the deuteron is composed of two on-shell nucleons, one moving with
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Figure 2.48: Electron-Neutron Scattering: The horizontal axis shows the cosine of
the angle between the incident 4.2 GeV electron and the moving nucleon (the angle
in the lab frame). The vertical axis shows the magnitude of the Fermi momentum
in GeV/c. The color z-axis shows the integrated electron-neutron scattering cross
section (in the nucleon rest frame) in units of 1/GeV2.
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Figure 2.49: Electron-Proton Scattering: The horizontal axis shows the cosine of the
angle between the incident 4.2 GeV electron and the moving nucleon (the angle in
the lab frame). The vertical axis shows the magnitude of the Fermi momentum in
GeV/c. The color z-axis shows the integrated electron-proton scattering cross section
(in the nucleon rest frame) in units of 1/GeV2.
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Figure 2.50: The cross-section for elastic electron-proton (black curve) and electron-
neutron (red curve) as a function of scattering angle (in radians). The Brash pa-
rameterization [35] of the form factors was used. Notice the suppressed zero on the
horizontal axis. As θ → 0, σ → 0 for the e-n case, and σ → ∞ for the e-p case. An
incident beam energy of 4.2 GeV was used to generate this figure.
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Figure 2.51: Electron-Neutron Scattering: The horizontal axis shows the cosine of
the angle between the incident 4.2 GeV electron and the moving nucleon (the angle
in the lab frame). The vertical axis shows the magnitude of the Fermi momentum in
GeV/c. The color z-axis shows the product of the integrated cross-section and the
Hulthen distribution for the electron-neutron case.
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Figure 2.52: Electron-Proton Scattering: The horizontal axis shows the cosine of the
angle between the incident 4.2 GeV electron and the moving nucleon (the angle in
the lab frame). The vertical axis shows the magnitude of the Fermi momentum in
GeV/c. The color z-axis shows the product of the integrated cross-section and the
Hulthen distribution for the electron-proton case.

Fermi momentum ~pf , the other moving with momentum −~pf . The virtual photon
interacts with one of the moving nucleons and the other is unaffected. For simplic-
ity, the nucleons are taken to have the same mass, MN = (1/2)(Mneutron + Mproton).
Conservation of energy in the lab frame gives:

E0 + MD = ES + EI + E ′ (2.76)

=
√

p2
f + M2

N +
√

p2
I + M2

N + E ′ (2.77)

where MD is the deuteron mass, E0 is the incident electron beam energy, ES

is the energy of the spectator nucleon in the final state, EI is the energy of the
interacting nucleon in the final state, E ′ is the energy of the scattered electron, pf is
the magnitude of the Fermi momentum and pI is the magnitude of the momentum
of the interacting nucleon in the final state. Since the virtual photon interacts with
only the one nucleon,

~pI = ~pf + ~q (2.78)

where ~q is the three-momentum transferred by the virtual photon.
Conservation of momentum in the lab frame gives:

E0ẑ + ~pf = E ′ê + pI n̂ (2.79)
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where ẑ is the direction of the incident electron, ê is the direction of the scattered
electron, and n̂ is the direction of the scattered nucleon (the spectator nucleon has
momentum −~pf in the initial and final states).

To generate a quasi-elastic scattering event (either e-n or e-p), a pair of values
(pf , cos θ) are generated randomly, weighted according to the histogram shown in
Fig 2.51 for neutrons or Fig 2.52 for protons. The φ value for the Fermi momentum is
chosen randomly in the range 0 to 2π. A rest frame electron scattering angle is chosen
randomly according to the distributions shown in Fig 2.50 (with the azimuthal angle
taken randomly between 0 and 2π). The rest frame scattering angle is transformed
to the lab frame angle using the kinematic relations in Appendix D. This fixes ê,
the direction of the scattered electron. The solution now proceeds iteratively. A first
guess for E ′ is made, taking E ′ to be equal to the value for an electron elastically
scattered at the selected scattering angle. With this choice for E ′, Eqn 2.79 can be
solved for the scattered nucleon momentum:

~pI = E0ẑ + ~pf − E ′ê (2.80)

The value of pI determined from the momentum equation is used to derive a new
value of E ′ from Eqn 2.77. This procedure is iterated until |∆E ′| ≤ 0.0001, which is
usually accomplished in 3 or fewer iterations.

The event generator produces 3-momentum vectors for the scattered electron and
scattered nucleon. From the incident and scattered electron 3-momenta, W 2 can be
calculated, as well as the virtual photon direction. Fig 2.53 shows a 2-dimensional
histogram of event generator output, plotting W 2 vs θpq (the angle between the virtual
photon direction and the scattered nucleon direction).

2.7.4 Fermi Loss Corrections

The quasi-elastic event generator was used to produce a set of simulated e-n and e-p
events. The electron-nucleon vertex position was chosen randomly along the beamline
in the z-range of the deuterium target cell, −12.5 ≤ z ≤ −8.25 cm. The electron was
tracked through the magnetic field and was required to strike the active region of the
EC.

2.7.4.1 SC Fermi Loss Correction

In either the e-n or e-p case, two histograms were filled. In the first, events in
which the nucleon would be expected to be found inside the SC acceptance (i.e. to
strike an SC paddle whose detection efficiency exceeded the minimum efficiency cut
of 0.5% for neutrons or 85% for protons) were binned in Q2. The expected nucleon
location was calculated using only information taken from the electron kinematics
(the only information which would be available in the real data). A second histogram,
also binned in Q2 was filled with events where the scattered nucleon would actually
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Figure 2.53: Quasi-elastic event generator output. The horizontal axis shows θpq (the
angle between the virtual photon direction and the scattered nucleon direction) in
degrees. The vertical axis shows W 2 in (GeV/c2)2. The figure was produced using
an incident beam energy of 4.2 GeV and covers 0.9 ≤ Q2 ≤ 4.5 GeV/c2.
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Figure 2.54: Quasi-elastic event generator output. The horizontal axis shows θpq (the
angle between the virtual photon direction and the scattered nucleon direction) in
degrees. The vertical axis shows W 2 in (GeV/c2)2. The figure was produced using
an incident beam energy of 2.6 GeV and covers 0.4 ≤ Q2 ≤ 2.5 GeV/c2.



CHAPTER 2. EXPERIMENT ANALYSIS 68

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

2
(GeV/c)2Q

neutron

proton

Figure 2.55: The fraction of nucleons scattered at the indicated Q2 which scattered
into the SC acceptance and satisfied the θpq cuts, as determined by the simulation.
The black points show the neutron fraction, the red points show the proton fraction.
An incident beam energy of 4.2 GeV was used to generate these points.

be found inside the acceptance and satisfy the θpq cuts. This determination used
the information about the scattered nucleon 3-momentum from the event generator,
information that is not available in the real data. The ratio of these two histograms
gives the fraction of nucleons that are lost due to the effects of Fermi motion moving
the scattered nucleons outside the acceptance. Fig 2.55 shows plots of the loss factor
for both neutrons and protons in the 4.2 GeV data set, and Fig 2.56 shows the same
for the 2.6 GeV data.

To correct for the effects of the Fermi loss, each Q2 bin in the e-n/e-p ratio his-
togram is multiplied by the correction factor determined by the Fermi loss histograms:

RSC
corrected(Q

2) =
fSC

proton(Q2)

fSC
neutron(Q2)

RSC
observed(Q

2) = fSC
fermi(Q

2)RSC
observed(Q

2) (2.81)

where fSC
proton, f

SC
neutron are taken from the histograms in Fig 2.55 or Fig 2.56. The

correction factor for the 4.2 GeV data is shown in Fig 2.57 and for the 2.6 GeV data
in Fig 2.58.

2.7.4.2 EC Fermi Loss Correction

The Fermi loss correction for the EC was simulated in a fashion analogous to the
SC. Two histograms were filled. In the first, events in which the expected nucleon
satisfied the acceptance matching cuts (the expected neutron intersects the EC and
the expected proton strikes an active SC paddle) were binned in Q2. In the second,
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Figure 2.56: The fraction of nucleons scattered at the indicated Q2 which scattered
into the SC acceptance and satisfied the θpq cuts, as determined by the simulation.
The black points show the neutron fraction, the red points show the proton fraction.
An incident beam energy of 2.6 GeV was used to generate these points.
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Figure 2.57: The correction factor to the e-n/e-p ratio for Fermi loss in the SC, for
the 4.2 GeV data.
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Figure 2.58: The correction factor to the e-n/e-p ratio for Fermi loss in the SC, for
the 2.6 GeV data.

events in which the real nucleon was found in the acceptance (EC for neutrons, active
SC paddle for protons) and satisfied the θpq cut were binned in Q2. Fig 2.59 shows
the loss factor for protons and neutrons in the 4.2 GeV data set, and Fig 2.60 shows
the same for the 2.6 GeV data. The correction to the e-n/e-p ratio for the EC
measurement is shown in Fig 2.61 for the 4.2 GeV data, and in Fig 2.62 for the 2.6
GeV data. The Fermi loss correction for the EC is similar to the SC case:

REC
corrected(Q

2) =
fEC

proton(Q2)

fEC
neutron(Q2)

REC
observed(Q

2) = fEC
fermi(Q

2)REC
observed(Q

2) (2.82)

where fEC
proton, f

EC
neutron are taken from the histograms in Fig 2.59 or Fig 2.60. The

correction factor for the 4.2 GeV data is shown in Fig 2.61 and for the 2.6 GeV data
in Fig 2.62.

The effect of applying the Fermi loss corrections to the σn/σp ratio histograms are
shown in Fig 2.63 for the 4.2 GeV data and in Fig 2.64. Notice that the corrections
have removed most of the disagreement between the EC and SC values at low Q2 in
each of the plots. The effect of the Fermi corrections is even more striking when its
effect on Gn

M is considered in Section 3.1.

2.7.4.3 Comparison with GSIM

We have performed a study of the Fermi correction to the e − n/e − p ratio R at
2.6 GeV using the program GSIM. The code is the CLAS Collaboration standard
simulation package and this study provides an additional cross-check on the Fermi
correction. The procedure is the following.
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Figure 2.59: The fraction of nucleons scattered at the indicated Q2 which scattered
into the EC acceptance and satisfied the θpq cuts, as determined by the simulation.
The black points show the neutron fraction, the red points show the proton fraction.
An incident beam energy of 4.2 GeV was used to generate these points.
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Figure 2.60: The fraction of nucleons scattered at the indicated Q2 which scattered
into the EC acceptance and satisfied the θpq cuts, as determined by the simulation.
The black points show the neutron fraction, the red points show the proton fraction.
An incident beam energy of 2.6 GeV was used to generate these points.
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Figure 2.61: The correction factor to the e-n/e-p ratio for Fermi loss in the EC, for
the 4.2 GeV data.
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Figure 2.62: The correction factor to the e-n/e-p ratio for Fermi loss in the EC, for
the 2.6 GeV data.
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Figure 2.63: The σn/σp ratio R, as measured in the 4.2 GeV data set for both EC
neutrons (red triangles) and SC neutrons (black triangles), binned in Q2. The Fermi
loss corrections have been applied.
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Figure 2.64: The σn/σp ratio R, as measured in the 2.6 GeV data set for both EC
neutrons (red triangles) and SC neutrons (black triangles), binned in Q2. The Fermi
loss corrections have been applied.
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1. Generate simulated ep → e + X data using CELEG/GSIM. From these Monte
Carlo ‘data’, we extract the simulated neutron detection efficiency of the EC
and SC using the same algorithms that were applied to the real data.

2. Generate simulated ep → ep elastic data and extract the simulated proton
detection efficiency in the EC and SC, again using the same algorithms that
were applied to the real data.

3. Generate a simulated, quasi-elastic data set with Fermi motion effects included
using the quasielastic event generator QUEEG described in section 2.7.3. Using
the detector efficiency results from steps 1 and 2 above, we determine the value
for R with Fermi effects turned on.

4. Set the Fermi momentum distribution in QUEEG to f(p) = δ(0) and generate a
new, simulated data set. Analyze these data with the detector efficiency results
from steps 1 and 2 above to determine the value of R with the Fermi effects
turned off.

5. The ratio of R from step 3 and step 4 will be the Fermi correction with a set of
calibration and production data points entirely generated by GSIM.

We now describe the details of the simulation. Calibration events (steps 1-2 above)
were generated for the extraction of the detection efficiencies using the CLAS Collab-
oration standard event generator CELEG with inputs shown in Table 2.7. Simulated
events for the quasielastic deuteron data were created with the program QUEEG
described in section 2.7.3 using, for example, the following command

queeg -o queegsim.dat -E 2.558 -I 2250. -N 1000000 -F 0.5

where the output file (-o) is queegsim.dat, the beam energy (-E) is 2.558 GeV, the
CLAS torus current (-I) is 2250 A, the number of events (-N) is 1000000, and the
fraction of neutrons (-F) is 0.5. The events generated by CELEG and QUEEG were
passed to GSIM and run with, for example, the following command

gsim_bat -ffread ffread_gsim -kine 1 -mcin pde.out.$JOBID.bos

-bosout pde.gsim.bos.A00

where the control parameters are in the file (-ffread) ffread gsim and shown in Table
2.8, the input data from the event generator is a BOS file (-kine 1) with name taken
from the -mcin flag, and the output file (-bosout) is pde.gsim.bos.A00. Finally, to
simulate the effect of the finite resolution of CLAS the program GPP was used to
process the outputs from GSIM using the following command

gpp -opde.gsim.bos.A00.gpp -a1.0 -b1.25 -c1.5 pde.gsim.bos.A00
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Table 2.7: CELEG input card for calibration event generation

BEAM ELECTRON 0.00000 0.00000 4.23200 0.00000

TARGET PROTON 0.00000 0.00000 0.00000 0.00000

W RANGE 0.10000 3.0000 0.00000 0.00000

Q2 RANGE 0.80000 5.00000 0.00000 0.00000

X CUTS 0.00000 99.00000 0.00000 0.00000

Y CUTS 0.00000 99.00000 0.00000 0.00000

Q2 CUTS 0.80000 5.00000 0.00000 0.00000

W CUTS 0.10000 3.0000 0.00000 0.00000

NU CUTS 0.00000 99.00000 0.00000 0.00000

EP CUTS 0.00000 99.00000 0.00000 0.00000

THETAP CUTS 5.000 75.00000 0.00000 0.00000

E PHI ANG YES 0.00000 360.00000 0.00000 0.00000

MULT RANGE 0.00000 99.00000 0.00000 0.00000

DECAY NO 0.00000 0.00000 0.00000 0.00000

EDIT NO 13.00000 0.00000 0.00000 0.00000

FERMI NO 1.00000 0.00000 0.00000 0.00000

FIX_TGT YES

EVENTS 100000.0 0.00000 0.00000 0.00000

VERTEX YES 0.00000 0.00000 3.00000 0.00000 0.00000

ELASTIC YES 0.00000 0.00000 0.00000 0.00000 0.00000

DEEP IN NO 0.00000 0.00000 0.00000 0.00000 0.00000

DEL1232 NO 0.00000 0.00000 0.00000 0.00000 0.00000

DEL1620 NO 0.00000 0.00000 0.00000 0.00000 0.00000

DEL1700 NO 0.00000 0.00000 0.00000 0.00000 0.00000

DEL1900 NO 0.00000 0.00000 0.00000 0.00000 0.00000

DEL1905 NO 0.00000 0.00000 0.00000 0.00000 0.00000

DEL1910 NO 0.00000 0.00000 0.00000 0.00000 0.00000

DEL1920 NO 0.00000 0.00000 0.00000 0.00000 0.00000

DEL1930 NO 0.00000 0.00000 0.00000 0.00000 0.00000

DEL1950 NO 0.00000 0.00000 0.00000 0.00000 0.00000

N1440 NO 0.00000 0.00000 0.00000 0.00000 0.00000

N1520 NO 0.00000 0.00000 0.00000 0.00000 0.00000

N1535 NO 0.00000 0.00000 0.00000 0.00000 0.00000

N1650 NO 0.00000 0.00000 0.00000 0.00000 0.00000

N1675 NO 0.00000 0.00000 0.00000 0.00000 0.00000

N1680 NO 0.00000 0.00000 0.00000 0.00000 0.00000

N1700 NO 0.00000 0.00000 0.00000 0.00000 0.00000

N1710 NO 0.00000 0.00000 0.00000 0.00000 0.00000

N1720 NO 0.00000 0.00000 0.00000 0.00000 0.00000

LAM1405 NO 0.00000 0.00000 0.00000 0.00000 0.00000

LAM1520 NO 0.00000 0.00000 0.00000 0.00000 0.00000

LAM1600 NO 0.00000 0.00000 0.00000 0.00000 0.00000

LAM1670 NO 0.00000 0.00000 0.00000 0.00000 0.00000

LAM1690 NO 0.00000 0.00000 0.00000 0.00000 0.00000

LAM1800 NO 0.00000 0.00000 0.00000 0.00000 0.00000

LAM1820 NO 0.00000 0.00000 0.00000 0.00000 0.00000

LAM1830 NO 0.00000 0.00000 0.00000 0.00000 0.00000

LAM1890 NO 0.00000 0.00000 0.00000 0.00000 0.00000

LAM2110 NO 0.00000 0.00000 0.00000 0.00000 0.00000

SIG1385 NO 0.00000 0.00000 0.00000 0.00000 0.00000

SIG1660 NO 0.00000 0.00000 0.00000 0.00000 0.00000

SIG1670 NO 0.00000 0.00000 0.00000 0.00000 0.00000

SIG1750 NO 0.00000 0.00000 0.00000 0.00000 0.00000

SIG1775 NO 0.00000 0.00000 0.00000 0.00000 0.00000

SIG1915 NO 0.00000 0.00000 0.00000 0.00000 0.00000

SIG1940 NO 0.00000 0.00000 0.00000 0.00000 0.00000

SIG2030 NO 0.00000 0.00000 0.00000 0.00000 0.00000

USER NO 0.00000 0.00000 0.00000 0.00000 0.00000

PRESCALE NO

FLSEED YES

LIST NO

DATAOUT NO gg.lund

HISTOUT NO gg.rzdat

BOSOUT YES celeg.evt
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Table 2.8: GSIM input card for calibration and quasielastic event simulation

MLIST

CUTS 5.e-3 5.e-3 5.e-3 5.e-3 5.e-3

CCCUTS 1.e-3 1.e-3 1.e-3 1.e-3 1.e-3

DCCUTS 1.e-4 1.e-4 1.e-4 1.e-4 1.e-4

ECCUTS 1.e-4 1.e-4 1.e-4 1.e-4 1.e-4

SCCUTS 1.e-4 1.e-4 1.e-4 1.e-4 1.e-4

TARGET ’e5a’

VERT_E5 4

RUNG 10

AUTO 1

MAGTYPE 3

MAGSCALE 0.8744 0.75

KINE 1

TRIG 200000

NOGEOM ’PTG’ ’ST’

NOMCDATA ’ALL’

SAVE ’ALL’ 5

STOP

END

where the output file (-o) is pde.gsim.bos.A00.gpp, the scale factors for the drift
chamber timing resolution are 1.0 (-a), 1.25 (-b), and 1.5 (-c), and the output file is
pde.gsim.bos.A00.

We now discuss the detection efficiencies determined from the GSIM simulations.
The proton detection efficiency was extracted from the CELEG simulations with the
same analysis code that was used to process the data. The results for the SC are
shown in Figure 2.65 for a beam energy of 2.6 GeV and summed over all sectors
(black points) along with the CLAS measured results for all sectors (red points).
Compare this plot with Fig 2.23 for the measured efficiency in each sector. The real
and simulated efficiencies both have high (& 0.97) efficiency for most paddles. The
change in the proton efficiency at paddle 23 in the simulated results is associated
with different scintillator panels. This difference between the two SC panels in GSIM
does not appear in the data and is observed in GSIM simulations at 4.2 GeV. The
neutron detection efficiency was also extracted from the CELEG simulations again
with the same code used to analyze the real data. The results for the EC are shown
in Figure 2.66 for 2.6 GeV. Compare this result with Figure 2.12 for the CLAS
measured efficiency for both beam energies. Notice the difference in shape. The
simulated neutron efficiency rises more rapidly as a function of neutron momentum
for pn . 1.0 GeV/c. There is a dip in the simulated efficiency at pn ≈ 1.2 GeV/c
and a slow rise for pn = 1.4 − 2.4 GeV/c differing from the CLAS measured neutron
efficiency. The dip at pn ≈ 1.2 GeV/c has been observed in other CELEG/GSIM
simulations we performed at a beam energy of 4.2 GeV even though those neutrons
illuminate different parts of CLAS. Because the dip appears at the same momentum
in both simulations, it is likely a feature in GSIM or CELEG and not our analysis
code. We used the same function to fit the EC neutron detection efficiency that was
used in the analysis of the real data. The fits were of lower quality because of the
different shape of the simulated neutron detection efficiency. The results for the SC
neutron detection efficiencies are shown in Figure 2.67 for 2.6 GeV. Compare this
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Figure 2.65: Proton detection efficiency in the SC measured in CLAS (red points)
and extracted from GSIM (black points).
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Figure 2.66: Neutron detection efficiency in the EC from GSIM.

figure with Figure 2.19 for the CLAS measured efficiency for both beam energies.
Notice again the shape of the simulated efficiency differs from the measured one. The
maximum efficiency from the GSIM simulation is about one-fifth to one-quarter of
the measured one and there is more structure in the simulated efficiency spectrum.
Again, we used the same function to fit the SC neutron detection efficiency that was
used in the analysis of the real data. In this case, the fitting procedure failed for
many paddles so we were unable to complete the full, sector-by-sector and paddle-by-
paddle analysis of the SC neutron simulation without altering either the simulation
or our analysis procedures. We dealt with this issue below by using the SC neutron
efficiency averaged over all sectors and paddles in the Fermi correction simulation.

To determine the Fermi correction to the EC data from our simulation, we start
with the neutron and proton detection efficiencies extracted from the GSIM simu-
lation. We then calculate the value of R with the Fermi motion turned on (using
QUEEG) and the value of R with the Fermi motion turned off. The ratio of these
two calculations (R with Fermi motion on and off) is the correction. The results
are shown in Figure 2.68. Compare this figure with Figure 2.62. For Figure 2.62
we used the same event generator (QUEEG), and only considered the geometric ac-
ceptance of the EC in the simulation (the detection efficiencies were measured from
the calibration data). The GSIM simulation has more structure than the real data.
There is a small dip at Q2 ≈ 1.5 (GeV/c)2 followed by a more rapid rise at lower
Q2. The GSIM simulation is in qualitative agreement with our previous calculation;
the correction factor is about unity for Q2 & 1.3 (GeV.c)2 and increases at lower Q2.
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Figure 2.67: Neutron detection efficiency in the SC from GSIM.

Figure 2.68: Fermi-loss correction from GSIM for EC neutrons at 2.6 GeV beam
energy.
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Obtaining quantitative agreement at lower Q2 would require a deeper investigation of
the neutron simulation in GSIM that is beyond the scope of this work. We intend to
publish initially the results for Q2 > 1 GeV2 because we have consistent overlaps in
that range for the SC and EC while we only have the SC data for Q2 < 1 GeV2. The
low Q2 data are the subject of an ongoing study that includes the 2.6-GeV, reversed
torus field data. The GSIM simulation will be studied more in that project. See also
Section E item 1 of the Appendix.

We have investigated the Fermi correction to the SC with GSIM and studied our
choice of the parameterization of the SC neutron detection efficiency for the low Q2

data at 2.6 GeV. In our standard procedure the SC neutron calibration spectra are
fitted with a third-order polynomial in the region of the neutron momentum pn where
the detection efficiency is increasing and then with a plateau above some minimum
value of pn. The position of the low-pn end of the plateau is varied in the fit and the
function is required to be continuous across the full range of the data. The results for
the standard fit in the GSIM simulation at 2.6 GeV are shown in Figure 2.69 (black
points). The simulated results again show more structure than ones where we used
detection efficiencies based on our CLAS calibration data (compare with Figure 2.58).
To study the impact of our choice of the parameterization we fixed the value of the
coefficient of the third-order term in the polynomial to zero and redid the calibration
fits in the Fermi correction calculation. The results are also shown in Figure 2.69 (red
points). For Q2 > 1 GeV2, the two calculations are consistent within the Monte Carlo
statistical uncertainties, but start to diverge in the range Q2 . 1 GeV2. This is due to
the effect of the shape of the simulated SC neutron detection efficiency that does not
appear in the CLAS measured SC neutron detection efficiency. Recall Figure 2.19 (SC
neutron detection efficiency measured in CLAS) and Figure 2.67 (GSIM calculation of
the SC neutron detection efficiency). The spectra have some similar features, but the
simulated neutron detection efficiency has a dip at pn ≈ 0.9 GeV that has a large effect
on the fit to the neutron detection efficiency used in the Fermi correction. In Figure
2.70 we reproduce the GSIM SC neutron efficiency (recall Figure 2.67) and plot the
fit results for the standard function (third-order polynomial with a plateau; the red
curve) and the results for the fit using a second-order polynomial polynomial and a
plateau (blue curve). The third-order polynomial reproduces the dip at pn ≈ 0.9 GeV
and is changing more rapidly for pn . 1.2 GeV than the second-order polynomial fit.
This difference between the two fits is in a neutron momentum range that corresponds
to Q2 . 1 GeV2 where the Fermi corrections diverge in Figure 2.69. Exploring the
reason for this difference between the GSIM simulation and the measured efficiency is
beyond the scope of this analysis. As mentioned above we intend to initially publish
the results for Q2 > 1 GeV2 because we have consistent overlaps in that range for the
SC and EC while we only have the SC data for Q2 < 1 GeV2.

We also investigated the effect of the uncertainty in the electron polar angle on
the Fermi corrections. The uncertainty in the angular position of the electron is
about 1 mrad for the polar angle and 4 mrad for the azimuthal angle [36]. We
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assumed (conservatively) a 4 mrad width for the polar angle and randomly smeared
the electron polar and azimuthal angles by this amount. The results for the EC and
SC at each beam energy (2.6 GeV and 4.2 GeV) are shown in Figures 2.71-2.74. In
each figure the left-hand panel shows the standard Fermi correction (black points)
and the same calculation after adding the smearing to the electron angle (red points).
The right-hand panel in each figure shows the fractional difference ∆ffermi/ffermi

between each of those calculations. The size of the smearing effect is small and
consistent with zero within the uncertainties in each case. In Section 3.2.3.12 we
assign a systematic uncertainty of 0.6% on the Fermi correction factor due to this
effect.

2.7.5 Radiative Corrections

If diagrams beyond the lowest order Born term, containing more than a single virtual
or real photon, are considered, the scattering cross section is modified from its single
photon value by a multiplicative factor:σ = σ0(1 + δ), where σ0 is the single photon
exchange cross-section, and δ is due to the effect of higher-order diagrams. Various
schemes for computing the correction factor (1 + δ) have been put forward.

The traditional Mo and Tsai [37] approach to radiative corrections was devel-
oped for use in inclusive scattering, and cannot properly be applied to the scattering
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Figure 2.75: Feynman diagrams contributing to the Born and the next–order cross
sections. a) Born process, b) and c) Bremsstrahlung, d) Vertex correction, and e) Vac-
uum polarization. ph is the momentum of the detected hadron, pu is the momentum
of the undetected hadron.

measurement from which Gn
M is extracted. The measurement of the quasi-elastically

scattered hadron, in addition to the electron, reduces the phase space allowed for
the radiated photon. In addition, only two structure functions contribute in the
case of exclusive scattering, while for unpolarized inclusive scattering, four structure
functions can contribute.

The radiative corrections for this analysis were performed using the approach of
Afanasev et al. [38], which was originally developed for exclusive pion electroproduc-
tion. The model includes, in addition to the Born term, diagrams for initial and
final state electron Bremsstrahlung, electron vertex correction, and vacuum polariza-
tion. The diagrams included are shown in Fig 2.75. Note that two-photon exchange
diagrams are not included.

Afanasev et al. wrote a computer code EXCLURAD to numerically evaluate the
radiative corrections. The EXCLURAD code generates the ratio of the radiated cross
section at a given value of Q2,W,cos θpq,φpq to the PWIA result (θpq,φpq are the polar
and azimuthal angles between the virtual photon direction and the direction of the
detected hadron). For the Gn

M analysis, the reactions of interest are D(e, e′p)n and
d(e, e′n)p, not pion production on a proton target. To accommodate the change in
final state hadron species, the EXCLURAD code was modified. The masses of the
target, detected and undetected final state hadrons were changed to values appro-
priate for deuteron breakup. The DEEP code of Van Orden et al. [39], a relativistic
deuteron model, was installed to calculate response functions at the deuteron-virtual
photon vertex.

The EXCLURAD/DEEP code was used to generate surfaces in cos θpq and φpq

at a variety of Q2 points, as shown in Fig 2.76. At each Q2 value, this surface is
integrated over the range of cos θpq accepted for that Q2 (see previous section) and
over the full range of φpq (Monte Carlo studies and analysis of the quasi-elastic data
both confirm the full φpq coverage of the detector). The calculation at each Q2 point
is performed twice, once for the case where the detected hadron is the proton, once
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Table 2.9: Radiative correction values for 2.6 GeV data.
Q2 1 + δn 1 + δp frad

1 0.7956 0.7957 0.9999
2.35 0.8273 0.8273 1.0000
2.45 0.8421 0.8424 0.9996
2.55 0.8568 0.8583 0.9983

Table 2.10: Radiative correction values for 4.2 GeV data.
Q2 1 + δn 1 + δp frad

4.0 0.82691 0.82691 1.0000
5.0 0.85310 0.85310 1.0000

for the case where the detected hadron is the neutron. Note that while the radiative
correction factor (1+δ) may be as large as 1.3 for either of the two final states, what is
required for the Gn

M analysis is the ratio of the D(e, e′p)n and D(e, e′n)p corrections:

fradiative(Q
2) =

1 + δn(Q2)

1 + δp(Q2)
(2.83)

where the subscript indicates either the correction to the cross section ratio (radia-
tive), or the hadron species (n,p). The corrections to the two hadron species, while
individually large in some cases, are numerically close to each other. This is shown
in Fig 2.77. The ratio of the curves in Fig 2.77 is shown in Fig 2.78. The radiative
correction factors 1 + δn, 1 + δp and fradiative are shown for several Q2 points in Ta-
ble 2.9 for the 2.6 GeV data and in Table 2.10 for the 4.2 GeV data. The largest
radiative correction value seen in the two tables is 0.9983. The radiative correction
at each value of Q2 was taken to be exactly unity, with a systematic uncertainty of
0.17% assigned at each value of Q2.

2.7.6 Nuclear Corrections

The quantity of interest in this analysis is the ratio of e-n/e-p scattering from free
nucleons. What is measured is the quasi-elastic e-n/e-p ratio from nucleons bound in
the deuteron. This quantity is related to the measured ratio by a correction factor:

Rcorrected(Q
2) = fnuclear(Q

2)Robserved(Q
2) (2.84)

The correction factor fnuclear(Q
2) must be determined by theoretical calculation. It

would be ideal to perform this calculation in a fully relativistic framework, starting
from a Lagrangian. Such an approach would automatically include a proper relativis-
tic treatment of the nuclear dynamics and electromagnetic current. However, a fully
relativistic treatment is not available. In practice, electron scattering from nuclei is
usually treated by taking the nuclear initial state as the solution to a bound-state
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Schrodinger equation, and the final state is calculated using optical potentials or a
multiple-scattering approach. The electromagnetic current is subjected to a non-
relativistic reduction in this case. The theoretical calculations for this analysis were
carried out by Jeschonnek [41], using the procedure described in [42], [43], [44], and
by Arenhövel [45].

For relativistic scattering, the cross-section in the lab frame can be written as [46]:

(

dσ5

dǫ′dΩedΩN

)h

fi

=
mN mf pN

8π3 mi
σMott f−1

rec

[

(

vLRL
fi + vT RT

fi + vTT RTT
fi + vTLRTL

fi

)

+h
(

vT ′RT ′

fi + vTL′RTL′

fi

) ]

, (2.85)

where mi, mN and mf are the masses of the target nucleus, the ejectile nucleon and
the residual system, pN and ΩN are the momentum and solid angle of the ejectile, ǫ′

is the energy of the detected electron and Ωe is its solid angle. The helicity of the
electron is denoted by h. The Mott cross section is (setting ~ = c = 1):

σMott =

(

α cos(θe/2)

2ε sin2(θe/2)

)2

(2.86)

and the recoil factor is given by

frec = |1 +
ωpx − Exq cos θx

mi px
| . (2.87)

The coefficients vk are constructed from elements of the lepton tensor, and convey
information about the polarization state of the virtual photon (for example, the vLT

term is generated by interference between longitudinal and transverse modes of the
virtual photon). The Rk are the nuclear response functions and contain information
on the nucleon electromagnetic current. In terms of the nucleon current 4-vector
(ρ, ~J), the Rk are:

RL
fi ≡ |ρ(~q)fi|2

RT
fi ≡ |J+(~q)fi|2 + |J−(~q)fi|2

RTT
fi ≡ 2ℜ

[

J∗

+(~q)fi J−(~q)fi

]

RTL
fi ≡ −2ℜ

[

ρ∗(~q)fi (J+(~q)fi − J−(~q)fi)
]

RT ′

fi ≡ |J+(~q)fi|2 − |J−(~q)fi|2

RTL′

fi ≡ −2ℜ
[

ρ∗(~q)fi (J+(~q)fi + J−(~q)fi)
]

, (2.88)

The J± are the spherical components of the current 3-vector [47].



CHAPTER 2. EXPERIMENT ANALYSIS 90

In the non-relativistic case, the lab-frame cross-section in the Plane-Wave Impulse
Approximation(PWIA) can be written:

d5σ

dǫ′dΩedΩN
=

mN mf pN

mi
σeN f−1

rec n(~p) , (2.89)

where n(~p) is the nucleon momentum distribution (evaluated at the value of ~p deter-
mined by the reaction kinematics), and the eN cross section is given by

σeN = σMott

∑

k

vkR
sn
k . (2.90)

The sn superscript indicates the single-nucleon response function. The single-nucleon
response functions are related to the nuclear responses by

Rnucleus
K = (2π)3 Rsingle nucleon

k n(~p) (2.91)

Combining these, one has:

d5σ

dǫ′dΩedΩN

=
mN mf pN

mi

f−1
rec σMott n(~p)

∑

k

vkR
single nucleon
k (2.92)

The momentum distribution n(~p) is obtained by Fourier transform of the nuclear
wave function:

n(~p) =
1

2π2
(u(p)2 + w(p)2) (2.93)

where u(p), w(p) are the S-wave and D-wave components of the deuteron wave func-
tion in momentum space, and the normalization condition is

∫

d3~pn(~p) = 1 (2.94)

The AV18 deuteron wave function [48] was used in the calculation.
The electromagnetic current operator for the nucleon is given by:

Jµ(PΛ; P ′Λ′) = ū(P ′Λ′)

[

F1γ
µ +

i

2mN
F2σ

µνQν

]

u(PΛ) (2.95)

where P, P ′ indicate the four-momenta of the nucleon, and Λ, Λ′ indicate the nucleon
spin state. A non-relativistic reduction of the current operator is carried out in [43],
after which the nuclear response functions can be written in terms of the Sachs form-
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factors:

Rsn
L = f 2

o (ξ2
o + κ2δ2ξ′2o )

=
κ2

τ
(G2

E + δ2W2)

Rsn
T = f 2

o (2κ2ξ′21 + κ4δ2ξ′22 + δ2ξ2
1 + κ2δ4ξ′23 − 2κ2δ2ξ′1ξ

′

3)

= 2W1 + δ2W2

Rsn
TT = f 2

o (κ4δ2ξ′22 + 2κ2δ2ξ′1ξ
′

3 − δ2ξ2
1 − κ2δ4ξ′23 ) cos(2ϕ)

= −δ2W2 cos(2ϕ)

Rsn
TL = 2

√
2 cos(ϕ)f 2

o (δξoξ1 + κ2δξ′o(ξ
′

1 − δ2ξ′3))

= 2
√

2 cos(ϕ)
κ√
τ

√
1 + τ + δ2δW2 (2.96)

where the W1 = τG2
M and W2 = 1

1+τ
(G2

E + τG2
M ). The other factors are kinematic

terms:

κ =
|~q|

2mN

δ =
p⊥
mN

λ =
ω

2mN

τ = κ2 − λ2 =
Q2

(2MN)2
(2.97)

The dipole parametrization was used for all form factors in the calculation, except
Gn

E which was set to 0.
It is possible for the struck nucleon to interact strongly with other nucleons

as it exits the nucleus, as shown in Fig 2.79. The inclusion of Final-State Inter-
actions (FSI) changes the matrix element of interest from Mfi =< f |Jem|i > to
Mfi =< f |S Jem|i >, where S is the FSI operator. The final-state interactions were
calculated in the context of Glauber theory [44]. In this framework, the FSI operator
for interaction with a single spectator nucleon takes the form:

S(~r) = 1 − θ(z) · Γ(~b) , (2.98)

where the distance ~r between the two interacting nucleons is decomposed into lon-
gitudinal and transverse parts: ~r = ~b + z · q̂, where q̂ indicates the direction of the
virtual photon’s momentum. The θ function restricts the interaction to nucleons in
the struck nucleon’s forward hemisphere. Γ(b) is called the profile function, and is
related to the nucleon-nucleon scattering amplitude via a Fourier transform:

Γ(~b) =
1

2πik

∫

d2~l exp(−i~l ·~b) f(~l) . (2.99)
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Figure 2.79: Diagrammatic representation of final-state interactions in the A(e,e’N)A-
1 single nucleon knockout reaction. The figure is from [44].

where ~k is the incident nucleon momentum, ~k′ is the outgoing nucleon’s momentum,
and ~l = ~k − ~k′ is the momentum transferred in the nucleon-nucleon scattering. The
most general form for the NN scattering amplitude (subject to the constraints of
parity conservation, isospin invariance and the Pauli principle) is given by:

f(~l) = A(~l) + B(~l) (~σ1 + ~σ2) · n̂ + C(~l) (~σ1 · n̂) (~σ2 · n̂) +

D(~l) (~σ1 · m̂) (~σ2 · m̂) + E(~l) (~σ1 · ĥ) (~σ2 · ĥ). (2.100)

The nucleon spin operators are denoted by ~σ1 and ~σ2, and n̂ ≡ ~k × ~k′/|~k × ~k′|,
m̂ ≡ (~k − ~k′)/|~k − ~k′|, and ĥ ≡ (~k + ~k′)/|~k + ~k′| . In the approach used in [44],
the amplitudes C, D, E are neglected (many implementations of Glauber theory also
neglect B, keeping only the central amplitude A), keeping only the central and spin-
orbit terms A(l) and B(l), which are parametrized in term of the results of phase
shift analysis of NN scattering data:

A(l) =
k σNN

tot

4π
(ρ + i) exp(−0.5 l2 b2

o) (2.101)

(2.102)

where σNN
tot is the total NN cross-section, bo is the diffractive slope and ρ is the ratio

of the real to imaginary parts of the forward elastic amplitude. B(l) is parametrized
in a similar fashion. The inclusion of the spin-orbit amplitude B(l) is significant for
calculating FSI effects in the extraction of the RTT and RLT structure functions, but
is not significant for the e-n/e-p ratio measurement since the TT and LT structure
functions only contribute the total cross-section at the 1% level.

With a model chosen for the nuclear ground state and a prescription for the non-
relativistic reduction of the electromagnetic current and a treatment of the final-state



CHAPTER 2. EXPERIMENT ANALYSIS 93

Table 2.11: Nuclear corrections to e-n/e-p ratio from the Jeschonnek model.
Q2 fnuclear

1 0.999796
2 0.999714
3 0.999655
4 0.999624
5 0.999619

interactions, the correction to the ratio measurement was calculated by evaluating the
ratio σFull/σPWIA for e-n and e-p scattering, where the “Full” calculations includes all
FSI. The ratio of the e-n to e-p correction factors was taken, yielding the correction
factor for the e-n/e-p ratio. The results for the 4.2 GeV beam energy are shown in
Table 2.11.

The Jeschonnek model is not expected to be valid below Q2 = 1 (GeV/c)2 at
the lowest. The corrections at lower Q2 were supplied by the Arenhövel model [45].
The Arenhövel model is a non-relativistic deuteron electro-disintegration model. The
Plane Wave Born Approximation (PWBA) is used. The PWBA is similar to the
PWIA, but it also includes diagrams where the detected nucleon was not the struck
nucleon. These diagrams are significant only at low-Q2. The model includes a treat-
ment final-state interactions, and correction for relativistic effects. Some features
not present in the Jeschonnek model are meson-exchange currents (MEC) to account
for the possibility of the virtual photon coupling to mesons inside the deuteron, and
isobar configurations (IC) to describe the virtual excitation of nucleon resonances,
such as N∆ or ∆∆. The Bonn potential is used to model the nucleon-nucleon inter-
action. The correction factors were derived by comparing the full calculation to the
PWBA(no FSI,MC,IC) in the quasi-elastic region. The calculated cross sections were
integrated over a range of θpq values used in the analysis, and the ratio of the full-
to-PWBA integrated cross sections ratios for the neutron and proton was calculated.
The results of the calculation are shown in Fig 2.80.

The Arenhövel model is not expected to be valid above Q2 = 1 (GeV/c)2. The
predicted correction factors for the 2.6 GeV beam energy are shown in Table 2.12.
Calculations for the 4.2 GeV beam energy were available only at one Q2 value, Q2 =
0.811(GeV/c)2. The correction values for the two beam energies are shown in Fig 2.81.
The figure shows a second order polynomial fit to the 2.6 GeV calculations, and the
lone 4.2 GeV calculation. The nuclear correction at both beam energies will be
performed using the fit shown in Fig 2.81.

It is seen that the two models disagree at Q2 = 1(GeV/c)2, which is at the edge
of the expected validity for both models. At Q2 = 1 (GeV/c)2, the average correction
is 0.994, or a 0.6% correction. The average correction was used at this Q2 point,
with a 100% uncertainty on the correction, so that a systematic uncertainty of 0.6%
was assigned to the correction factor. This 0.6% systematic error was assigned to the
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Figure 2.80: The e-n/e-p ratio correction factor, from the Arenhövel model, as a
function of the θpq cutoff, for several values of Q2. The data shown is for the 2.6 GeV
beam energy. The figure is from [49]

Table 2.12: Nuclear corrections to e-n/e-p ratio from the Arenhovel model, for a 2.6
GeV beam energy.

Q2 fnuclear

0.5 0.977
0.75 0.983
1.0 0.989
1.2 0.993
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Figure 2.81: Nuclear correction factor for a 2.6 GeV energy beam (circles), and a
4.2 GeV beam (triangle). The curve is a second order polynomial fit to the 2.6 GeV
points.

correction factor at all values of Q2.



Chapter 3

Experiment Results

3.1 Gn
M extraction from ratio

The corrected n/p ratio,

Rcorrected(Q
2) = fnuclear(Q

2)fradiative(Q
2)ffermi(Q

2)Robserved(Q
2) (3.1)

is related to Gn
M through Eqn 1.12:

Rcorrected =
σn

mott

(

G2
E,n + τn

ǫn
G2

M,n

)(

1
1+τn

)

σp
mott

(

G2
E,p + τp

ǫp
G2

M,p

)(

1
1+τp

) (3.2)

where super- or subscript n,p denote neutron or proton quantities. The kinematic
variable τ, ǫ and the Mott cross section σmott are as previously defined. Q2 dependence
of all quantities is assumed. Solving the equation above for Gn

M gives:

Gn
M =

√

[

Rcorrected

(

σp
mott

σn
mott

) (

1 + τn

1 + τp

)(

G2
E,p +

τp

ǫp
G2

M,p

)

− G2
E,n

]

ǫn

τn
(3.3)

The Arrington parametrization [50] was used to evaluate the proton form factors
and the Galster parametrization was used for Gn

E.
The Gn

M extraction was performed separately for each of the four measurements
(2.6 and 4.2 GeV beam energy, SC and EC neutron detection). These four measure-
ments are essentially independent. Two independent detector systems were used for
detection of neutrons. Protons were detected in the DC/SC in all cases, however dif-
ferent regions of the drift chambers and SC panel were sampled at the two different
beam energies. A comparison of the results from the four extractions is shown in
Fig 3.1. The overlap of the four semi-independent measurements over a range of Q2

values suggests that systematic errors are under control. The necessity of applying
the Fermi-momentum correction is shown by Fig 3.2, which shows a comparison of
the four Gn

M measurements with no Fermi corrections applied.

96
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Figure 3.1: Comparison of Gn
M as a function of Q2 for four different measurements.

Gn
M has been scaled to the dipole in this figure.

The Gn
M data from the four separate measurements were combined to form a

weighted average. The weighting in each Q2 bin was chosen to minimize:

χ2 =
∑

j

(xj − x)2

σ2
j

(3.4)

where xj and σj are the Gn
M value and statistical error associated with the jth mea-

surement contributing in that Q2 bin (j is an integer between 1 and 4). Setting
∂χ2/∂x = 0 in Eqn 3.4 and solving for x gives:

x =

∑

j
xj

σ2

j
∑

j
1
σ2

j

(3.5)

The statistical error on each point in the weighted average was determined from:

σ2
x =

∑

j

(
∂x

∂xj
)2σ2

j (3.6)

=
1

∑

j
1
σ2

j

(3.7)

The combined Gn
M histogram is shown in Fig 3.3. Tables giving numerical values for

the four individual measurements, and the weighted average are shown in Appendix A.
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Figure 3.2: Comparison of Gn
M as a function of Q2 for four different measurements.

The Fermi correction have not been applied.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

2
 (GeV/c)2Q

DGnµ

n
MG

2
 (GeV/c)2Q

DGnµ

n
MG

Figure 3.3: Weighted average Gn
M , binned in Q2 obtained by combining data from

the four separate Gn
M measurements. Gn

M has been scaled to the dipole.
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3.2 Systematic Errors

For the purpose of evaluating systematic errors, Eqn 3.3 can be simplified to:

Gn
M =

√

(σpRc − G2
E,n)

ǫ

τ
(3.8)

by making the approximations

σp
mott

σn
mott

≈ 1 (3.9)

1 + τn

1 + τp
≈ 1. (3.10)

In Eqn 3.8, σp is the reduced proton cross section, σp = G2
E,p + τ

ǫ
G2

M,p and Rc is
the corrected ratio. The corrected ratio is a function of a variety of parameters
(location of cuts on missing mass in the calibration reaction, choice of cuts on θpq,
W 2, acceptance matching, radiative correction, etc). This dependence on multiple
parameters is summarized by writing:

Rc = Rc(~f). (3.11)

All of the terms in Eqn 3.8 are understood to have a Q2 dependence.
The standard propagation of errors formula is applied:

(δGn
M)2 = (

∂Gn
M

∂σp
)2(δσp)

2 + (
∂Gn

M

∂Gn
E

)2(δGn
E)2 +

∑

i

(
∂Gn

M

∂fi
)2(δfi)

2. (3.12)

The errors are taken to be uncorrelated, so terms of the form
∂2Gn

M

∂a∂b
are not considered.

3.2.1 Systematic error due to uncertainty in Proton cross-
section

Consider the σp term in Eqn 3.12:

(δGn
M)p =

∂Gn
M

∂σp
δσp. (3.13)

We have:
∂Gn

M

∂σp
=

1

2

1

Gn
M

Rc
ǫ

τ
(3.14)

and the fractional error on Gn
M due to uncertainty in the proton reduced cross-section

is:
(δGn

M)p

Gn
M

=
1

2

1

G2
M,n

Rc
ǫ

τ
δσp (3.15)
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Figure 3.4: The difference in the proton reduced cross section σp, as determined from
the Bosted and Arrington parameterizations. The black curve shows σarrington

p −
σbosted

p . The red curve shows the value of δ used to estimate the systematic error.

To estimate this contribution, we assume: Gn
M ≈ µnGD, take Rc from the measure-

ment, and take δσp to be the difference in σp as determined by the Arrington [50] and
Bosted [51] parameterizations:

δσp = σarrington
p − σbosted

p (3.16)

The difference in these two parameterizations is shown by the black curve in Fig 3.4.
The parameterizations cross at Q2 ≈ 1.1 GeV/c, giving a value of δ = 0. To avoid
this unrealistic estimate of δ, a value of δ = −0.0006 is used in the region of the
crossing. This substitution is shown by the red curve in Fig 3.4.

Using the δσp values shown in Fig 3.4 in Eqn 3.15, the estimated systematic
uncertainty on Gn

M caused by the uncertainty in the proton reduced cross-section can
be determined. The relative size of the difference in the two parameterizations is
shown in Fig 3.5. The fractional uncertainty on Gn

M , expressed as a percentage, is
shown in Fig 3.6 for the 4.2 GeV data, and in Fig 3.7 for the 2.6 GeV data.

3.2.2 Systematic error due to uncertainty in Gn
E

Consider the Gn
E term in Eqn 3.12:

(δGn
M)E =

∂Gn
M

∂Gn
E

δGn
E (3.17)

We have:
∂Gn

M

∂Gn
E

=
Gn

E

Gn
M

ǫ

τ
(3.18)
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Figure 3.5: The relative difference in the proton reduced cross section σp, as deter-
mined from the Bosted and Arrington parameterizations, scaled to the Arrington
result.
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Figure 3.6: The systematic error on Gn
M due to uncertainties in the reduced proton

cross-section, expressed as a percent error, for the 4.2 GeV beam energy.
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Figure 3.7: The systematic error on Gn
M due to uncertainties in the reduced proton

cross-section, expressed as a percent error, for the 2.6 GeV beam energy.

and the fractional error on Gn
M due to uncertainty in the neutron electric form factor

is:
(δGn

M)E

Gn
M

=
Gn

E

G2
M,n

ǫ

τ
δGn

E (3.19)

To estimate this contribution, we assume Gn
M ≈ µNGD, and use the Galster

parametrization for Gn
E :

Gn
E ≈ µnτGD

1 + ητ
(3.20)

where η = 5.6. With this, we have:

δGn
M

Gn
M

=
ǫ

µn(1 + ητ)GD
δGn

E (3.21)

We take δGn
E to be the difference between the Galster parametrization and the

Lomon [9] model prediction:

δGn
E = Gn

E,galster − Gn
E,lomon (3.22)

The Galster and Lomon results are shown in Fig 3.8, along with the high-Q2 Gn
E

data of Lung [24] and Schiavilla and Sick [52]. The two parameterizations cross at
Q2 ≈ 0.7 GeV/c. This would give the unrealistic result of δGn

M = 0 at the crossing
point, and predict unreasonably small errors in the neighborhood of the crossing. To
avoid this, δGn

E in the region 0.6 ≤ Q2 ≤ 1.2 GeV/c was assigned a value of 0.0036,
equal to the value of δGn

E at Q2 = 1.2 GeV/c.
The estimated systematic uncertainty on Gn

M caused by uncertainty in Gn
E is

shown in Fig 3.9 for the 4.2 GeV data, and in Fig 3.10 for the 2.6 GeV data.
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Figure 3.8: The Galster parametrization of Gn
E , along with the Lomon [9] model

prediction and data from Lung [24] and Schiavilla [52].
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Figure 3.9: The estimated systematic error on Gn
M due to uncertainties in Gn

E, ex-
pressed as a percent error, for the 4.2 GeV data.
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Figure 3.10: The estimated systematic error on Gn
M due to uncertainties in Gn

E ,
expressed as a percent error, for the 2.6 GeV data.

3.2.3 Other sources of systematic error

Consider the Rc(~f) term in Eqn 3.12. The uncertainty in Gn
M due to the set of

parameters ~f is:

(δGn
M)2

R =
∑

i

(
∂Gn

M

∂fi

)2(δfi)
2 (3.23)

=
∑

i

(
∂Gn

M

∂Rc

∂Rc

∂fi

)2(δfi)
2 (3.24)

=
∑

i

(
σpǫ

2Gn
Mτ

∂Rc

∂fi

)2(δfi)
2 (3.25)

The functional dependence of Rc on some of the fi is not always clear, so we
approximate:

∂Rc

∂fi
≈ δRc

δfi
(3.26)

and obtain

(
δGn

M

Gn
M

)2 =
∑

i

(
σpǫ

2µ2
nG

2
Dτ

)2(δRc)
2
i (3.27)

where we have used the approximation Gn
M ≈ µnGD in the denominator on the right

hand side, and (δRc)i is the variation in Rc induced by varying parameter fi.

3.2.3.1 Accidental background in neutron detection

The presence of accidental background in the ep → eπ+(n) reaction was investigated
by re-analyzing the calibration data. The assumption was made that the accidental
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Figure 3.11: Accidental contribution to the neutron detection efficiency in the SC,
for the 4.2 GeV data. The horizontal lines are fits of a constant to the data

background was the same in each of the six sectors. On an event-by-event basis, the
reconstructed neutron 3-momentum was rotated around the beam-axis by a random
multiple of 60◦ into some sector other than the original sector. The rest of the
neutron detection efficiency analysis was carried out as usual. Any non-zero efficiency
measured by this procedure must be due to accidental background. It was found
that for the EC, no accidental efficiency was observed. For the SC, the accidental
efficiencies are shown in Fig 3.11 and Fig 3.12 for the 4.2 GeV and 2.6 GeV data
respectively.

The accidental efficiency was fitted with a constant

ηaccidental = 7.5 × 10−5 (3.28)

for the 2.6 GeV case, and

ηaccidental =

{

6.05 × 10−5 p < 1.6GeV/c
3.1 × 10−4 p > 1.6GeV/c

(3.29)

for the 4.2 GeV case. The accidental contribution to the efficiency is treated as a
systematic error, using

δRc = R0(
1

η
− 1

η − η′
) (3.30)

where R0 is the measured ratio with no neutron detection efficiency applied, η is the
normal neutron detection efficiency, and η′ is the estimated accidental efficiency given
above. All of these quantities have an understood Q2 dependence. This expression
for δRc is inserted into Eqn 3.27. The resulting systematic error is shown in Fig 3.13
for the 4.2 GeV data and Fig 3.14 for the 2.6 GeV data.
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Figure 3.12: Accidental contribution to the neutron detection efficiency in the SC,
for the 2.6 GeV data. The horizontal line is a fit of a constant to the data.
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Figure 3.13: Fractional systematic error on Gn
M due to accidental background in the

SC neutron detection efficiency, for the 4.2 GeV data.
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Figure 3.14: Fractional systematic error on Gn
M due to accidental background in the

SC neutron detection efficiency, for the 2.6 GeV data.

3.2.3.2 Missing mass cut in neutron detection efficiency measurement

The neutron missing mass peak observed in the ep → eπ+(n) reaction does not show
a Gaussian shape, but has a tail toward higher missing mass. The upper end of the
missing mass cut was set to avoid this region. The tail may be caused by detector
resolution effects (mismeasurement of the electron or π+ momentum will generate an
incorrect value for the missing mass), radiative effects, or the presence of misidentified
non-eπ+n states contaminating the signal. The GSIM Mote Carlo package was used to
investigate the presence of background channels contributing to the neutron missing
mass peak. The CELEG event generator was used, with all resonance channels active.
The gpp package was used for resolution smearing according to two prescriptions:
the default setting, and smearing the Distance Of Closest Approach (DOCA) in drift
chambers regions (R1,R2,R3) by a factor of (2.0,2.5,3.0) relative to the default values,
respectively. Previous analyses [53] have indicated that the default DOCA smearing
performed by gpp is inadequate and the values listed give a better agreement between
real data and simulation. The smeared GSIM events are then cooked and analyzed
using the same procedure as described for the real data. The results of the default
DOCA-smearing setting are shown in Fig 3.16 and the extra-smearing results are
shown in Fig 3.17.

Neither of the two DOCA settings seems to get the missing mass distribution
quite right. A detailed study of which GSIM/GPP settings optimize the simulation
performance for this reaction channel was not made. From the simulation results
presented, it appears that non-eπ+n channels do not contribute a significant back-
ground in the 0.9GeV ≤ MM ≤ 1.0GeV region. The skewing of the observed missing
mass spectrum appears to be due to detector resolution effects. An investigation was
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Figure 3.15: The observed missing mass distribution in the ep → eπ+(n) reaction.
The red lines show the cut used in the neutron detection efficiency analysis.
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Figure 3.16: Missing mass spectrum in the ep → eπ+(n) reaction, generated from
CELEG/GSIM, with default DOCA smearing.
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Figure 3.17: Missing mass spectrum in the ep → eπ+(n) reaction, generated from
CELEG/GSIM, with extra DOCA smearing factor (2.0,2.5,3.0) in (R1,R2,R3).

made of how far the upper limit of the missing mass cut can be pushed before the
measured efficiency begins to degrade due to the angle between the reconstructed
and real neutron 3-momentum becoming too large. The missing mass peak was sliced
into several sections, and the EC neutron detection efficiency was measured for each
section, using the 4.2 GeV data. The results are shown in Figs 3.18, 3.19, 3.20.

Consistent results were obtained for missing mass slices in the 0.9 to 0.96 range,
but beyond that, the performance began to degrade. To assess the effect of changes
in the location of the upper bound of the missing mass cut on Gn

M , Eqn 3.27 was used
with:

δRc = R0
1

2
(

1

η94
− 1

η96
) (3.31)

where η94 is the efficiency evaluated using the missing mass region 0.9 < MM < 0.94,
and η96 is the efficiency evaluated using the missing mass region 0.9 < MM < 0.96.
The cuts were chosen to bracket the cut value of 0.95 used in the analysis. The upper
value of 0.96 was chosen as the largest value of the cut at which sensible efficiency
results are obtained. Since the shape of the efficiency curve doesn’t vary much for
cut values below 0.95, a value of 0.94 was chosen for symmetry. The resulting error
estimates are shown in Fig 3.21 for the 4.2 GeV data and Fig 3.22 for the 2.6 GeV
data.

3.2.3.3 Distance cut in EC calibration neutron selection

In the neutron detection efficiency calibration, a cut was applied requiring that any
neutron from the ep → eπ+(n) reaction found in the EC satisfy the cut ∆R < 60
cm where ∆R is the distance between the observed hit location and the hit location
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Figure 3.18: The EC neutron detection efficiency in the 4.2 GeV data, for various
slices of the neutron missing mass peak. The black points show the standard cut,
0.9 < MM < 0.95.
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Figure 3.19: The EC neutron detection efficiency in the 4.2 GeV data, for various
slices of the neutron missing mass peak. The black points show the standard cut,
0.9 < MM < 0.95.
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Figure 3.20: The EC neutron detection efficiency in the 4.2 GeV data, for various
slices of the neutron missing mass peak. The black points show the standard cut,
0.9 < MM < 0.95.
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Figure 3.21: Estimated fractional systematic error on Gn
M due to the selection of the

upper edge of the missing mass cut in the ep → eπ+(n) reaction, for the 4.2 GeV EC
data.
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Figure 3.22: Estimated fractional systematic error on Gn
M due to the selection of the

upper edge of the missing mass cut in the ep → eπ+(n) reaction, for the 2.6 GeV EC
data.

expected from the neutron missing momentum. The accuracy of the position recon-
struction in the EC is estimated to be ≈ 0.5 degrees [54]. A value of 525 cm was
taken as a typical target to calorimeter distance, giving a position resolution of ≈ 4.5
cm. The fractional uncertainty in Gn

M due to this cut is estimated from Eqn 3.27
with:

δR =
1

2
R0(

1

η1
− 1

η2
) (3.32)

where η1 is the global EC efficiency evaluated with a ∆R < 55.5 cm cut, and η2 is the
global EC efficiency evaluated with a ∆R < 64.5 cm cut. The global efficiencies for
the two ∆R selections are shown in Fig 3.23 and 3.24 for the 4.2 GeV and 2.6 GeV
data respectively. The estimated systematic errors for the 4.2 and 2.6 GeV data are
shown in Fig 3.25 and 3.26.

3.2.3.4 EC neutron detection efficiency parametrization

The neutron detection efficiency in the EC is parametrized by a third order poly-
nomial at low neutron momentum, and a flat line at high momentum, as described
in Section 2.3.4.2. To investigate the sensitivity to the details of this fit, the fitting
procedure was modified by switching off the p3 term in the fitting function. The
standard fit applied to the global efficiency data is shown in Fig 3.27, along with the
modified fit. The systematic error is estimated by using Eqn 3.27 with:

δR = |Rstandard − Rmodified| (3.33)

The estimated systematic error due to the parametrization of the EC neutron
detection efficiency is shown in Fig 3.28 for the 4.2 GeV data. Based on the results
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Figure 3.23: Comparison of EC neutron detection efficiency, integrated over all sec-
tors, for two choices of the ∆R cut, from the 4.2 GeV data.
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Figure 3.24: Comparison of EC neutron detection efficiency, integrated over all sec-
tors, for two choices of the ∆R cut, from the 2.6 GeV data.
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Figure 3.25: Estimated fractional systematic error on Gn
M due to the choice of ∆R

cuts in EC neutron selection in the calibration reaction in the 4.2 GeV data.
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Figure 3.26: Estimated fractional systematic error on Gn
M due to the choice of ∆R

cuts in EC neutron selection in the calibration reaction in the 2.6 GeV data.
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Figure 3.27: The black curve shows the global EC neutron detection efficiency data,
fitted by the third order standard fit. The red curve shows the modified fit, obtained
by switching off the p3 term.

shown in the figure, a flat systematic uncertainty of 1.0% is assigned at all Q2 values
for the 4.2 GeV data. A similar procedure was carried out for the 2.6 GeV data. The
comparison of the standard and modified fits is shown in Fig 3.29. The systematic
error induced by varying the fit is shown in Fig 3.30. Based on this figure, a flat
systematic uncertainty of 1.5% was assigned at all values of Q2 for the 2.6 GeV data.

In the standard fitting procedure, the point at which the efficiency function
switches from a third-order polynomial to a constant is left as a parameter of the
fit. To test the sensitivity to the selection of the location of the switching point,
a series of fits was performed where the location of the switching point was fixed.
For reasonable values of the switching point (between 1.9 and 2.4 GeV/c in neutron
momentum), it was found that the value of the fit for momenta below the switching
point was essentially unchanged. For momenta above the switching point, variations
in efficiency of up to 2% of the standard value could be produced. As Gn

M varies with
the square root of the efficiency, a systematic error of 1% was assigned for Q2 values
greater than 2 (GeV/c)2. This error was treated as an independent error.

3.2.3.5 SC neutron detection efficiency parametrization

The neutron detection efficiency in the SC is parametrized by a third order polynomial
at low neutron momentum, and a flat line at higher momentum, as described in
Sec 2.3.5.1. To investigate the sensitivity to the details of this fit, the fitting procedure
was modified by switching off the p3 and p2 terms in the fit. The standard fit applied
to the global SC data is shown in Fig 3.31, and the modified fit is shown in Fig 3.32.
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Figure 3.28: The estimated fractional systematic error on Gn
M , due to the parametriza-

tion of the EC neutron detection efficiency.
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Figure 3.29: The black curve shows the 2.6 GeV global EC neutron detection efficiency
data, fitted by the third order standard fit. The red curve shows the modified fit,
obtained by switching off the p3 term.



CHAPTER 3. EXPERIMENT RESULTS 117

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

2
 (GeV/c)2Q

 x100n
MG

n
MGδ

Figure 3.30: The estimated fractional systematic error on Gn
M , due to the parametriza-

tion of the EC neutron detection efficiency.

The systematic error is estimated by using Eqn 3.27 using:

δR = |Rstandard − Rmodified| (3.34)

The estimated systematic error due to the parametrization of the SC neutron
detection efficiency is shown in Fig 3.33. Based on this plot, a flat systematic error of
2% was assigned at all values of Q2 for the both the 4.2 GeV data and the 2.6 GeV
data (results similar to Fig 3.33 were obtained for the 2.6 GeV data).

In the standard fitting procedure, the point at which the efficiency function
switches from a third-order polynomial to a constant is left as a parameter of the
fit. To test the sensitivity to the selection of the location of the switching point,
a series of fits was performed where the location of the switching point was fixed.
For reasonable values of the switching point (between 1.4 and 1.7 GeV/c in neutron
momentum), it was found that the value of the fit for momenta below the switching
point was essentially unchanged. For momenta above the switching point, variations
in efficiency of up to 3.5% of the standard value could be produced. As Gn

M varies
with the square root of the efficiency, a systematic error of 1.74% was assigned for
Q2 values greater than 1 (GeV/c)2. This error was treated as an independent error.

3.2.3.6 Proton detection efficiency

A comparison was made of the momentum-averaged proton detection efficiency on
SC paddles which were used in both the 4.2 GeV and 2.6 GeV analyses. The relative
difference in efficiency on each paddle is shown in Fig 3.34. From the scattered points
in Fig 3.34, a systematic uncertainty of 0.75% was assigned to the proton detection
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Figure 3.31: The global SC neutron detection efficiency data, fitted by the third order
standard fit.
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Figure 3.32: The global SC neutron detection efficiency data, fitted by the first order
modified fit.
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Figure 3.33: The estimated fractional systematic error on Gn
M , due to the parametriza-

tion of the SC neutron detection efficiency.

efficiency. The systematic error on Gn
M was determined from Eqn 3.27 using:

δRc = δηpR0 (3.35)

where δηp = 0.0075 and R0 is the measured ratio with no proton detection efficiency
applied. The systematic error is shown in Fig 3.35 for the 4.2 GeV data, and in
Fig 3.36 for the 2.6 GeV data.

3.2.3.7 Accidental background in quasi-elastic events

The presence of accidental background in the quasi-elastic channel was investigated
using the same technique applied in the neutron detection efficiency case. The ex-
pected neutron 3-momentum vector was rotated about the beam-axis by a multiple of
60◦, placing the expected hit location in a sector where the neutron ought not to have
been seen. Any neutral hits found after this rotation were attributed to accidental
background. The accidental rate was assumed to be the same in all sectors.

The result of the procedure was that no significant background was found. Any
neutrals found after the rotation were rejected by some combination of the cuts on
energy deposited, W 2 or θpq. Fig 3.37 shows the θpq spectrum for rotated quasi-elastic
events in the SC. Similar results were obtained for both beam energies, in the EC
and the SC.

3.2.3.8 Acceptance/Fermi loss correction

To test the sensitivity of the ratio measurement to the details of the Fermi loss
correction procedure, the shape of the nucleon momentum distribution was altered.
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Figure 3.34: The relative difference in the average proton detection efficiency in the
4.2 GeV and 2.6 GeV data sets.
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Figure 3.35: Estimated fractional systematic error on Gn
M due to uncertainties in the

proton efficiency correction in the 4.2 GeV data set.
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Figure 3.36: Estimated fractional systematic error on Gn
M due to uncertainties in the

proton efficiency correction in the 2.6 GeV data set.
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Figure 3.37: θpq spectrum for quasi-elastic e-n candidate events in the SC, after the
expected neutron momentum vector was rotated about the beam axis into an adjacent
sector.
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Figure 3.38: A comparison of the θpq distributions obtained from the deuteron model,
for the Hulthen (black line) and flat (red line) nucleon momentum distributions.

The most severe alteration that was tested replaced the Hulthen distribution shown
in Fig 2.46 with a flat distribution that assigned the nucleon an equal probability of
being found with any momentum between 0 and 600MeV/c. The θpq distributions
obtained from the Hulthen and flat nucleon momentum distributions are shown in
Fig 3.38. The shape of the θpq distribution observed for e-p quasi-elastics was seen
to be consistent with the event-generator prediction, so the comparison to the flat
distribution should be seen as an extreme case.

The shape of the loss fraction curves for neutrons and protons (the standard loss
fraction curves were shown in Fig 2.55 and 2.56) were found to have a significant
dependence on the shape of the nucleon momentum distribution used. A comparison
of the Hulthen and flat distribution results is shown in Fig 3.39 for SC neutrons in
the 4.2 GeV data, and in Fig 3.40 for protons in the 4.2 GeV data. The correction
to the ratio was found to have only a weak dependence on the shape of the nucleon
momentum distribution, as shown in Fig 3.41 for the 4.2 GeV SC neutron data.
The fractional difference in the correction factor obtained from the two different
momentum distributions is shown in Fig 3.42

Other variations, less pathological than the flat distribution, on the shape of the
nucleon momentum distribution were considered, generally giving variations in the
correction factor less extreme than those obtained from the flat distribution. Based
on these results, a systematic uncertainty of 0.25% is assigned to the correction factor
in those Q2 regions where the correction is less than 5%, and an uncertainty of 1.5%
is assigned when the correction is larger than 5%. Using

δR = δfR (3.36)

where δf = 0.005 or 0.015 depending on Q2, in Eqn 3.27 gives the systematic error
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Figure 3.39: A comparison of the neutron loss fraction obtained from the Hulthen
and flat distributions for SC neutrons in the 4.2 GeV data set.
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Figure 3.40: A comparison of the proton loss fraction obtained from the Hulthen and
flat distributions in the 4.2 GeV data set.
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Figure 3.41: A comparison of the ratio correction factor obtained from the Hulthen
and flat nucleon momentum distributions in the 4.2 GeV data.
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Figure 3.42: The fractional difference in the ratio correction factor obtained from the
Hulthen and flat nucleon momentum distributions.
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Figure 3.43: The estimated fractional systematic error on Gn
M due to uncertainties in

the acceptance/Fermi-motion correction, for the 4.2 GeV data.

estimates shown in Fig 3.43 and Fig 3.44.

3.2.3.9 θpq cut

The value of the θpq cut used in the quasi-elastic event selection was varied by 10%
in each direction. The systematic error was calculated using Eqn 3.27 with:

δR =
1

2
(R110 − R90) (3.37)

where R110 is the ratio evaluated with the θpq cut 10% larger, and R90 is the ratio
evaluated with the θpq cut 10% smaller. The systematic error estimates obtained from
this procedure are shown in Fig 3.45 and Fig 3.46 for the 4.2 GeV data, and Fig 3.47
and Fig 3.48 for the 2.6 GeV data.

3.2.3.10 Nuclear Corrections

As mentioned in section 2.7.6, a systematic error of 0.6% was assigned to the nuclear
correction factor at all values of Q2. The systematic error on Gn

M was calculated using
Eqn 3.27 with:

δR = 0.006R (3.38)

The fractional systematic error on Gn
M due to systematic uncertainties in the nuclear

correction is shown in Fig 3.49 for the 4.2 GeV data, and in Fig 3.50 for the 2.6 GeV
data.
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Figure 3.44: The estimated fractional systematic error on Gn
M due to uncertainties in

the acceptance/Fermi-motion correction, for the 2.6 GeV data.
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Figure 3.45: Estimated systematic error induced by variation in the θpq cut, for EC
neutrons in the 4.2 GeV data set.
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Figure 3.46: Estimated systematic error induced by variation in the θpq cut, for SC
neutrons in the 4.2 GeV data set.
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Figure 3.47: Estimated systematic error induced by variation in the θpq cut, for EC
neutrons in the 2.6 GeV data set.
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Figure 3.48: Estimated systematic error induced by variation in the θpq cut, for SC
neutrons in the 2.6 GeV data set.
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Figure 3.49: Estimated fractional systematic error induced in Gn
M by systematic error

on the nuclear correction, for the 4.2 GeV data set.
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Figure 3.50: Estimated fractional systematic error on Gn
M induced by systematic error

on the nuclear correction, for the 2.6 GeV data set.

3.2.3.11 Radiative Corrections

As mentioned in section 2.7.5, a systematic error of 0.17% was assigned to the radia-
tive correction factor at all values of Q2. The systematic error on Gn

M was calculated
using Eqn 3.27 with:

δR = 0.0017R (3.39)

The fractional systematic error on Gn
M due to systematic uncertainties in the radiative

correction is shown in Fig 3.51 for the 4.2 GeV data, and in Fig 3.52 for the 2.6 GeV
data.

3.2.3.12 Electron Resolution Effects on the Fermi Correction

We have studied the effect of the electron angular resolution as described in Section
2.7.4.3. Using the maximum value of the drift chamber electron angular resolution
(4 mrad), we randomly smeared the electron polar angle in the GSIM simulation
and then extracted the difference in the Fermi correction with this smearing turned
on and with the effect turned off. The results are shown in Figures 2.71-2.74. The
right-hand panel in each figure shows the fractional difference between the smeared
and standard Fermi corrections. The effect is small and consistent with zero within
the statistical uncertainties of the Monte Carlo simulation. We assign a systematic
uncertainty of 0.6% on the Fermi correction factor so

δR = 0.0060R (3.40)

which will be added in quadrature with the other uncertainties described in Section
3.2.3. The fractional systematic error on Gn

M due to systematic uncertainties in the
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Figure 3.51: Estimated systematic error induced by uncertainties in the radiative
correction, for the 4.2 GeV data set.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.01

0.02

0.03

0.04

0.05

2
 (GeV/c)2Q

 x100n
MG

n
MGδ

Figure 3.52: Estimated systematic error induced by uncertainties in the radiative
correction, for the 2.6 GeV data set.
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Figure 3.53: Estimated systematic error induced by the electron resolution for the
4.2 GeV data set.

electron resolution is shown in Fig 3.53 for the 4.2 GeV data, and in Fig 3.54 for the
2.6 GeV data.

3.2.4 Combined systematic error

The combined systematic error for each of the 4 measurements(EC and SC neutrons at
two different beam energies) was obtained by adding the applicable errors in quadra-
ture. The results are shown in Fig 3.55, 3.56, 3.57, and 3.58. The systematic errors
from the four individual measurements were combined into an averaged systematic
error for comparison with the weighted average Gn

M plot. To determine a value of the
average systematic error, the following quantity was calculated:

x̃ =

∑

j

xj+σs
j

σ2

j
∑

j
1
σ2

j

(3.41)

where σs
j is the systematic error on the jth histogram contributing in a given Q2 bin,

and the other terms are as defined in Sec 3.1. The average systematic error in each
Q2 bin was then taken to be:

σs
j = |x̃ − x| (3.42)

The weighted average systematic error, binned in Q2 is shown in Fig 3.59.
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Figure 3.54: Estimated systematic error induced by the electron resolution for the
2.6 GeV data set.
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Figure 3.55: Combined fractional systematic error for the 2.6 GeV beam energy, with
SC neutron detection.
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Figure 3.56: Combined fractional systematic error for the 2.6 GeV beam energy, with
EC neutron detection.
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Figure 3.57: Combined fractional systematic error for the 4.2 GeV beam energy, with
SC neutron detection.
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Figure 3.58: Combined fractional systematic error for the 4.2 GeV beam energy, with
EC neutron detection.
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Figure 3.59: Weighted average fractional systematic error.



Chapter 4

Conclusions

The magnetic form factor of the neutron Gn
M has been extracted from the ratio of

quasi-elastic e-n to e-p scattering from a deuterium target over a wide range of Q2 val-
ues. The use of the ratio technique resulted in the cancellation of many uncertainties.
Neutrons were detected in two different detector systems (the time-of-flight detec-
tor and the forward calorimeter) at two different beam energies. This combination of
multiple beam energies and multiple neutron detectors allowed four semi-independent
measurements of Gn

M to be performed. The two neutron detectors are subject to com-
pletely different systematic errors, and the protons sample different regions of the drift
chambers and time-of-flight detector at the two beam energies. The Q2 region covered
by any of the four measurements overlaps a portion of the Q2 region covered by any
of the other three measurements. The consistency of the measurements in the overlap
regions gives confidence that systematic errors are under control.

4.1 Comparison to previous measurements

A comparison of the weighted average determination of Gn
M (scaled to the dipole

parametrization) to previous measurements is shown in Figure 4.1. The weighted
average systematic error is shown as an error band, and a line showing Gn

M = µnGD

is drawn. A similar plot is shown in Fig 4.2. Fig 4.3 shows the statistical and
systematic errors added in quadrature. The data is seen to be in agreement with
previous measurements in the Q2 > 1 (GeV/c)2 region. In the Q2 < 1 (GeV/c)2

region, significant disagreement is seen with the Jourdan [55] measurement. The
region of disagreement is the only Q2 region covered by a single measurement (SC
neutrons at 2.6 GeV). The disagreement in this region provides a strong motivation
to make further efforts to complete the analysis of the reversed-field portion of the
e5 data, which was not performed as a part of this thesis. If successfully analyzed,
the reversed field data will provide a second SC-based measurement, an EC-based
measurement and possibly a Large-Angle Calorimeter based measurement of Gn

M in
the low-Q2 region.

The range of Q2 covered by this experiment, the number of points at which Gn
M

135



CHAPTER 4. CONCLUSIONS 136

2(GeV/c)2Q
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

D
G nµ/

Mn
G

0.4

0.6

0.8

1

1.2

1.4

1.6

CLAS Preliminary

Lung

Xu

Kubon

Bartel

Anklin

Arnold

Anderson

Systematic Uncertainty

Figure 4.1: The weighted average value of Gn
M , scaled to the dipole parametrization.

A selection of previous measurements is shown. The red points indicate the results
of this analysis. The weighted average systematic error is shown as a grey band. The
green line indicates Gn

M = µnGD

was measured, and the precision with which it was measured represent a substantial
improvement to the world data set. The standard dipole parametrization is seen to
give a good representation of the data for Q2 > 1 (GeV/c)2, although the data may
show Gn

M falling off faster than the dipole for Q2 > 3.5 (GeV/c)2. In the time elapsed
since the e5 data set was taken, the maximum beam energy at Jefferson Lab has
increased to 6 GeV. The e5 experiment used a proven technique, and the experiment
could be repeated at the higher beam energy to extend the Q2 coverage up to Q2 ≈ 7
(GeV/c)2. This would allow investigation of the possibility of deviations from the
dipole at higher Q2, and would extend our knowledge of Gn

M into a Q2 region where
no reliable measurement currently exists.

4.1.1 Comparison to theoretical predictions and fits

A comparison between the weighted average value of Gn
M and the various theoretical

predictions and fits discusses in Section 1.1.3 is shown in Fig 4.4. A close-up view
is shown in Fig 4.5. The models that do the best, Lomon and Kelley, are the ones
that are most tightly linked to previous data (the Kelley curve is really nothing more
than a fit with a ratio of polynomials). This is not unexpected, as (at least in the
Q2 > 1 (GeV/c)2 region), the e5 data is consistent with previous world data. The
Lomon results are seen to be superior to the Kelley fit. The IJL model appears to be
ruled out, as its prediction of rapid growth with Q2 is entirely inconsistent with the
data. This is surprising, given its success in the proton sector. The lattice prediction
fails completely, never predicting a value less than ≈35% different from the data.
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Figure 4.2: The weighted average value of Gn
M , scaled to the dipole parametrization.

A selection of previous measurements is shown. The red points indicate the results
of this analysis. The weighted average systematic error is shown as a grey band. The
green line indicates Gn

M = µnGD
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Figure 4.3: The weighted average value of Gn
M , scaled to the dipole parametrization.

A selection of previous measurements is shown. The error bars on the data points
are the quadrature sum of the statistical and systematic errors. The green line shows
Gn

M = µnGD

Hopefully, the lattice results will improve in the future as computer power increases.
The other two models do an adequate job in one Q2 region (low Q2 for Wagenbrunn,
high Q2 for Miller), but are unable to reproduce the data over the full Q2 range. The
Miller model is a hybrid which uses a pion cloud, implemented with a cloudy bag
model and a relativistic constituent quark model. The pion cloud is important at low
momentum transfer, while in the large momentum transfer region the prediction is
dominated by a relativistic constituent quark model. The comparison with the data
suggest the pion cloud portion of the model is not adequate, while the relativistic
constituent quark portion performs well as Q2 becomes large.
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Figure 4.4: A comparison of the e5 data and the theoretical predictions discussed in
Section 1.1.3. Only the statistical errors are shown.
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Table A.1: Measured values of
Gn

M

µnGD
, statistical and systematic errors for the 4.2

GeV beam energy with EC neutron detection. The Q2 values given are the central
value of each Q2 bin.

Q2 Gn
M

µnGD
Statistical Systematic

1.4393 1.0330 0.08922 0.01480
1.5909 1.0232 0.01747 0.01536
1.7424 1.0207 0.01236 0.01632
1.8939 1.0369 0.00955 0.01672
2.0454 0.9977 0.00892 0.01890
2.1969 0.9997 0.00936 0.01919
2.3484 1.0058 0.00992 0.01972
2.5 1.0130 0.01090 0.02103
2.6515 1.0340 0.01184 0.02057
2.8030 1.0024 0.01244 0.01965
2.9545 0.9906 0.01346 0.01972
3.1060 1.0023 0.01557 0.01910
3.2575 0.9756 0.01682 0.01830
3.4090 0.9832 0.01871 0.01878
3.5606 1.0073 0.02009 0.01647
3.7121 0.9623 0.02196 0.01687
3.8636 0.9703 0.02497 0.01620
4.0151 1.0169 0.02741 0.01622
4.1666 0.9170 0.02867 0.01509
4.3181 0.9078 0.03173 0.01510
4.4697 0.9941 0.04281 0.01481
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Table A.2: Measured values of
Gn

M

µnGD
, statistical and systematic errors for the 4.2

GeV beam energy with SC neutron detection. The Q2 values given are the central
value of each Q2 bin.

Q2 Gn
M

µnGD
Statistical Systematic

0.9848 0.8333 0.26057 0.02175
1.1363 1.0184 0.06736 0.02811
1.2878 1.0142 0.03161 0.02830
1.4393 1.0701 0.01953 0.02899
1.5909 1.0439 0.01900 0.02901
1.7424 1.0416 0.01964 0.02941
1.8939 1.0323 0.01954 0.03000
2.0454 1.0477 0.02005 0.02943
2.1969 1.003 0.02073 0.02955
2.3484 1.0006 0.02177 0.03011
2.5 1.0602 0.02380 0.03078
2.6515 1.0360 0.02579 0.03082
2.8030 0.9954 0.02753 0.03026
2.9545 1.0190 0.03008 0.03033
3.1060 0.9992 0.03519 0.02963
3.2575 0.9900 0.03869 0.02900
3.4090 1.0687 0.04336 0.02938
3.5606 0.9096 0.04627 0.02886
3.7121 1.0413 0.05226 0.02914
3.8636 1.0287 0.05935 0.02814
4.0151 1.0928 0.06469 0.02928
4.1666 0.9321 0.06916 0.03164
4.3181 0.9085 0.07746 0.02691
4.4697 0.9731 0.08910 0.02723
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Table A.3: Measured values of
Gn

M

µnGD
, statistical and systematic errors for the 2.6

GeV beam energy with EC neutron detection. The Q2 values given are the central
value of each Q2 bin.

Q2 Gn
M

µnGD
Statistical Systematic

0.9848 1.0290 0.02749 0.01812
1.1363 1.0259 0.01348 0.01834
1.2878 1.0371 0.00934 0.01802
1.4393 1.0110 0.00820 0.01640
1.5909 1.0017 0.00855 0.01665
1.7424 1.0065 0.00966 0.01690
1.8939 0.9859 0.01064 0.01778
2.0454 0.9824 0.01211 0.02087
2.1969 0.9763 0.01455 0.02069
2.3484 0.9857 0.02496 0.02080
2.5 1.0205 0.10604 0.02357

Table A.4: Measured values of
Gn

M

µnGD
, statistical and systematic errors for the 2.6

GeV beam energy with SC neutron detection. The Q2 values given are the central
value of each Q2 bin.

Q2 Gn
M

µnGD
Statistical Systematic

0.5303 0.9754 0.02251 0.02307
0.6818 0.9509 0.01049 0.02307
0.8333 0.9753 0.00855 0.02252
0.9848 0.9921 0.00836 0.02193
1.1363 0.9972 0.00976 0.02809
1.2878 1.0256 0.01210 0.02829
1.4393 1.0330 0.01432 0.02742
1.5909 1.0199 0.01635 0.02749
1.7424 0.9986 0.01854 0.02757
1.8939 1.0199 0.02039 0.02824
2.0454 1.0158 0.02326 0.02874
2.1969 0.9589 0.02801 0.02837
2.3484 0.9648 0.04780 0.02871
2.5 1.0154 0.18269 0.02856
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Table A.5: Measured values of
Gn

M

µnGD
, statistical and systematic errors from the

weighted average.

Q2 Gn
M

µnGD
Statistical Systematic

0.5303 0.9754 0.02251 0.02307
0.6818 0.9509 0.01049 0.02307
0.8333 0.9753 0.00855 0.02252
0.9848 0.9953 0.00800 0.02161
1.1363 1.0072 0.00785 0.02478
1.2878 1.0318 0.00720 0.02218
1.4393 1.0228 0.00667 0.02023
1.5909 1.0126 0.00653 0.01964
1.7424 1.0136 0.00662 0.01951
1.8939 1.0166 0.00635 0.01961
2.0454 1.0000 0.00649 0.02133
2.1969 0.9918 0.00712 0.02136
2.3484 1.0016 0.00836 0.02165
2.5 1.0211 0.00985 0.02274
2.6515 1.0344 0.01076 0.02235
2.8030 1.0012 0.01133 0.02144
2.9545 0.9954 0.01229 0.02148
3.1060 1.0018 0.01424 0.02082
3.2575 0.9779 0.01542 0.01999
3.4090 0.9966 0.01718 0.02044
3.5606 0.9918 0.01842 0.01843
3.7121 0.9742 0.02025 0.01870
3.8636 0.9791 0.02301 0.01799
4.0151 1.0284 0.02524 0.01819
4.1666 0.9192 0.02648 0.01750
4.3181 0.9079 0.02936 0.01679
4.4697 0.9902 0.03858 0.01712



Appendix B

EC neutron detection efficiency fits

B.1 2.6 GeV beam energy

This section contains plots of the neutron detection efficiency measured on each of
nine superpixels in each of six EC modules, as a function of neutron momentum
for the 2.6 GeV dataset. Each plot is labelled by a pair of numbers a,b where a is
the sector number of the EC modules and b is the superpixel number, as shown in
Fig 2.13. Two curves are superimposed on each figure. The red curve shows the
result of the maximum-likelihood fit performed on the whole-sector efficiency. The
black curve shows the results of scaling the whole-sector efficiency to the superpixel
measurements (see Eqn 2.31. Two numbers are indicated in black in each plot. The
upper number is the value of χ2/ndf obtained from comparing the measured efficiency
of each pixel to the sector fit. The lower black number is the value of χ2/ndf obtained
from comparing the measured efficiency to the scaled fit. The blue number is the value
of the scale factor, and the magenta number is the error on the scale factor.
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Figure B.1: Neutron detection efficiency by superpixel in sector 1, from the 2.6 GeV
data. The red line shows the results of the fit to the entire sector. The black line
shows the scaled sector fit.
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Figure B.2: Neutron detection efficiency by superpixel in sector 2, from the 2.6 GeV
data. The red line shows the results of the fit to the entire sector. The black line
shows the scaled sector fit.
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Figure B.3: Neutron detection efficiency by superpixel in sector 3, from the 2.6 GeV
data. The red line shows the results of the fit to the entire sector. The black line
shows the scaled sector fit.
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Figure B.4: Neutron detection efficiency by superpixel in sector 4, from the 2.6 GeV
data. The red line shows the results of the fit to the entire sector. The black line
shows the scaled sector fit.



APPENDIX B. EC NEUTRON DETECTION EFFICIENCY FITS 153

Figure B.5: Neutron detection efficiency by superpixel in sector 5, from the 2.6 GeV
data. The red line shows the results of the fit to the entire sector. The black line
shows the scaled sector fit.
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Figure B.6: Neutron detection efficiency by superpixel in sector 6, from the 2.6 GeV
data. The red line shows the results of the fit to the entire sector. The black line
shows the scaled sector fit.
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B.2 4.2 GeV beam energy

This section contains plots of the neutron detection efficiency measured on each of
nine superpixels in each of six EC modules, as a function of neutron momentum
for the 4.2 GeV dataset. Each plot is labelled by a pair of numbers a,b where a is
the sector number of the EC modules and b is the superpixel number, as shown in
Fig 2.13. Two curves are superimposed on each figure. The red curve shows the
result of the maximum-likelihood fit performed on the whole-sector efficiency. The
black curve shows the results of scaling the whole-sector efficiency to the superpixel
measurements (see Eqn 2.31. Two numbers are indicated in black in each plot. The
upper number is the value of χ2/ndf obtained from comparing the measured efficiency
of each pixel to the sector fit. The lower black number is the value of χ2/ndf obtained
from comparing the measured efficiency to the scaled fit. The blue number is the value
of the scale factor, and the magenta number is the error on the scale factor.
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Figure B.7: Neutron detection efficiency by superpixel in sector 1, from the 4.2 GeV
data. The red line shows the results of the fit to the entire sector. The black line
shows the scaled sector fit.
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Figure B.8: Neutron detection efficiency by superpixel in sector 2, from the 4.2 GeV
data. The red line shows the results of the fit to the entire sector. The black line
shows the scaled sector fit.
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Figure B.9: Neutron detection efficiency by superpixel in sector 3, from the 4.2 GeV
data. The red line shows the results of the fit to the entire sector. The black line
shows the scaled sector fit.
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Figure B.10: Neutron detection efficiency by superpixel in sector 4, from the 4.2 GeV
data. The red line shows the results of the fit to the entire sector. The black line
shows the scaled sector fit.
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Figure B.11: Neutron detection efficiency by superpixel in sector 5, from the 4.2 GeV
data. The red line shows the results of the fit to the entire sector. The black line
shows the scaled sector fit.
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Figure B.12: Neutron detection efficiency by superpixel in sector 6, from the 4.2 GeV
data. The red line shows the results of the fit to the entire sector. The black line
shows the scaled sector fit.



Appendix C

SC neutron detection efficiency fits

C.1 2.6 GeV beam energy

This section contains plots of the neutron detection efficiency measured on each of
the paddles in each of the six sectors of the SC system, as a function of neutron
momentum for the 2.6 GeV data set. Each plot is labelled by a pair of numbers a,b,
where a is the sector number and b is the SC paddle number. Each plot shows a
second pair of numbers. The upper number is the value of χ2/ndf for the comparison
of the sector-based fit to the efficiency measured on the paddle. The lower number
is the value of χ2/ndf for the comparison of the scaled, paddle-specific fit to the
efficiency measured on the paddle. Two curves are superimposed on each figure. The
blue number is the value of the scale factor, and the magenta number is the error
on the scale factor. The red curve shows the result of the fit to the whole-sector
efficiency. The black curve shows the results of scaling the whole-sector efficiency to
the paddle measurements.
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Figure C.1: Neutron detection efficiency by paddle in the SC, from the 2.6 GeV data.
The red line shows the results of the fit to the entire sector. The black line shows the
results of the scaled sector fits.
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Figure C.2: Neutron detection efficiency by paddle in the SC, from the 2.6 GeV data.
The red line shows the results of the fit to the entire sector. The black line shows the
results of the scaled sector fits.
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Figure C.3: Neutron detection efficiency by paddle in the SC, from the 2.6 GeV data.
The red line shows the results of the fit to the entire sector. The black line shows the
results of the scaled sector fits.
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Figure C.4: Neutron detection efficiency by paddle in the SC, from the 2.6 GeV data.
The red line shows the results of the fit to the entire sector. The black line shows the
results of the scaled sector fits.
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Figure C.5: Neutron detection efficiency by paddle in the SC, from the 2.6 GeV data.
The red line shows the results of the fit to the entire sector. The black line shows the
results of the scaled sector fits.
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Figure C.6: Neutron detection efficiency by paddle in the SC, from the 2.6 GeV data.
The red line shows the results of the fit to the entire sector. The black line shows the
results of the scaled sector fits.
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Figure C.7: Neutron detection efficiency by paddle in the SC, from the 2.6 GeV data.
The red line shows the results of the fit to the entire sector. The black line shows the
results of the scaled sector fits.
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Figure C.8: Neutron detection efficiency by paddle in the SC, from the 2.6 GeV data.
The red line shows the results of the fit to the entire sector. The black line shows the
results of the scaled sector fits.
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Figure C.9: Neutron detection efficiency by paddle in the SC, from the 2.6 GeV data.
The red line shows the results of the fit to the entire sector. The black line shows the
results of the scaled sector fits.
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Figure C.10: Neutron detection efficiency by paddle in the SC, from the 2.6 GeV
data. The red line shows the results of the fit to the entire sector. The black line
shows the results of the scaled sector fits.
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C.2 4.2 GeV beam energy

This section contains plots of the neutron detection efficiency measured on each of
the paddles in each of the six sectors of the SC system, as a function of neutron
momentum for the 4.2 GeV data set. Each plot is labelled by a pair of numbers a,b,
where a is the sector number and b is the SC paddle number. Each plot shows a second
pair of numbers. The upper number is the value of χ2/ndf for the comparison of the
sector-based fit to the efficiency measured on the paddle. The lower number is the
value of χ2/ndf for the comparison of the scaled, paddle-specific fit to the efficiency
measured on the paddle. The blue number is the value of the scale factor, and the
magenta number is the error on the scale factor. Two curves are superimposed on
each figure. The red curve shows the result of the fit to the whole-sector efficiency.
The black curve shows the results of scaling the whole-sector efficiency to the paddle
measurements.
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Figure C.11: Neutron detection efficiency by paddle in the SC, from the 4.2 GeV
data. The red line shows the results of the fit to the entire sector. The black line
shows the results of the scaled sector fits.
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Figure C.12: Neutron detection efficiency by paddle in the SC, from the 4.2 GeV
data. The red line shows the results of the fit to the entire sector. The black line
shows the results of the scaled sector fits.
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Figure C.13: Neutron detection efficiency by paddle in the SC, from the 4.2 GeV
data. The red line shows the results of the fit to the entire sector. The black line
shows the results of the scaled sector fits.
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Figure C.14: Neutron detection efficiency by paddle in the SC, from the 4.2 GeV
data. The red line shows the results of the fit to the entire sector. The black line
shows the results of the scaled sector fits.
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Figure C.15: Neutron detection efficiency by paddle in the SC, from the 4.2 GeV
data. The red line shows the results of the fit to the entire sector. The black line
shows the results of the scaled sector fits.
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Figure C.16: Neutron detection efficiency by paddle in the SC, from the 4.2 GeV
data. The red line shows the results of the fit to the entire sector. The black line
shows the results of the scaled sector fits.
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Figure C.17: Neutron detection efficiency by paddle in the SC, from the 4.2 GeV
data. The red line shows the results of the fit to the entire sector. The black line
shows the results of the scaled sector fits.
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Figure C.18: Neutron detection efficiency by paddle in the SC, from the 4.2 GeV
data. The red line shows the results of the fit to the entire sector. The black line
shows the results of the scaled sector fits.



APPENDIX C. SC NEUTRON DETECTION EFFICIENCY FITS 182

Figure C.19: Neutron detection efficiency by paddle in the SC, from the 4.2 GeV
data. The red line shows the results of the fit to the entire sector. The black line
shows the results of the scaled sector fits.
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Figure C.20: Neutron detection efficiency by paddle in the SC, from the 4.2 GeV
data. The red line shows the results of the fit to the entire sector. The black line
shows the results of the scaled sector fits.



Appendix D

Kinematics of quasi-elastic
scattering

There are two frames of interest for the analysis of quasi-elastic scattering: the lab
frame, in which both the electron and the nucleon are moving, and the rest frame, in
which the nucleon is stationary. Scattering in the rest frame is illustrated in Fig D.1.

In the rest frame, the particles have 4-momenta:

P1 = E(1, P̂1) (D.1)

P2 = (MN , 0) (D.2)

P3 = E ′(1, P̂3) (D.3)

P4 = (E ′

N , ~P4) (D.4)

where P1, P3 are the initial and final electron 4-momenta and P2, P4 are the initial
and final nucleon 4-momenta.

Scattering in the lab frame is illustrated in Fig D.2.
In the lab frame, the particles have 4-momenta:

P ∗

1 = E∗(1, P̂ ∗

1 ) (D.5)

P ∗

2 = (E∗

N , ~pf) (D.6)

P ∗

3 = E∗
′

(1, P̂ ∗
3 ) (D.7)

P ∗

4 = (E∗′

N , ~P ∗

4 ) (D.8)

where the ∗ denotes a lab frame quantity, pf is the magnitude of the nucleon Fermi
momentum, θf is the angle between the direction of the Fermi momentum and the

incident electron, E∗ is the incident electron beam energy and E∗

N =
√

M2
N + p2

f .

The relationship between the starred and unstarred quantities can be determined
by considering invariant scalar products of 4-vectors. First, P1 · P2:

P1 · P2 = P ∗

1 · P ∗

2

EMN = E∗E∗

N − E∗pf cos θf
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which yields the relation between the incident electron energy in the rest frame and
the incident electron energy in the lab frame:

E =
E∗

MN

(E∗

N − pf cos θf ) (D.9)

Next, consider P1 · P3:

P1 · P3 = P ∗

1 · P ∗

3

EE ′ − EE ′ cos θ3 = E∗E∗
′ − E∗E∗

′

cos θ∗3

which after rearrangement gives a relationship between the electron scattering angles
in the two frames:

1 − cos θ3

1 − cos θ∗3
=

E∗E∗
′

EE ′
(D.10)

Lastly, consider P2 · P3:

P2 · P3 = P ∗

2 · P ∗

3

E ′Mn = E∗

NE∗
′ − E∗

′

pf cos(θ∗3 − θf )

This yields a relationship between the scattered electron energies in the two frames:

E∗
′

=
E ′MN

E∗

N − pf cos(θ∗3 − θf )
(D.11)

Combining Eqns D.10 and D.11 gives:

1 − cos θ3

1 − cos θ∗3
=

(

E∗

EE ′

) (

E ′MN

E∗

N − pf cos(θ∗3 − θf )

)

(D.12)

which can be solved for θ3:

θ3 = cos−1

{

1 −
(

MNE∗

E

) (

1 − cos θ∗3
E∗

N − pf cos(θ∗3 − θf )

)}

(D.13)

This equation can be solved numerically to extract θ∗3 given θ3.
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P1

P3

P4

θ3

θ4

Figure D.1: Elastic scattering in the nucleon rest frame.

P ∗

1

P ∗

3

P ∗

4P ∗

2

θ∗3

θ∗4θf

Figure D.2: Elastic scattering in the lab frame.



Appendix E

Response to Analysis Review
Committee 1

A High Precision Measurement of the Neutron
Magnetic Form Factor Using the CLAS Detector

Analysis Review Committee Response I

April 6, 2007

Jeff Lachniet, Will Brooks, Jerry Gilfoyle, Brian Quinn, and Mike Vineyard

In order to better understand where we are in addressing the questions and com-
ments of the review committee, the following key is being used:

- Question/comment has been adequately addressed. (24)

- More work is needed to address the question/comment. (0)

Analysis review committee members: Michail Osipenko (chair), Michel Guidal,
and Henry Juengst.

We have read with great interest your note and we acknowledge thorough job done
by the authors and shape of the written document. Also the presented results seem
to us pretty robust and unlikely will need many changes. However, committee needs
more technical details of the analysis to make it’s judgement and has some (so far
minor) concerns. Our requests and concerns are listed below.

With best regards,
Mikhail, Michel and Henry.

1) Your analysis is based on ”measured efficiency” while most of CLAS data
are obtained with GSIM simulations. Neutron detection efficiency was studied also
with GSIM (see CLAS-Note-2001-006). And off course the proton detection efficiency
can be extracted with GSIM. Why don’t you compare your extracted neutron/proton
efficiency with GSIM? Possibly you can increase your statistics considering different
acceptance area for the proton and neutron detection?

187
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Because simulations are always an approximation to reality, it is always better
to have an accurate direct measurement of efficiency than it is to simulate the effi-
ciency. In the best case, a simulation can be used as a cross-check on the method
of measuring the efficiency. CLAS efficiencies for charged particle reconstruction are
usually simulated because there is often no direct way to measure the efficiency over
the same phase space as in the reaction of interest. In the case of our measurement,
the reaction is elastic scattering for the efficiency measurement and quasielastic scat-
tering for the reaction of interest; these have a very similar phase space. Even if the
proton momentum is Fermi-smeared, its trajectory and momentum are similar to that
of the unmeasured proton. Since the efficiency is tabulated in terms of which TOF
paddle is struck, the average efficiency for the Fermi-smeared protons is automatically
calculated correctly.

In the case of neutrons, the accurate simulation of efficiencies is a notoriously dif-
ficult technical problem. As an example, the Kent State University neutron detection
efficiency code required many years to develop and it was tested against many mea-
surements with different scintillator types and geometries. The conclusion of these
efforts is a code that has a systematic accuracy that is at best at the 5% level when
used with simple geometries and well-characterized scintillators. The ingredients
that make this technically difficult include: (1) There are dozens of relevant neutron
cross-sections that contribute, all known with varying uncertainties, and some very
difficult to measure, such as the breakup of carbon into three alpha particles, which
is a non-trivial part of the neutron cross section. Thus accurate simulations require
some parameterization and ’tuning’ of these cross sections, always comparing to ac-
curate measurements of the neutron detection efficiency. (2) The light ’quenching’
of the particular scintillator to heavily ionizing particles such as alpha particles must
be taken into account. Heavily ionizing particles do not induce as much light in
scintillators as less ionizing particles which have the same energy deposit. (3) The
geometries and material compositions of the detectors must be known accurately. (4)
The attenuation of light in the scintillator must be known accurately, as must the
electron-equivalent energy deposit threshold. In the ideal case this threshold would
be calibrated for each individual scintillator element.

While it is true that GSIM simulations have been performed for neutrons (in addi-
tion to the CLAS Note referenced, one can look at Fig. 10 of the proposal for 94-017 at
http://www.jlab.org/exp prog /proposals/94/PR94-017.pdf), it cannot be expected
that a simulation can produce as accurate of a result as a clean direct measurement.
Following the numbered points in the paragraph above, (1) the hadronic package used
by GSIM is known to be less accurate at few GeV energies and below, and there is
no fine-tuning of these cross sections to reproduce neutron detection efficiency, (2)
while the quenching parameterizations for known scintillators are published in the
literature with reasonable accuracy, they have never been implemented in GSIM, (3)
the lead thickness and scintillator thickness for individual pieces vary by +/- 5% in
the forward calorimeters, but these variations are not included in GSIM, and there
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is a significant amount of material (Teflon and paper filling) which is not present in
the simulation, and (4) while the attenuation of light is accounted for on a strip-by-
strip basis in GSIM, since the scintillators are read out in groups of 5 or 8 into one
phototube, it is not possible to calibrate the energy deposit threshold on individual
strips; averages can be calibrated using MIP, but these averages are not accurate for
neutrons which do not sample the strips with the same relative probabilities; for a
given stack of scintillators read out by one phototube, the neutrons may interact any-
where within the stack, which will usually sample a subset of the scintillator strips.
One can try to work with averages, but the uncertainties on such an approach would
be difficult to estimate. Even a comparison of MIP response to GSIM calculations,
which can be seen in the EC paper (http://www.jlab.org/Hall-B/pubs/ec nim.ps or
NIM A 460, 239 (2001)) shows significant discrepancies, which is an indication of the
level of understanding of the absolute energy response of the scintillator stacks.

Concerning the geometric acceptance of the proton vs. the neutron, the philosophy
is to make the neutron and proton acceptance *identical*. The only practical way
to do this is to define the geometrical acceptance of both particles by the *electron*
kinematics. In practice this is not possible to do perfectly because of experimental
resolution. Therefore, what is done in practice is to calculate the angle of the proton
or neutron with respect to the angle between the nucleon and the virtual photon,
and to make a loose cut on this angular distribution. While the proton and neutron
resolutions are different in the region of the cut, in this region the distribution is
approximately linear, so that no residual bias is introduced by making the cut.

2) The analysis is based on comparison of data from two target cells, however
a description of such complex target is missing making difficult to understand if
efficiency/acceptance/corrections apply to both cells exactly in the same manner.

This is a valid point. We will update the analysis document with a schematic
drawing of the target as seen in Fig. E.1 and a brief description. The cells for
the hydrogen and deuterium were essentially identical geometrically. The two cells
were maintained at slightly different temperatures as appropriate to staying in the
saturated phase of H2 and D2 separately, without risking the freezing of either cell.
This was accomplished by constructing a new heat exchanger that had independent
chambers and heaters for both liquids. The practical difference between the two
cells was that the upstream cell, which contained deuterium, was surrounded by a
thin vacuum space and this region was surrounded by aluminum with a thickness of
0.0015 in, a thin layer of liquid hydrogen, and a final layer of aluminum with thickness
0.0015 in. The details of the target can be seen in Fig. E.1. Outside of this were 3
layers of superinsulation that was common to both cells.

3) In sec. 2.3.3 there is no mention of momentum corrections (which appear
later however). The question is whether those were used to select expected neutrons?
Can you give the centroid of the missing neutron peak in Fig. 2.8?

The momentum corrections were derived from elastic scattering data and were
only applied to the elastic and quasi-elastic data. The method used is not easily
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Figure E.1: A drawing of the E5 dual-cell cryotarget.

extended to inelastic reactions, and was not used in the ep→e′π+(n) reaction. A plot
of the missing mass distribution fitted with a gaussian is shown in Fig. E.2. The
gaussian fit has a centroid of 0.937 GeV/c2.

Figure E.2: Missing mass spectrum for the ep→e′π+(n) reaction. The neutron peak
is fitted with a gaussian.
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4) If momentum correction are used in the efficiency study then how these
corrections defined for elastic scattering can be applied to a broader kinematics (π+n
reaction)?

Momentum corrections were not applied for the calibration reaction studies. They
were not found to be necessary for the purpose of cleanly tagging events in which a
neutron was produced. As shown in figure 3.15 of the analysis note, a conservative
cut on missing mass was used to select only events with missing mass between 0.900
and 0.950 GeV/c2. The increase in calibration-event statistics which might be gained
by relaxing this cut would be modest and did not justify the effort of attempting to
improve the momentum resolution. Furthermore it is not at all clear that momentum
aberrations were a dominant contribution to the asymmetric tail which was cut by
this choice of missing mass range.

A slight shift in the position of the missing-mass peak resulted from the fact that
no momentum corrections were applied. This, in itself, was of no consequence since
the neutron peak could be clearly identified. The chief concern was that the selected
events be free of contamination from two-pion production events which might cause
the neutron efficiency to be underestimated. Figure 3.17 of the analysis note shows
the result of a simulation with CELEG events being fed into GSIM with the gpp
package used to simulate effects of finite resolution. As described in the note, the
smearing of closest-approach positions in the drift chambers was increased by factors
which have been found empirically to improve the match to observed data. While the
simulation seems to overestimate the width of the missing mass distribution, it gives
no indication of leakage of undesired events into the range of the missing-mass cut.

Further tests of purity of the selection of calibration events are shown in figures
3.18, 3.19 and 3.20 of the analysis note where estimated neutron efficiencies are shown
as they would be calculated by using various strips in missing mass and treating
the selected events as if they were single-pion production events. Clear evidence of
contamination (resulting in underestimation of neutron efficiency) is seen only when
events are chosen with a missing mass over 0.980 GeV/c2, with a possible indication
of a small degree of contamination for the strip chosen with missing mass in the range
of 0.960 to 0.980 GeV/c2. This provides independent support that the upper limit of
0.950 GeV/c2, which was used, safely eliminates the undesired events.

There is little concern that the small aberration due to lack of momentum cor-
rections would cause the loss of real neutrons due to a distortion of their predicted
momenta. The tolerance of 60 cm about the expected position for the EC or a full
paddle width for the SC should be large enough to allow the neutron to be correctly
associated with the slightly distorted momentum vector.

5) In Fig. 2.9 the ∆R peak is shifted from zero: could you explain for how
much and why?

This is simply a geometric effect. ∆R is the radial distance from the predicted hit
position to the observed hit position in the calorimeter. The area available for hits
to fall within a distance ∆R vanishes quadratically as ∆R goes to zero and so the



APPENDIX E. RESPONSE TO ANALYSIS REVIEW COMMITTEE 1 192

probability of finding a hit within distance ∆R must vanish as ∆R goes to zero.
If ∆x and ∆y are two orthogonal transverse displacements of the observed hit

from the predicted position then ∆R is simply the quadrature sum,

∆R =
√

(∆x2 + ∆y2).

If, for example, ∆x and ∆y were each Gaussianly distributed with width σ it is easy
to show that the expected distribution of ∆R would be:

P (∆R) =
∆R

σ2
e−(∆R)2/2σ2

This agrees with the observed linear rise from zero probability at ∆R = 0. In this
simple case, the peak of the distribution is at ∆R = σ. The observed shape has not
been fitted, but is in qualitative agreement with this simple prediction.

6) Would it help to exploit the hit timing information in EC in the neutron
reconstruction and neutron/photon separation? Can we see beta vs. p plot of the
neutrons in EC?

A plot of β vs. p for identified neutrons can be seen in the EC paper referenced
in the answer to question 1 above. It is important not to introduce a momentum
bias into the neutron detection efficiency. The calculation of β and its resolution are
strongly momentum-dependent. Making a cut on this quantity in both the calibration
reaction and the quasielastic reaction is possible in principle, but we feel that it would
not be worth the effort and risk. The primary photon rejection technique that we
use is to make a loose cut on the direction of the neutral hit relative to its direction
as predicted from quasi-elastic kinematics. The residual background, which includes
photons, can be estimated by the background under the missing mass, and it is seen
in Fig. E.2 to be small.

7) Fig. 2.33 (2.37) does not give an impression that neutrons can be clearly
separated (from photons?) by Edep > 5 MeV cut. How the remaining background (if
any?) is removed? By angular cuts? Can you add plots of angular reconstruction
quality (theta\ expected-theta\ measured and phi\ expected-phi\ measured) and their
correlations with Edep?

Certainly not all photons can be separated from neutrons by a cut on energy
deposited. The cut which distinguishes the two is the time-of-flight cut, given by
equation 2.36 and shown in figure 2.16. The cut on Edep > 5 MeV is used to eliminate
a large flux of very low energy photons and to select events for which time resolution
is adequate to allow a meaningful cut on time-of-flight to be applied.

Many of the low energy-deposited events are expected to result from photons
(appearing as a broadly spread background in Figure 2.16). Some of the events are
expected to result from neutrons which happen to deposit relatively little energy in
the scintillator. These may result in some enhancement of the black curve over the
green one near ∆t = 0 in that figure. The time resolution is degraded for such low



APPENDIX E. RESPONSE TO ANALYSIS REVIEW COMMITTEE 1 193

energy-deposited and the background is seen to be large. It is therefore not possible
to distinguish those low energy-deposited neutrons from the photons.

8) In section 2.3.4.1 you mention the cut on EC deposited energy for neutrons:
30 MeV, but there is not any plot showing this distribution. Justify the cut and show
correlation plot with ∆R.

Actually the cut is not at 30 MeV, but at 15 MeVee. (A typo in the note gives
the incorrect units of 15 MeV instead of 15 MeVee).

This is not a very significant cut, removing only a very small fraction of neutral
candidate events which have anomalously low energy-deposited. Fig. E.3 shows the
distribution of energy-deposited (in MeVee) by neutral hits (in the sector where a
neutron is expected). The second plot is the same thing, but expanding only the
region from 0 to 100 MeVee. It can be seen that the 15 MeVee cut eliminates a very
small fraction of the events. (Since such hits are eliminated in the calibration as well,
they are not expected to directly contribute any systematic error.)

Figure E.3: Distributions of energy-deposited (in MeVee) by neutral hits in the sector
where a neutron is expected.

The concern that the cut might be too low, allowing contamination by accidental
background is addressed by a separate study. A search was made for neutral hits
in the wrong sector, different from that in which the neutron was actually expected.
Once all neutron-selection cuts were applied, no background events survived in the
EC.

Section 2.6.3 fails to mention that this cut was also applied in selecting quasi-
elastic neutrons from the deuterium target, as was the time-of-flight cut for neutrons
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detected in the SC. Text will be added to indicate that these cuts are applied to the
measured neutrons as they are applied to calibration events.

9) EC neutron efficiency is obtained separately for each ”superpixel” (12 scin-
tillator strips) while in SC for each separate scintillator paddle. Can the averaging
over 12 strips in EC wash out single paddle problems? How did you check this?

We formed EC superpixels to compensate for limited statistics in the smaller and
much more numerous EC pixels (there are about 1296 triangular pixels on the face
of each calorimeter). If there is a problem with a single paddle in a superpixel, it will
effect the scale factor for that superpixel (see Section 2.3.4.2 of the analysis note) and
be incorporated into the neutron detection efficiency for that part of the EC. To test
this idea we developed a method for identifying single-paddle problems in the EC and
then studying their effect on the Gn

M measurement.
To identify problems with individual paddles in the EC, we examined the distribu-

tion of ’single-pixel’ π+’s in the EC. Positive pions tend to be minimum ionizing and
are used to tag the neutrons in the neutron detection efficiency measurement. If this
pion efficiency is uniform across the EC, then we expect the efficiency of the neutrons
will also be uniform. The large number of pions will give us abundant statistics. We
focused on single-pixel events simply to make it easier to detect paddles that may be
malfunctioning.

Figures E.4-E.6 show the U, V, and W distributions for positive pions at 2.6 GeV
with reversed torus polarity. The reversed polarity data are better for this comparison
because the π+’s strike the entire face of the EC. For normal torus polarity settings
portions of the EC see very few π+’s. We required that all events have no more
than one strip firing for each EC view (U, V, or W) to select single-pixel events
and minimum ionizing particles. As a result all of the events in Figs. E.4-E.6 are
single-pixel EC events which we bin in EC strip number for each view.

Figures E.4-E.6 show the count rates for each EC strip in each view and broken
down by sector. Some significant variations from sector to sector and strip to strip can
be seen. For example, sector 2 in Figure E.6 (W view) shows ’holes’ (low-efficiency
components) among strips in the range 25-30. To test the effect of these inefficiencies
on our results, we repeated the extraction of Gn

M from the 4.2-GeV data excluding
sector 2 from the analysis. The results are shown in Figure E.7. Leaving sector 2 out
has little effect on Gn

M .
For completeness, we did the same test on all of the sectors. Figure E.8 shows

Gn
M extracted with a different sector excluded in each panel. Sector 1 is excluded in

the upper-left panel, sector 2 in the upper right, sector 3 in the middle left, sector 4
in the middle right, sector 5 in the lower left, and sector 6 in the lower right. Again,
there is no significant effect on the measurement.

To make a more global test of the effect of inefficiencies on Gn
M we excluded all

super-pixels whose scale factor varied by more than 10% from the average for the
sector as a whole (i.e. 0.9 ¡ α ¡ 1.1). The results are shown in Figure E.9. Again there
is little effect on Gn

M . We saw similar results when we increased and decreased the
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Figure E.4: Distribution of counts in the U-view of the EC for single-pixel π+ events
for the 2.6-GeV, reversed torus polarity data.

Figure E.5: Distribution of counts in the V-view of the EC for single-pixel π+ events
for the 2.6-GeV, reversed torus polarity data.
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Figure E.6: Distribution of counts in the W-view of the EC for single-pixel π+ events
for the 2.6-GeV, reversed torus polarity data.

Figure E.7: Neutron magnetic form factor extracted with sector 2 excluded (red
points) compared with Gn

M extracted using all sectors (black points).
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Figure E.8: Neutron magnetic form factor as a function of Q2 with different sectors
excluded from the measurements.

allowed range of the scale factor.

Figure E.9: Neutron magnetic form factor extracted without super-pixels whose ef-
ficiency varied by more than 10% from the value for the entire sector (red points)
compared with the measurement using all pixels (black points).

We have developed a method to check for inefficiencies and noise in single paddles
in the EC. We have examined the effect of excluding ’problem’ paddles and even whole
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sectors from the analysis and found that it has no effect on the Gn
M measurement.

We also note that inefficiencies in single paddles are folded into the scale factor for
each superpixel in the neutron efficiency measurement.

10) Neutron detection efficiency evaluation is based on the π+ measurement,
possible π+ decay inside of CLAS DC can result in an uncertainty in the momentum
reconstruction and therefore impact neutron efficiency calculation. Can you give an
estimate of possible effect e.g. with GSIM simulations?

We have performed GSIM simulations to investigate the effect of π+ decay on
the measurement of the neutron detection efficiency. Approximately 3 million events
were generated with CELEG and run through GSIM with and without π+ decay
turned on. The simulated data were then processed with GPP and analyzed in the
same way as the real data to determine the neutron detection efficiency. The neutron
detection efficiencies in the EC determined with (red up-side-down triangles) and
without (blue triangles) π+ decay turned on are compared in Fig. E.10. It is clear
from this figure that the possible decay of π+s in the CLAS detector has little effect
on the determination of the neutron detection efficiency.
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Figure E.10: A comparison of the neutron detection efficiency in the EC determined
from GSIM simulations with (red up-side-down triangles) and without (blue triangles)
π+ decay turned on.

11) Reconstructing neutron hits in EC and SC you apply some ”fiducial cuts”
(e.g. cut borders). While it is clear why you need these cuts we don’t find appropriate
justification of them in the note. Could you show that these cut are sufficient to avoid
released energy losses?

The cut used in the EC efficiency analysis was 30 cm. This is the width of 3 strips.
The sensitivity to this cut was investigated by changing the cut to 2 strip widths,
and four strip widths. The change in the neutron detection efficiency is shown in Fig.
E.11.
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The effect of this choice on Gn
M was investigated by redoing the 4 GeV EC Gn

M

extraction, using the 3 different efficiency curves shown in Fig. E.11. Fig. E.12
shows the difference between Gn

M(EC FID=20cm) and Gn
M(EC FID=40cm), divided

by Gn
M(EC FID=30cm), and multiplied by 100.

These figures will be added to the analysis note and the text will be modified to
describe more clearly the cuts that were applied.

Figure E.11: EC neutron detection efficiency for different fiducial cuts.

Figure E.12: Percentage change in Gn
M for different EC fiducial cut choices.
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12) You are measuring the ratio of e’n and e’p events: why do you select runs
on the basis of Np/Ne and Ntbt/Nhbt rate stability shown in Figs. 2.1-2.4? Should it
be Nn/Np instead? Are these related?

These overall-quality cuts are intended to reject runs for which running conditions
were not reasonable due to beam steering, beam scraping, detector HV trips, trigger
problems, CODA problems, etc. They are based upon statistics which are available in
the cooking data base and so can be used to reject a run before it has been analyzed
for neutrons and quasi-free protons.

A cut on Nn/Np could also have been applied to reject more subtle problems, such
as gain variations which particularly affect neutron measurements. Such a cut was
not necessary, however, since the calibration technique automatically allows for any
time-variation of the efficiency and properly includes it in the measured efficiency,
with the correct luminosity-weighting.

13) EC electron cuts: do you have electrons with ECinner = 0 (e.g. negative
particles with large number of photoelectrons in CC)? Can you justify your EC sam-
pling fraction parameterization separately for each sector (e.g. show distribution and
the fit on top of it)? Why do you need the lower limit in EC s.f. cut?

As stated on page 19 of the analysis note, it was required that the energy de-
posited by electrons in the inner layer of the EC be greater than 50 MeV. The differ-
ence between the electron energy determined from DC tracking and sampling-fraction
corrected energy deposited in the EC shown in Fig. 2.5 on page 20 of the analysis
note shows that the sampling-fraction parametrization is quite reasonable. The lower
limit of the cut on the difference between the energies determined in the DC and EC
shown in Fig. 2.5 may not be necessary, but it’s not hurting anything either.

14) Many plots in the note have inappropriately large scale making hard to
understand their meaning: e.g. Fig.2.5, 2.9 2.15, 2.33, 2.37. Can you focus on
significant range only?

The ranges were chosen to show the part of the range which we considered signif-
icant.

In Fig. 2.5, for example, the fact that there is NOT a broad background is an
important point of the plot. We could re-plot this with a narrower range, such as -0.5
through 1.0 GeV, without making the reader wonder whether something is hidden
just beyond the edges of the plot.

In Fig. 2.9, the breadth and height of the large-∆R tail is an important point of
the plot. We would be reluctant to significantly tighten the range.

In Fig. 2.15 the range was chosen to show most of the accepted data, above 5
MeVee as well as the large peak of rejected events below 5 MeVee. It is not clear
whether the suggestion is that we focus on the narrow peak of rejected events or on
the broad distribution of accepted events. We find the present range reasonable and
would be reluctant to change it significantly.

In Figs. 2.33 and 2.37 it is important to allow the reader to estimate the shape of
the background lying under the Min-I peak and we would be reluctant to significantly
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decrease the range of the data.
We can certainly provide additional (as opposed to replacement) versions of any

plot which the committee would like to see on a different scale. It would be necessary
for the committee to specify the desired scale, however, since we have already chosen
scales which we consider reasonable.

15) CC electron cut: you cut on 1 photoelectron, why? Add in the note few
words why you are doing these cuts and explain why 1 photoelectron is sufficient.

The distribution of the number of photoelectrons (x10) produced in the CC for
candidate quasi-elastic events is shown in Fig. E.13. This distribution includes all
events in which a negative track was seen in one sector and 0 or 1 positive track was
seen in the opposite sector. The additional kinematic constraints that the q-vector
determined from the negative track is traced/swam out to the SC or EC and that a
neutral or positive hit must be seen near the expected location are applied later in
the analysis. These constraints eliminate much of the π− contamination. The cut at
10 (1 photoelectron) that was used in the analysis is indicated by the red line in Fig.
E.13. This cut was chosen to eliminate the large spike at zero.

Figure E.13: The distribution of the number of photoelectrons produced in the CC
for candidate quasi-elastic events.

To investigate the effect of this cut on the results for Gn
M , we have reanalyzed

the 4-GeV EC data using two other values for the cut. Shown in Fig. E.14 is a
comparison of Gn

M for neutrons detected in the EC for three different choices for the
cut on the number of photoelectrons in the CC. Except at the lowest Q2 point, the
difference is not very noticeable at this scale. Shown in Fig. E.15 is a comparison
of Gn

M for neutrons detected in the EC for the two extreme cuts of 0 and 20, with
an expanded vertical scale. At this scale, some small differences can be seen. The
percent variation in Gn

M for the different cuts is shown in Fig. E.16. Even with the
cut varied all the way down to 0, there are only a few points where the variation is
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greater than 0.5 %.

Figure E.14: A comparison of Gn
M for neutrons detected in the EC for three different

choices for the cut on the number of photoelectrons in the CC.

Figure E.15: A comparison of Gn
M for neutrons detected in the EC for two different

choices for the cut on the number of photoelectrons in the CC with an expanded
vertical scale.

16) Plot in Fig. 2.7 beta versus P. What is the maximum pion momentum
your beta cut is designed for?

The cuts illustrated in Fig. 2.7 are cuts on the distribution of the difference
between β determined from path length and time-of-flight and β determined from
the measured momentum with the assumption that the particle is a π+. These cuts
do not produce a cut on the pion momentum.
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Figure E.16: The percent variation in Gn
M for different cuts on the number of photo-

electrons in the CC.

17) Does CC veto for π+ remove e+ background? Can you check in a correlation
CC/EC plot that it really does?

The source of a positron background in the calibration reaction is unclear. There
is a cut requiring that all tracks emerge from the hydrogen target, and that the events
have only two tracks: one negative, one positive. Subject to these constraints, the
simplest reaction I can think of that might resemble the calibration reaction and have
a positron is: e−p → e−e−e+p where the proton and one of the electrons are not
observed. This seems unlikely to satisfy the additional constraint that the missing
mass from the two observed tracks be close to the neutron mass, but no quantitative
study to prove this was made.

No CC veto was applied to candidate π+ events. The π+’s were selected based on
a cut on ∆β, where ∆β = βtof − βp. βp is the beta determined from the measured
momentum and the assumption that the particle mass is the pion mass.

The only CC information that was kept for pions in the filtered files used for the
neutron efficiency analysis was the CCstat word in the EVNT bank. If CCstat ¿ 0,
then there is some CC information (which wasn’t kept for the filtered files, though
it could in principle be recovered by re-filtering the data set). Fig. E.17 shows a
comparison of the reconstructed neutron momentum spectra for the usual case (no
cut on CCstat) and the case where CCstat ¿ 0. Fig. E.18 shows the same for the
found neutron distribution.

In both cases, there are some ”pions” that have something reported in the CC
bank. Since the CC bank contents were not retained in the filtered files, a detailed
cut on the CC information cannot be made. If we assume that any positive track
with any information reported in the CC bank is a positron (regardless of the results
of the ∆β cut) and we exclude all CCstat¿0 events, the resulting neutron detection
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Figure E.17: Reconstructed neutron momentum distribution with and without CC-
stat cut.

Figure E.18: Found neutron momentum distribution with and without CCstat cut.
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efficiency is shown in Fig. E.19.

Figure E.19: EC neutron detection efficiency with and without CCstat¿0 pions.

In Fig.E.19, the black points are the EC neutron detection efficiency determined
in the usual fashion, and the red points are the EC neutron detection efficiency
determined with an additional cut throwing out all events where CCstat¿0 for the
candidate π+. The two efficiency curves are very similar: the change is not easily
visible, except at a few points. The small effect seen in the efficiency histogram is
smoothed out by the fitting procedure. Fig. E.20 shows the fractional change in
the EC Gn

M induced by adding the ”CCstat == 0” requirement to the efficiency
calibration. Adding the CCstat¿0 cut changes the Gn

M determination by 0.2% at
most (and much less than that in most cases).

18) Section 2.3.4.1 Delta R (and D‘”Delta R cut”) is used but not defined by
this page.

In the first paragraph of Section 2.3.4.1 we will insert the following language before
the sentence that begins ‘A cut rejecting ...’.

The distance ∆R between the expected point-of-intersection on the EC plane and
the observed one is defined as

∆R = |~REC − ~Rexpected| ≤ 60 cm

where ~REC is a vector from the electron-π+ vertex to the measured position of the
neutron on the face of the EC and ~Rexpected is a vector from the same vertex to the
expected point-of-intersection on the EC face.

In Section 2.3.4.1 of the analysis note it is incorrectly stated that the ∆R cut is
30 cm. This will be corrected.

19) We expect SC neutron detection efficiency to rise at lower momenta (cross
section is getting higher), why in Fig.2.17 it seems to go to zero?
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Figure E.20: Fractional change in EC Gn
M from adding CCstat == 0 cut to calibration

reaction.

It is true that we expect the cross section to increase at lower neutron energy, but
under normal running conditions we also require signals from the SC to be above a
fixed threshold on the deposited energy to eliminate noise and background photons.
For E5, this cut was set at 5 MeV electron equivalent in software (see Figure 2.15).
If the neutron deposits all or most of its energy in the scintillator with no low-energy
cut or discriminator thresholds set, the ‘zero-bias’ detection efficiency does increase
at low neutron momentum. With a non-zero threshold the fraction of light lost below
the threshold in an event gradually increases as neutron momentum decreases. The
neutron detection efficiency decreases until it finally goes to zero when the maximum
energy deposited by a low-momentum neutron is below the threshold. The precise
value where the neutron detection efficiency goes to zero is smeared out because of
different competing processes for neutrons to make light in the SC. At high neutron
energy, the effect on the efficiency is small. Fig. E.21 below (from Radiation Detection
and Measurement by G. F. Knoll) schematically shows this effect. This effect was also
observed in the measured and simulated neutron detection efficiencies in CLAS-Note
2001-006 for the g2 running period.

20) You assume that the neutron detection efficiency is constant along SC
paddle. Did you verify this?

While it is true that no corrections are applied for variation in efficiency along
an SC paddle, this does not imply that the efficiency is assumed to be constant.
The position-averaged efficiency can be properly represented as a single number as
long as the position distributions are similar for the quasi-elastic neutrons of interest
and for those used in calibration. (The ’efficiency’ of a paddle is then really the
’hit-density-weighted average efficiency along the length of the paddle’.)

Both neutron distributions are essentially axially symmetric over the range of in-
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Figure E.21: Effect of discrimination level on neutron detection efficiency using proton
recoil (from Radiation Detection and Measurement by G. F. Knoll).

terest along the paddles and both are cut by the same fiducial cuts excluding the
ends of the paddles. Any slight differences in the actual position distributions of
calibration neutrons compared to the quasi-elastic neutrons would not be expected
to have a significant impact on the average efficiency unless the efficiency varied dra-
matically with position. In fact the variation in response of the paddles was expected
to be modest since the energy-deposited cut, used in selecting neutron candidates,
was based on the geometric average of the light reaching each end. This geometric
averaging serves to remove the first order effects of light attenuation.

21) How the neutral hit in EC is identified (describe what is considered a
neutral hit and how its position is measured)?

Neutral hits in the EC are identified the same way any other hit in the EC is
identified. A detailed description of the hit-finding procedure can be found in the EC
NIM paper (http://www.jlab.org/Hall-B/pubs/ec nim.ps or NIM A 460, 239 (2001)).
In addition to forming a hit in the EC reconstruction, additional requirements are
enforced. In either the efficiency calibration or the QE analysis, it is required that no
charged tracks are found in the same sector as the candidate neutral event. Additional
selection criteria are described in Sec. 2.3.4.1 for the calibration reaction, and Sec
2.6.3 for neutrons in the calibration reaction. Language will be added to section 2.6.3
to make it clear that the same energy deposit cut and edge cut used for the calibration
reaction were applied for quasi-elastic neutron selection.

22) You mention many times ”swimming” of the proton track through the
torus magnetic field but never say how it was done practically?

Charged particle swimming is performed using the routine ”swim2pln”. This is
part of the standard CLAS software package and can be found in the file ”/trk/swim2pln.F”
in any version of the CLAS software. The user supplies a magnetic-field map, an ini-
tial momentum, charge and initial vertex and the particle is propagated through the
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magnetic field until it crosses a user specified plane (in our case, planes parallel to
either the EC face or one of the TOF panels).

23) Can you compare your W/theta pq distributions from the event generator
(Figs. 2.53 and 2.54) with similar distributions from the data. You can add plots like
in Fig. 2.28 but in the same scale and with the same kinematics as in 2.53 and 2.54.

Shown in Figs. E.22 and E.23 are W2 vs. θpq spectra for e-p coincidences for the
E5 4.2-GeV and 2.6-GeV data sets, respectively.

Figure E.22: A W2 vs. θpq spectrum for e-p coincidences for the 4.2-GeV data.

24) In Fig. 2.27 can you add W2 distribution after selection of a nucleon and
(separately) corresponding theta qp cut?

Shown Fig. E.24 is a comparison of W2 distributions for ep events before and
after a cut requiring that θpq be less than 3◦. We will add this figure to the analysis
note.



APPENDIX E. RESPONSE TO ANALYSIS REVIEW COMMITTEE 1 209

Figure E.23: A W2 vs. θpq spectrum for e-p coincidences for the 2.6-GeV data.
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Figure E.24: Comparison of W2 spectra for ep events before and after a θpq ¡ 3◦ cut.



Appendix F

Response to Analysis Review
Committee 2

A High Precision Measurement of the Neutron
Magnetic Form Factor Using the CLAS Detector

Analysis Review Committee Response 2

October 19, 2007

Jeff Lachniet, Will Brooks, Jerry Gilfoyle, Brian Quinn, and Mike Vineyard

In order to better understand where we are in addressing the questions and com-
ments of the review committee, the following key is being used:

- Question/comment has been adequately addressed. (7)

- More work is needed to address the question/comment. (0)

Analysis review committee members: Michail Osipenko (chair), Michel Guidal,
and Henry Juengst.

Dear Michael, Will and Jeff,
first of all I apologize for lately response, but because of significant time interval

between our fist discussion and the present one we had to study the analysis note
from scratch. We certainly acknowledge the work done by the authors, but we feel
to have still some questions about the analysis. This questions are listed below. It
would be nice to have all new plots and additional information to be implemented in
the new version of the analysis note.

With Best Regards,
Mikhail and Michel.

1) We feel strongly that authors have to compare their proton detection ef-
ficiency against GSIM Monte Carlo simulations. In the case of neutron detection
efficiency we agree with authors and do not insist on such a comparison. We do not
believe that proton detection efficiency measured by means of the elastic peak can

210
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be (much) better than GSIM extracted efficiency. In particular, this is not the case
at large-Q2 where your data become very important. The cross section of the elastic
peak at Q2˜4.5 GeVˆ2 in previously studied and published CLAS data had ˜10%
statistical error. Thus we do not understand Fig. 2.42 in the analysis note where
the efficiency seem to have no statistical error. Could you give some explanation? In
addition, we need to have a comparison GSIM vs. data on this efficiency.

The committee asks: We feel strongly that authors have to compare their proton
detection efficiency against GSIM Monte Carlo simulations. In the case of neutron
detection efficiency we agree with authors and do not insist on such a comparison.
We do not believe that proton detection efficiency measured by means of the elastic
peak can be (much) better than GSIM extracted efficiency. In particular, this is not
the case at large-Q2 where your data become very important.

Response: We are not sure whether the committee is suggesting: (i) using GSIM
results to supplement our efficiency measurements to improve our results OR (ii) using
our results to test GSIM as a way to tune GSIM as a service to the collaboration.

We address both interpretations below:
(i) The most important feature of this experiment for control of systematic errors

was the continuous measurement of both neutron and proton efficiencies in parallel
with (and under identical running conditions with) the actual data taking. It was
presumably this feature which convinced the PAC that the experiment could be done
with the desired accuracy.

We do not believe that any simulation can be expected to accurately predict effi-
ciencies at the sub-percent level without being tuned to observed results. (Further-
more we don’t believe we could ever convince an outside referee that a simulation is
accurate at sub-percent level by dead-reckoning.) While beam intensity fluctuations,
wire-by-wire gain variation, long term gain drifts, etc. are automatically included in
the calibration data, they are not included in GSIM. Making GSIM accurately repro-
duce the observed efficiencies run-by-run would be an enormous task. In the end we
would have a simulation which produces the results it has been told to produce... it
can not do any better than the data to which it is calibrated. There would be no gain
in tuning GSIM to produce the observed efficiencies rather than simply applying the
observed efficiencies directly as we presently do.

(ii) While our data set could be used as a cross-check to test or tune GSIM, it
is not uniquely suited to that task, compared to any other data set taken with an
electron beam on a hydrogen target. While this might be seen as a service to the
collaboration it should be noted that the publication of these much-anticipated results
has already lagged significantly and there is pressure to get them out. Pushing ahead
with publication would be a better service to the collaboration.

The committee asks: The cross section of the elastic peak at Q2 ˜ 4.5 GeV2 in
previously studied and published CLAS data had ˜10% statistical error.

Response: We are not sure to which published results the committee refers. The
cross section for elastic scattering from hydrogen at these kinematics (E = 4.2 GeV, θ
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= 45◦) is small, but not unusually small (˜0.014 nb/sr). Statistics on elastic scattering
at this Q2 would not be hard to accumulate if it were not for the fact that we have
reached the edge of the Cerenkov coverage (at this beam energy). Figure F.1 shows the
statistics for reconstructed elastic scattering events (black) and for those in which the
proton is also reconstructed (red) for the 4.2-GeV runs, summed over the 6 sectors.
The statistics are seen to be quite high over most of the SC paddles. Since the
committee is interested in the highest Q2 point, we also show an expanded view of
the lowest-numbered detectors (highest Q2) in Figure F.2. The statistics are seen to
be over 100 per detector except for the two most forward detectors. As we explain
below, binomial errors must be used to determine the resulting error on the extracted
efficiencies.
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black: reconstructed proton
red: found proton

Figure F.1: Statistics of reconstructed and found proton calibration events.

Even at the edge of the electron acceptance, the statistics are not limited by
elastic scattering from the proton. Quasi-elastic scattering from the neutron has a
still smaller cross section and the efficiency for neutron detection is smaller. So we
are more statistically limited by neutron coincidence data than by proton calibration
data.

Perhaps this is an unimportant side-issue and the real question is why the errors
on proton efficiency are so small. We address that next.

The committee asks: Thus we do not understand Fig. 2.42 in the analysis note
where the efficiency seem to have no statistical error. Could you give some explana-
tion?

Response: The statistical error on the proton efficiency measurements is small
both because there are reasonable statistics for the calibration and because the error
on a binomial distribution has been applied in calculating the error. It is important
to note that the fractional error on the measurement of a high efficiency may be
considerably smaller than what one might expect from

√
N . (Poisson statistics do
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Figure F.2: Close-up of high Q2 region.

not apply in such a case, so
√

N is not the correct error estimate.) For example, if
r = 1000 events are reconstructed as elastic scattering from the hydrogen target (by
detecting the electron) and f = 950 protons are actually found when the predicted
SC paddles are searched for a charged hit, then the estimated efficiency is clearly p
= f/r = 95%. It might be tempting to estimate the fractional error on that ratio as
1/
√

1000 = 3.2% (or even as
√

2/
√

1000 = 4.5% if the errors on the numerator and
denominator were treated as independent). However, since binomial statistics apply,
the variance of f (if the true efficiency is P) is

V = σ2
f =

(

r2

r − 1

)

P (1 − P )

then, calculating the best estimate as p = f/r gives the error on p as

σp =

√

P (1 − P )

r − 1
∼

√

p (1 − p)

r − 1
=

√

0.95 (1 − 0.95)

1000 − 1
= 0.007

or 0.7% which is 4.5 (or 6.5) times smaller than would be estimated from Poisson
statistics. See, for example, ’Statistics for Nuclear and Particle Physicists’ by Louis
Lyons.

The committee asks: In addition, we need to have a comparison GSIM vs. data
on this efficiency.

Response: It is not clear how this differs from the first question. We expect that
GSIM could be made to reproduce our observed efficiency (with adequate simulation
of observed dead/low-efficiency wires, pile-up, dead paddles, gains, etc.). But it is
not clear what we would learn from such a simulation that we don’t already know.

2) Both photon rejection cuts: angular cut in EC and timing cut in SC, are
shown to give good results in the case of exclusive reactions where kinematics of
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neutron is fixed by conservation laws, can you provide similar plots (Fig.2 of the
answer and Fig.2.16 of the analysis note) for the quasi-elastic case? In the case of
Fig.2 you can plot e-n missing mass (which should be almost a proton).

To demonstrate that the photon background in the neutron selection for the quasi-
elastic analysis is small, we have calculated the time-of-flight for neutrons detected
in the EC and SC using two different techniques and generated distributions of the
difference in these times. In the first technique the TOF was calculated as the detector
time minus the event time and in the second it was calculated assuming that all of the
momentum of the virtual photon is transferred to the neutron. The distributions for
neutrons detected in the EC for the 4.2 and 2.6 GeV data are shown in Fig. F.3 and
those for SC neutrons are shown in Fig. F.4. There is little or no photon background
evident in these distributions.

Figure F.3: Time-of-flight difference for quasi-elastic neutrons detected in the EC for
4.2 GeV (left panel) and 2.6 GeV with normal torus polarity (right panel).

The most direct evidence that the accidental coincidence rate is weak and under
control in the quasi-elastic analysis is provided by rotating the reconstructed neutron
momentum vector by a random multiple of 60◦ around the beam axis into a sector
where the neutron is not expected to be found. The rest of the quasi-elastic analysis is
carried out as usual. Any ”neutrons” found in this analysis must be due to accidental
coincidences. This is the same procedure that was used to show that the accidental
background in the ep → e′π+(n) reaction is small (see Section 3.2.3.1 of the Analysis
Note).

The results of this analysis are shown in Figs. F.5 and F.6. Figure F.5 shows
the number of ”found neutrons” as a function of Q2 with (red) and without (black)
the 60◦ rotation of the reconstructed neutron momentum vector for neutrons in the
EC (left panel) and SC (right panel). Shown in Fig. F.6 are θpq distributions for
”found neutrons” in the SC as successive cuts are applied in the quasi-elastic analysis
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Figure F.4: Time-of-flight difference for quasi-elastic neutrons detected in the SC for
4.2 GeV (left panel) and 2.6 GeV with normal torus polarity (right panel).

with the 60◦ rotation of the reconstructed neutron momentum vector. The cuts are
cumulative, so the ”blue” histogram equals the ”black” histogram plus the ”red” cuts
plus the ”green” cuts plus the ”blue” cuts. The few events remaining in the blue
histogram are rejected for either being at a larger θpq than is allowed for that Q2 or
failing the fiducial matching cut. From this analysis it is clear that the accidental
coincidence rate is low and under control.

Figure F.5: Neutrons detected in the EC (left panel) and SC (right panel) with (red)
and without (black) a 60◦ rotation of the reconstructed neutron momentum vector.

3) in your answer on question N6 you claim that the background of photons,
included also in Fig. 2 of the answer, is small. However provided that the relation
between the missing mass plot and the neutron rate include the neutron detection
efficiency (which can be of a few percent) we do not have feeling that your claim is
well supported. Could you do similar plot with only events selected by the neutron



APPENDIX F. RESPONSE TO ANALYSIS REVIEW COMMITTEE 2 216

Figure F.6: Rejection of SC neutron candidates in the wrong sector by successive
application of cuts.

selection cuts for a couple neutron momentum ranges (low and high)?
Missing mass distributions for the ep→e′π+X reaction with EC neutrons passing

all cuts and with momentum less than and greater than 1.5 GeV are shown in Figure
F.7.

Figure F.7: Missing mass spectra for the ep→e′π+X reaction for EC neutrons passing
all cuts and with momentum less than (left panel) and greater than (right panel) 1.5
GeV.

4) We suggest to add in the analysis note the plots of N n/N pstability as a
function of time during the runs used in the analysis. Committee needs to see how
much stable your observable is disregarding the fact that you can correct for this
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effect. If there are runs where variations are too large these have to be removed.
Shown in Fig. F.8 is the neutron to proton ratio for accepted events versus run

number for the runs used in the analysis of the +2250-A (left panel) and +3375-A
(right panel) data. The χ2per degree-of-freedom is about 1.0 as expected for each
distribution.

Figure F.8: The neutron to proton ratio for accepted events versus run number for
the runs used in the analysis of the +2250-A (left panel) and +3375-A (right panel)
data.

5) RECSIS sometimes fails to reconstruct ECinner or ECouter deposited energy
even for good events (the information can be still found by searching for identical
particles in the bank). This is why we were asking if after all your geometrical cuts
you have electrons (e.g. with number of photo-electrons ¿ 3) with ECinner=0? Can
you provide a plot (starting from negative values on the x-axis) before your cut on
ECinner?

The Einner distribution for electrons which pass all of the electron selection cuts
(including the Einner cut) is shown as the white region under the histogram in the
left panel of Fig. F.9. Those electrons removed by the Einner cut are shown by the
gray-filled region in Fig. F.9. There is a small bump at Einner = 0, as shown in the
right panel of Fig. F.9, which shows a closeup of the Einner distribution in the case
where the Einner cut has been removed, but all of the other electron selection cuts
have been enforced.

Because all selected electrons are used in the calculation of the ratio of two quan-
tities (en/ep in the quasi-elastic case, or eπ+nfound/eπ+nreconstructed in the calibration
reaction case), we are not especially sensitive to the electron detection efficiency, as
it tends to cancel out in the ratio. This can be seen in Fig. F.10, which shows the
neutron detection efficiency in the EC (summed over all six sectors) for two cases:
(a) the usual case (shown in black) where the Einner cut is enforced, and (b) the case
(shown in red) where the Einner cut was not enforced. As can be seen, the cut has
only negligibly small effects everywhere except at the statistically marginal point at
the far end of the distribution. A similar insensitivity to the details of the electron
selection function would be observed in other ratio-type quantities.
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Figure F.9: Plots of EC Einner for electrons.

Figure F.10: The effect on the EC neutron detection efficiency of switching off the
EC Einner cut used in electron selection.
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6) We do not understand whether the Fermi loss correction has been done with
GSIM simulations or it is simply Monte Carlo which does not include the detector
response? In particular the W vs. theta qp plots for your simulations (Fig.2.53
and Fig.2.54 of the analysis note) have much smaller peak width than similar plots
in the data (Fig.22 and Fig.23 of the answer). This is disturbing in view of large
disagreement between your data and the world data in the region where Fermi loss
correction is maximal. Could you explain whether you did GSIM simulations and
show the same plots for GSIM output?
The Fermi loss correction was NOT done with GSIM and the calculations shown
in Figures 2.53 and 2.54 do not include the CLAS response. The goal here was
to isolate the effect on the ratio R of the Fermi motion pushing scattered nucleons
out of the CLAS acceptance. A Monte Carlo simulation was done using different
Fermi momentum distributions for the struck nucleon. The different distributions
give significantly different results for individual nucleons, but the effect on the ratio
R is small. See Section 3.2.3.8 in the analysis note. The detector response was
measured separately in the procedure described in Sections 2.3 and 2.4.

The width in W2 of the W2 − θpq distributions in Figs. 2.53 and 2.54 are consid-
erably less than the widths of the data shown in Figs. 22 and 23 in our first response.
This is expected since the distributions shown in the analysis note are the output of
the quasi-elastic event simulation (QUEEG) and do not include the CLAS response.
Again, the idea here is to isolate the effect of Fermi motion and then measure the
CLAS response.

Figure F.11 shows a comparison of the W2 distributions for 4.2 GeV and 2.6
GeV between a GSIM simulation and the data. These spectra are essentially the
projection of the other figures discussed above along the W2 axis to more clearly
show the widths. This simulation (red histograms in each panel) used the same
event generator, QUEEG, as in Figures 2.53 and 2.54 of the analysis note as input to
GSIM. There is little difference in the widths of the distributions from GSIM and the
data. Also, it should be pointed out that the study of the systematic uncertainties
indicates that the results for Gn

M have very little sensitivity to the details of the Fermi
loss correction procedure (see Section 3.2.3.8 of the analysis note).

7) Many plots requested by the committee have not been made. We repeat
our requests:

a) beta vs. p neutron plot in EC (N6),
A β (from TOF measurements) versus reconstructed momentum spectrum for

neutrons detected in the EC is shown in Fig. F.12.
b) neutron angular reconstruction quality and its correlation with Edep (N7),
Shown in Fig. F.13 are plots of ∆θ (left panel) and ∆φ (right panel) as a function

of energy deposited in the EC for neutrons from the +3375-A data set. The angular
difference is defined as the reconstructed angle minus the measured angle.

c) correlation plot neutron EC deposited energy and Delta R (N8),
A histogram of △R versus energy deposited in the EC for neutrons is shown in
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Figure F.11: Comparison of measured (black histograms) and simulated (red his-
tograms) W2 distributions at 2.6 GeV (left-hand panel) and 4.2 GeV (right-hand
panel). The simulations used the QUEEG event generator.

Figure F.12: A neutron β versus momentum spectrum.



APPENDIX F. RESPONSE TO ANALYSIS REVIEW COMMITTEE 2 221

Figure F.13: Plots of ∆θ (left panel) and ∆φ (right panel) as a function of energy
deposited in the EC for neutrons.

Fig. F.14.

Figure F.14: A histogram of △R versus energy deposited in the EC for neutrons.

d) electron EC energy deposited as in Fig. 2.5 (but from -0.2 to 0.2) sector by
sector (N13),

Figure 2.5 of the analysis note doesn’t show electron EC energy deposited. It
shows the difference between the electron energy from the DC momentum and the
sampling-fraction corrected EC energy deposit. Assuming that when the committee
asks for a sector by sector version of Fig. 2.5, what they mean is a plot showing the
quantity plotted in Fig 2.5, then Fig. F.15 below shows E-Edep/f for each sector.

e) pion beta vs. P plot and the cut on top of it (N16),
As was described in the analysis note, the pion selection cut was on ∆β = βtof

- βdc, not on β directly. Shown in Fig. F.16 are β versus momentum spectra for
π+candidate events before (top panel) and after (bottom panel) the ∆β cut. It was
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Figure F.15: The difference between electron energy (in GeV) determined from track-
ing and sampling-fraction corrected energy deposited in the EC for each sector.
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required that these events have one negative track that satisfies the electron selection
criteria and one positive track. We present the data in this fashion because straight
line cuts in ∆β are curved cuts in β, which are difficult to draw.

Figure F.16: β versus momentum spectra for π+candidate events before (top panel)
and after (bottom panel) the ∆β cut.

f) prepare additional plots discussed in N14 with the following ranges: Fig.2.5
from -0.2 to 0.2 y axis in log scale, Fig.2.9 from -5 to 50 y axis in log scale, Fig.2.15
from -1 to 10 y axis in log scale, Fig.2.33 from -5 to 30 y axis in log scale, Fig.2.37
the same as before.

The requested distributions are shown in Figs. F.17-F.20.



APPENDIX F. RESPONSE TO ANALYSIS REVIEW COMMITTEE 2 224

Figure F.17: The difference between electron energy (in GeV) determined from track-
ing and sampling-fraction corrected energy deposited in the EC.

Figure F.18: The distribution of the distance ∆R between the expected point-of-
intersection and the observed hit location for neutron candidate events in the EC.
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Figure F.19: The energy deposited in the SC by candidate neutron events.

Figure F.20: Spectra of deposited energy in the SC for candidate neutral events before
(black histogram) and after (blue histogram) applying DC wire-based unreconstructed
proton rejection cuts.


