Precise Measurement of the Neutron Magnetic Form Factor

G.P.Gilfoyle, J.D.Lachniet^{*}, W.K.Brooks, M.F.Vineyard, B.Quinn (the E5 group), and the CLAS Collaboration

- Outline: 1. Motivation.
 - 2. Background.
 - 3. Measuring G_M^n .
 - 4. Results and Systematic Uncertainties.
 - 5. Impact and Conclusions.

*Thesis project.

The neutron magnetic form factor $G_M^n(Q^2)$ is a fundamental observable related to the spatial distribution of the charge and magnetization in the neutron.

- The neutron magnetic form factor $G_M^n(Q^2)$ is a fundamental observable related to the spatial distribution of the charge and magnetization in the neutron.
- Part of a broad effort to answer the question 'What is the internal landscape of the nucleons?'.*

- The neutron magnetic form factor $G_M^n(Q^2)$ is a fundamental observable related to the spatial distribution of the charge and magnetization in the neutron.
- Part of a broad effort to answer the question 'What is the internal landscape of the nucleons?'.*
- The elastic electromagnetic form factors (EEFFs) G_M^n , G_E^n , G_M^p , and G_E^p constrain the generalized parton distributions (GPDs) which promise to give us a three-dimensional picture of hadrons.

- The neutron magnetic form factor $G_M^n(Q^2)$ is a fundamental observable related to the spatial distribution of the charge and magnetization in the neutron.
- Part of a broad effort to answer the question 'What is the internal landscape of the nucleons?'.*
- The elastic electromagnetic form factors (EEFFs) G_M^n , G_E^n , G_M^p , and G_E^p constrain the generalized parton distributions (GPDs) which promise to give us a three-dimensional picture of hadrons.
- EEFFs are a fundamental and early challenge for lattice QCD.

- The neutron magnetic form factor $G_M^n(Q^2)$ is a fundamental observable related to the spatial distribution of the charge and magnetization in the neutron.
- Part of a broad effort to answer the question 'What is the internal landscape of the nucleons?'.*
- The elastic electromagnetic form factors (EEFFs) G_M^n , G_E^n , G_M^p , and G_E^p constrain the generalized parton distributions (GPDs) which promise to give us a three-dimensional picture of hadrons.
- EEFFs are a fundamental and early challenge for lattice QCD.

We present new data with precision and coverage that eclipse the world's data in this Q^2 range.

Some Necessary Background

For convenience use the Sachs form factors to express the cross section for elastic scattering.

$$\frac{d\sigma}{d\Omega} = \sigma_{Mott} \left(\frac{(G_E^n)^2 + \tau (G_M^n)^2}{1 + \tau} + 2\tau \tan^2 \frac{\theta}{2} (G_M^n)^2 \right)$$

where E(E') is the incoming (outgoing) electron energy, θ is the scattered electron angle, $\tau = \frac{Q^2}{4M^2}$, and $\sigma_{Mott} = \frac{\alpha^2 E' \cos^2(\frac{\theta}{2})}{4E^3 \sin^4(\frac{\theta}{2})}$.

At low momentum transfer $(Q^2 \ll M_N^2)$ G_E and G_M are the Fourier transforms of the densities of charge and magnetization. At high Q^2 relativistic effects make the interpretation more interesting!

G.A.Miller, Phys.Rev.Lett.99:112001,2007

Current World Data on EEFFs

Proton form factors have small uncertainties and reach higher Q^2 .

- Neutron form factors are sparse and have large uncertainties.
- Significant deviations from the dipole form factor.

The Experiment- Jefferson Lab

Continuous Electron Beam Accelerator Facility (CEBAF)

- Superconducting Electron Accelerator (338 cavities), 100% duty cycle.
- $E_{max} = 6 \text{ GeV}, \Delta E/E = 10^{-4}, I_{max} = 200 \ \mu A, P_e \ge 80\%.$

Hall B - CEBAF Large Acceptance Spectrometer (CLAS)

- Nearly 4π -acceptance spectrometer with a toroidal magnet ($\Delta p/p = 0.5\%$, $\mathcal{L} \approx 10^{34} \ cm^{-2} s^{-1}$).
- Layers of drift chambers, Cherenkov counters, time-of-flight (TOF) scintillators, and electromagnetic calorimeter (EC).
- Neutrons detected in both TOF and EC.
- Dual, collinear target with liquid hydrogen and deuterium.
- E5 data set: 4.2 GeV and 2.6 GeV; 2.3 billion triggers.

Measuring G_M^n - The Ratio Method

Without a free neutron target we use deuterium and measure R

$$\begin{split} R &= \frac{\frac{d\sigma}{d\Omega} [^2 \mathrm{H}(e, e'n)_{QE}]}{\frac{d\sigma}{d\Omega} [^2 \mathrm{H}(e, e'p)_{QE}]} \\ &= a(E, Q^2, \theta_{pq}^{max}, W_{max}^2) \times \frac{\sigma_{Mott} \left(\frac{(G_E^n)^2 + \tau(G_M^n)^2}{1 + \tau} + 2\tau \tan^2 \frac{\theta}{2} (G_M^n)^2\right)}{\frac{d\sigma}{d\Omega} [^1 \mathrm{H}(e, e')p]} \end{split}$$

where $a(E, Q^2, \theta_{pq}^{max}, W_{max}^2)$ corrects for nuclear effects, θ_{pq}^{max} and W_{max}^2 are kinematic cuts, and the numerator is the precisely-known proton cross section.

- Less vulnerable to nuclear structure (e.g., deuteron model, etc.) and experimental effects (e.g., electron acceptance, etc.).
- Must accurately measure the nucleon detection efficiencies and match the geometric solid angles.

The Ratio Method - Selecting Quasielastic Events

Kinematic definitions.

- *e*-*n*/*e*-*p* selection: standard criteria for electrons and protons; TOF and calorimeter (EC) are TWO, INDE-PENDENT neutron measurements.
 Quasi-elastic event selection: Apply a maximum θ_{pq} cut to eliminate inelastic events plus a cut on W² (L. Durand, Phys. Rev. 115, 1020 (1959)).
- Acceptance matching: Use the quasi-elastic electron kinematics to predict if the nucleon (proton or neutron) lies in CLAS acceptance. Require both hypotheses to be satisfied.

Neutron/Proton Detection Efficiencies

- 1. Use dual target cell for in situ calibrations.
- 2. Make tagged neutrons with $ep \rightarrow e'\pi^+n$ from the ¹H target. In the EC and TOF use the missing momentum to predict the neutron location and search for it.
- 3. Use $ep \rightarrow e'p$ elastic scattering for tagged protons. In the TOF use the missing momentum from $ep \rightarrow e'X$ to predict the proton location and search that paddle or an adjacent one.

Systematic Uncertainties

Quantity	2.6 GeV	4.2 GeV	Quantity	2.6 GeV	4.2 GeV
	(%)	(%)		(%)	(%)
Calorimeter neutron efficiency parameter- ization	< 1.5	< 1.0	TOF neutron effi- ciency parameter- ization	< 2.0	< 3.2
proton σ	< 1.0	< 1.5	G_{F}^{n}	< 0.5	< 0.7
Fermi loss correction	< 0.8	< 0.9	θ_{pq} cut	< 0.4	< 1.0
neutron accidentals	< 0.07	< 0.3	neutron MM cut	< 0.5	< 0.07
neutron proximity cut	< 0.22	< 0.15	proton efficiency	< 0.3	< 0.35
Nuclear Corrections	< 0.17	< 0.2	Radiative correc- tions	< 0.05	< 0.06

Upper limits on percent estimated systematic uncertainty for different contributions.

Goal: Systematic uncertainty less than 3% on G_M^n .

Results - Overlaps and Final Averages

 $\frac{\delta G_M^n}{G_M^n}$

 \times

- The ratio R for each beam energy is the weighted average of the EC and TOF measurements.
- Overlapping measurements of reduced Gⁿ_M are consistent.

Comparison with Theory

- Green band Diehl et al. (Eur. Phys. J. C 39, 1, 2005) use parameterized GPDs fitted to the data.
- Dashed curve Guidal *et al.* (Phys. Rev. D 72, 054013, 2005) use a Regge parameterization of the GPDs to describe the elastic nucleon form factors at low Q^2 and extend it to higher Q^2 .

Black curve - Miller's (Phys. Rev. C 66, 032201(R), 2002) uses light-front dynamics to describe a relativistic system of three bound quarks and a surrounding pion cloud.

Conclusions

- Solution We have measured the neutron magnetic form factor G_M^n over the range $Q^2 = 1.0 4.8 \ (GeV/c)^2$ to a precision better than 2.5%.
- The four different measurements of G_M^n at two beam energies with the calorimeter and the TOF system in CLAS are consistent with each other and with previous results in this Q^2 range.
- The results are consistent with the dipole approximation within 5% across almost the full range of Q^2 ; differing from many expectations.
- Light-cone calculation by Miller gives the best description of the full G_M^n data set.
- Kelly parameterization of G_M^n changes significantly with the new CLAS data. but this difference has surprisingly little effect on the neutron charge distribution extracted by Jerry Miller.

Conclusions

- Solution We have measured the neutron magnetic form factor G_M^n over the range $Q^2 = 1.0 4.8 \ (GeV/c)^2$ to a precision better than 2.5%.
- The four different measurements of G_M^n at two beam energies with the calorimeter and the TOF system in CLAS are consistent with each other and with previous results in this Q^2 range.
- The results are consistent with the dipole approximation within 5% across almost the full range of Q^2 ; differing from many expectations.
- Light-cone calculation by Miller gives the best description of the full G_M^n data set.
- Kelly parameterization of G_M^n changes
 CLAS data. but this difference has neutron charge distribution extraction
- The future is bright.

Additional Slides

Fall 2009, Joint Meeting of the APS and JPS, Kona, HI - p. 14/2

Experimental Details - E5 Data Set

- Data Set:
 - 2.3 billion triggers.
 - E = 4.2 GeV and 2.6 GeV
 with positive torus polarity
 (electrons inbending).
 - E = 2.6 GeV with negative torus polarity (electrons outbending).
- Dual target cell with liquid hydrogen and deuterium separated by 4.7-cm. Perform *in situ* calibrations during data collection.
- Targets are well separated.

Additional Corrections

- Nuclear effects: The e n/e p ratio for free nucleons differs from the one for bound nucleons. Recall the factor $a(E, Q^2, \theta_{pq}^{max}, W_{max}^2)$ in R. Calculations by Jeschonnek and Arenhövel were close to unity.
- Radiative corrections: Calculated for exclusive D(e, e'p)n with the code EXCLURAD (CLAS-Note 2005-022 and PRD, 66, 074004, 2002). Ratio close to unity.
- Fermi motion in the target: Causes nucleons to migrate out of the CLAS acceptance. Effect was simulated to determine correction.
- Momentum corrections.
- Effect of θ_{pq}^{max} .

Systematic Uncertainties - NDE

- Calorimeter neutron detection efficiency (NDE) parameterization:
 - 1. NDE fitted with a third order polynomial plus a flat region at higher momentum.
 - 2. Highest order term was dropped and the ratio R regenerated.
 - 3. The upper limit on the range of values of R extracted from the different NDE fits was assigned as the systematic uncertainty.
- TOF NDE parameterization: Similar to calorimeter extraction except the second and third order terms in the polynomial were dropped.
- These are the largest contributions from this measurement.

Detector	2.6 GeV	4.2 GeV	
Calorimeter	<1.5	<1.0	
TOF	<2.0	<3.2	

Percentage systematic uncertainties in neutron detection efficiency parameterization.

Lomon Calculations

2001 Model - Used dcs(?) (Rosenbluth) data for G_E^n and G_E^p and no polarization data.

2005 Model - Gives same result for G_M^n as 2008 model which included low Q^2 $R_n = \mu_n G_E^p / G_M^n$ and $R_p = \mu_p G_E^n / G_M^n$ results from BLAST and preliminary, high- Q^2 results for R_n from JLab.

2002 Model

Anklin et al. and Kubon et al. Measurements

- \checkmark Used the ratio method to measure G_M^n .
- Neutrons detected in scintillator array consisting of thick E and thin ΔE counters.
- Protons detected in same scintillator array using the energy TOF and the E signals.
- Neutron detection efficiency measurement performed at the Paul Scherrer Institute.
 - High (low) energy neutron beam produced in the ${}^{12}C(p,n)$ (D(p,n)) reaction and then scattered off a liquid H₂ target.
 - Neutrons scattering off the liquid H_2 target were tagged by detecting the recoil proton from the H(n,p)n reaction.
 - Final sample of tagged neutrons used to measure NDE.

Experimental Details - EC NDE Difference

NDE(4.2 GeV) - NDE(2.6 GeV)

 G_E^n/G_M^n

Fall 2009, Joint Meeting of the APS and JPS, Kona, HI - p. 21/2

Effect of Fermi Correction

Reduced G_M^n for four dif-Reduced ferent measurements. different

Reduced G_M^n for four different measurements. The Fermi corrections have <u>not</u> been applied.