
SVT Track-Based Alignment

- Goal: Align the SVT to reach the resolution design specification of $\approx 65 \ \mu m$.
- Build accurate and complete representation of the SVT geometry and materials as part of the CLAS12 Common Tools.
- Provide the geometry for the *gemc* simulation and the CLAS12 reconstruction from a common set of parameters.
- Oevelop algorithms to measure and correct misalignments in the SVT.
- Ocument it.

- Track-based alignment of SVT requires fitting many parameters up to 792 here.
- Program millepede does linear least squares with many parameters.
 - Matrix form of least squares method.
 - Global parameters the geometry misalignments. Same in all events.
 - Local individual track fit parameters. Change event-to-event.
 - Requires first partial derivatives of residuals with respect to the local (fit) parameters and global parameters (geometry misalignments).

S Analysis chain: red boxes - Java; green boxes - C⁺⁺.

Full chain has been tested and validated using *gemc* simulation and cosmic data for simplified case (Type 1 events).

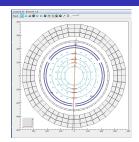
Running millepede

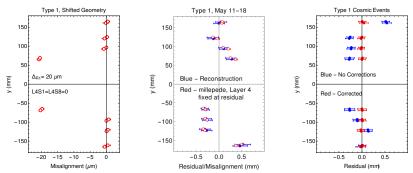
🚺 mille

- Code svtMille14.cc reads text file containing index, ID (layer, sector), data (residuals), derivatives (local and global), and χ^2 of fit.
- Use C⁺⁺ function mille to generate binary input file for pede which does the actual fitting.
- Ise tools/readMilleBinary.py to check mille output.

2 pede

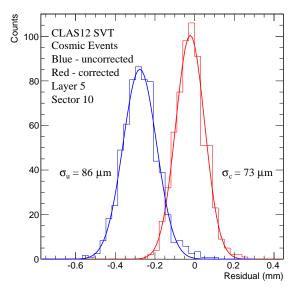
- Does the actual fitting reads binary data file from mille.
- Ø Built with root libraries.
- S Requires steering and constraint files.

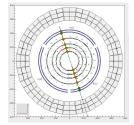

/work/halld/home/mstaib/millepede/pede mp2strSVT9.txt

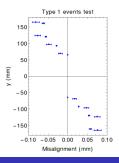

output files:

File	Purpose
millepede.log	records output
millepede.end	exit message
millepede.his	histograms
millepede.res	fit results

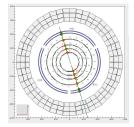
Type-1 Results

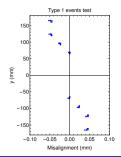

- millepede applied to simulated and measured Type 1 cosmics (see ced figure).
- Works on gemc cosmics with shifted regions (left-hand plot below).
- Works on real cosmic rays collected last summer
 - middle and right-hand plots below.

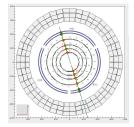


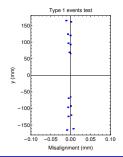

Jerry Gilfoyle

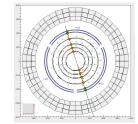
Effect on Type-1 Residuals

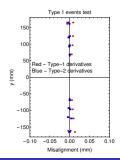


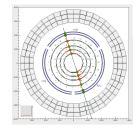

- Status:
 - Extend to Type 2 events. Algorithm for Type 2's being tested on Type-1 events.
 - Comparison of Type-1 events analyzed with Type-2 code useful for identifying bugs, picking signs of derivatives, *etc*.
 - gemc version 4a.1.0 in use, Java/Groovy scripts at coatjava 4a.5.5.
- 2 Next steps:
 - More testing with Type-1 events.
 - Apply Type-2 to Type-2 events.
 - millepede codes are built for Centos 6 need to upgrade to Centos 7.
 - Test with cosmics (simulated and measured).

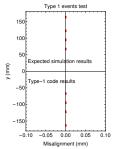


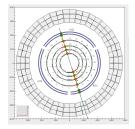

- Status:
 - Type 2 events selected. Algorithm for Type 2's tested on Type-1 events.
 - Comparison of Type-1 events analyzed with Type-2 code useful for identifying bugs, picking signs of derivatives, *etc*.
 - gemc version 4a.1.0 in use, Java/Groovy scripts at coatjava 4a.5.5.
- O Next steps:
 - More testing with Type-1 events.
 - Apply Type-2 to Type-2 events.
 - millepede codes are built for Centos 6 need to upgrade to Centos 7.
 - Test with cosmics (simulated and measured).

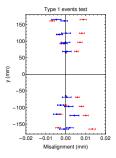


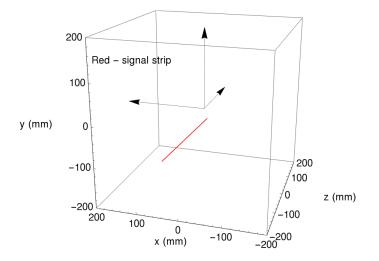

- Status:
 - Type 2 events selected. Algorithm for Type 2's tested on Type-1 events.
 - Comparison of Type-1 events analyzed with Type-2 code useful for identifying bugs, picking signs of derivatives, *etc*.
 - gemc version 4a.1.0 in use, Java/Groovy scripts at coatjava 4a.5.5.
- 2 Next steps:
 - More testing with Type-1 events.
 - Apply Type-2 to Type-2 events.
 - millepede codes are built for Centos 6 need to upgrade to Centos 7.
 - Test with cosmics (simulated and measured).



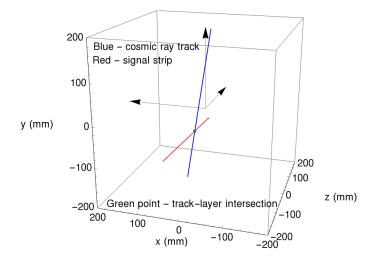

- Status:
 - Type 2 events selected. Algorithm for Type 2's tested on Type-1 events.
 - Comparison of Type-1 events analyzed with Type-2 code useful for identifying bugs, picking signs of derivatives, *etc*.
 - gemc version 4a.1.0 in use, Java/Groovy scripts at coatjava 4a.5.5.
- 2 Next steps:
 - More testing with Type-1 events.
 - Apply Type-2 to Type-2 events.
 - millepede codes are built for Centos 6 need to upgrade to Centos 7.
 - Test with cosmics (simulated and measured).

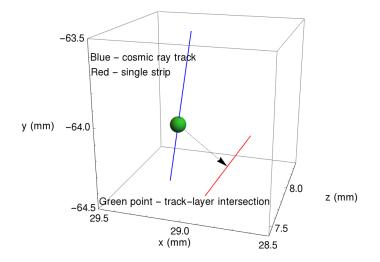



- Status:
 - Type 2 events selected. Algorithm for Type 2's tested on Type-1 events.
 - Comparison of Type-1 events analyzed with Type-2 code useful for identifying bugs, picking signs of derivatives, *etc*.
 - gemc version 4a.1.0 in use, Java/Groovy scripts at coatjava 4a.5.5.
- 2 Next steps:
 - More testing with Type-1 events.
 - Apply Type-2 to Type-2 events.
 - millepede codes are built for Centos 6 need to upgrade to Centos 7.
 - Test with cosmics (simulated and measured).



- Status:
 - Type 2 events selected. Algorithm for Type 2's tested on Type-1 events.
 - Comparison of Type-1 events analyzed with Type-2 code useful for identifying bugs, picking signs of derivatives, *etc*.
 - gemc version 4a.1.0 in use, Java/Groovy scripts at coatjava 4a.5.5.
- Output Steps:
 - More testing with Type-1 events.
 - Apply Type-2 to Type-2 events.
 - millepede codes are built for Centos 6 need to upgrade to Centos 7.
 - Test with cosmics (simulated and measured).
 - Extract misalignments and correct reconstruction.





Visualization/Validation

Visualization

Fun with Mathematica

dDOCAQ

dmyz

DOCA - distance of closest approach, myz - slope in y - z plane.

La 22 Februarie e van de la construit de la co u.2) + Math.pow(vd - vu.2) + Math.pow(zd - zu.2)1.2(();