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Chapter 1

Introduction

1.1 Data Structure of Experiment Transversity

Jefferson Lab Hall A Experiment E06-010 studies neutron single and double spin asymmetry
in the semi-inclusive deep inelastic (SIDIS) 3He↑(−→e , e′π/K±)X reactions with polarized elec-
tron beam and a transversely polarized 3He target. During production running, there are 4
3He↑ target spin directions: vertical up/down (also called V±) and transverse-in-plane beam
right/left (also called T±). At each so-called target spin state, 3He↑ spin direction will remain
unchanged while beam helicity fast flips at a rate of 30Hz. We tried to take 20min of data
at each state, before flipping the spin to an inverse direction and start a new state. There
are total roughly 3000 spin states. They are rough averagely distributed between transverse
and vertical target direction, as well as positive and negative charged hadrons. Average event
count in each state is on the order of amplitude of 100 for e′pi coincidence events and 6∼ 10
for e′K coincidence events. From the data, following information has been extracted, which
is not concern of this notes.

• total charge and DAQ/electronics live time of each spin state. They could also be
counted in helicity states separately.

• target/beam polarization, target density and luminosity

• for each event, following information is known: event physics type (ex. reaction channel),
which spin/helicity state it’s from and related kinematics variables, ex. φh, φS

The total SIDIS yield[3] is simplified as

y(φh, φS) = ρ · σ · aT/V±(φh, φS)

1 + ST

∑
j

εjSSAj(φh, φS) (1.1)

+|PBeam| · h ·

ST

∑
j

εjDSAj(φh, φS) + SL ·
(
εLL + εcos φh

LL · cos(φh)
)

where ρ is longitudinal target density, σ is the cross-sections, a±(φh, φS) is the acceptance at
transverse or vertical ± spin state, SSA/DSAj(φh, φS) is the jth azimuthal single spin (SSA)
or double spin (DSA) angular modulation, sin(φh + φS) for example, ST/L is transverse or
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CHAPTER 1. INTRODUCTION 2

longitudinal target polarization in q vector frame, PBeam and h are electron beam polarization
and helicity, εj is the amplitude of each modulation. In this note, longitudinal modulations,
εLL and εcos φh

LL , which are contamination to DSA asymmetries, could be extracted from our
data or as inputs, base on knowledge from other experiment. Our goal of this notes is develop
maximun likelihood based method to extract εj from Transversity Data.

1.2 Why Maximum likelihood Estimation

Maximum likelihood Estimation (MLE) is a popular statistical method used for fitting a
statistical model to data, and providing estimates for the model’s parameters. By introducing
MLE method into Transversity data analysis, following benefits are expected

• As cross check of existing local-pair angular-binned-fitting method (Blue Team method
for short) developed by Blue Team[2]

• High statistic approximation is required for angular-binned-fitting method to be unbi-
ased (in an extreme example, bin fitting method would break down if statistical expec-
tation of count in each bin is less than 1). Therefore, there are practical difficulties for
channels with very low statistics (eg. (e, e′K−)). On the other hand, MLE do not have
this problem as long as total counts are high (Please refer to section 1.3).

• For angular modulation extraction, part of angle information will be lost during binning
process, while MLE would access preserve all the information.

• MLE also offers an alternative method to combine data separated into spin states.
Comparing with local-pair method[2], MLE would trade lower statistical uncertainty
with higher systematic bias, in the case that local pairs are non-symmetric in sense of
effective beam charges. This will be discussed in section 2.2.3.

It’s possible to combine use MLE and local-pair method, each for one of two major steps of
the asymmetry extraction: combination of information between spin states and extraction of
angular modulation. It will be discussed in section 5.1.

1.3 MLE for Combining Yields and Spectrum

As a simple but useful example of MLE method over multiple spin state, this section will
demonstrate how to get overall yield from multiple data segments with MLE, under the
assumptions that

• In an experiments, there are multiple data segments (could be runs or spin states), index
them by i

• In each segment, integrated luminosity (L̃i =
∫

L(t)idt) and DAQ/electronics live time
(LTi) is known. We define effective charge C̃i ≡ L̃i × LTi/ (Constant)1.

1

– Constant here converts units from luminosity to charge.
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• Event count for the channel we study is known (Ni). This could be a specific channel or
a bin in a spectrum.

• physical yield, y, do not drift (in another word, acceptance and detector efficiency do
not drift with time)

• As an additional assumption, which is usually true for most cases, each Ni follows
Poisson Distribution2

Pr (Ni = k) ≡ fi(k)
= Poisson(k, yC̃i)

=
(yC̃i)k

k!
exp(−yC̃i) (1.2)

To calculate the maximum likelihood value, we form the log-likelihood function,

L (y) ≡ log
∏

i

fi(Ni)

=
∑

i

(
Ni log yC̃i − yC̃i)

)
+ Constant (1.3)

Take the derivative of L with respect to y and equate it to zero:

0 = dL (y) /dy

=
∑

i

(
Niy − C̃i

)
(1.4)

So estimator of y is solution to above equation

ŷMLE =
∑

i

Ni/
∑

i

C̃i (1.5)

with uncertainty

σ (ŷMLE) = 1/

√∑
i

Ni (1.6)

From property of MLE we know ŷMLE is non-biased and efficient at large statistics limit∑
i

Ni � 1.

Note estimator for y with weighted sum or minimum χ2 method is

ŷws =
∑

i

Ni

C̃i

wi (1.7)

=
∑

i

C̃i/
∑

j

C̃2
j

Ni
(1.8)

2

– This will not be true in special cases, for example, when DAQ prescale> 1. However, if percentage of
this channel over all trigger is small, then distribution of Ni will be close to Poisson Distribution.



CHAPTER 1. INTRODUCTION 4

where

wi ≡ 1/σ2

(
Ni

C̃i

)
/Norm (1.9)

= C̃2
i /Ni/Norm (1.10)

=
C̃2

i

Ni
/
∑

j

C̃2
j

Ni
(1.11)

In case that statistics of each data segment is large, Ni � 1

ŷws → ŷMLE (1.12)

However, ŷws breaks down if Ni is small, especially Ni = 1 or 03. ŷMLE remain valid in this
case.

1.4 Two Models Describing an Asymmetry Measurement

In this sections, two categories of model are built for extraction of yield asymmetry (non-
modulated) between spin states. This is the fundamental process of asymmetry measurements,
applicable to both SSA and DSA. They are based on either spin-states or each events. The
event based model will be further developed to described angular modulation in section 3.2.1.

Consider the case that, during a stable experiment (no yield drifting), we collected data on
multiple target spin states (indexed by i+ for plus spin states and i− for minus spin state). For
each state, Ni± events (independent of each other) are collected. Integrated luminosity and
live time4 in each spin state are also known to be L̃i± =

∫
Li±dt and LTi±. For simplification,

we define effective charge

C̃i± ≡ L̃i± × LTi±/ (Units Conversion Constant) (1.13)

. Then we would expect
E
[
Ni±

]
= yC̃i±(1± Pi±ε) (1.14)

, where E [] is expectation; y is average yield of this experiment; Pi± is target polarization; ε
is physical asymmetry of this process.

3There is a simulation to demonstrate ŷws is biased in simplified case of eCi = Constant, shown in Figure
3-33 of Yi Qiang’s PhD Thesis[4]

4live time here is multiply of both electronics live time and DAQ live time, it includes prescale factor
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F̃or further convenience, we define a series of sum values here:

N± ≡
∑
i±

Ni±

N ≡ N+ + N−

NP,± ≡
∑
i±

Ni±Pi±

NP 2,± ≡
∑
i±

Ni±P 2
i± (1.15)

C̃± ≡
∑
i±

C̃i±

C̃P,± ≡
∑
i±

C̃i±Pi±

,where
∑

i±
is defined as sum over state index i+ or i− over all plus or minus spin states.

(Notations like C̃T/V±or iT/V± could also be used in later sections, which are defined within
transverse or vertical polarized spin states) It’s also useful to predefine asymmetries, including

• effective charge asymmetry

AC ≡ C̃+ − C̃−

C̃+ + C̃−
(1.16)

• polarized effective charge asymmetry

ACP ≡
C̃P,+ − C̃P,−

C̃+ + C̃−
(1.17)

• raw event count asymmetry

Araw ≡ N+ −N−
N+ + N−

(1.18)

Finally, we present two statistical models as following:

State-Based Treating each spin state as an independent measurement. Therefore, there are
total Nstate+ + Nstate−measurements, each of which measures event numbers, Ni± , in
spin state i±. The probability distribution of Ni± follows Poisson distribution (different
for each state) of

Pr(Ni± = k) = Poisson(k, yC̃i±(1± Pi±ε))

≡
(yC̃i±(1± Pi±ε))k

k!
exp(−yC̃i±(1± Pi±ε)) (1.19)

Event-Based Treating each event as an independent measurement: Consider the experiment
that, although C̃i± is known, we take out and study each event one by one, randomly,
from the data stream (without knowing which spin state it was in before taking it out).
Then the spin state ID, StateIDev, of any event is a discrete random variable. Therefore,
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upon taking out each event, we make a measurement of independent and identically-
distributed (i.i.d.) random variables StateIDev. The distribution of StateIDev is

Pr(StateIDev = i±) = C̃i±(1± Pi±ε)/Norm (1.20)

,where i± stands for the ith state in plus of minors spin state sequence; Norm is nor-
malization factor satisfying

Norm =
∑

states

C̃i±(1± Pi±ε)

= (C̃+ + C̃−)(1 + εACP ) (1.21)

It will be shown in section 2.2.3 that, despite their different view points, estimators produced
from above two statistical model are identical, which suggests they validate each other.



Chapter 2

Estimation of Non-Modulated
Asymmetry

Although the final goal of Transversity is to extract angular modulated asymmetries, it is
very useful to discuss methods to combine spin states and extract yield asymmetry:

• As data check, it’s always useful to check yield asymmetry between spin plus/minus
states.

• Angular-binned-fitting method[2] is based on yield asymmetry of each angular bins. It’s
applicable to both single and double spin asymmetry.

• MLE of angular modulated asymmetry to be discussed in section 3.2 is a further devel-
opment of this method.

Therefore, in this section, MLE method is discussed to extract of physical asymmetry from
data separated into multiple spin states. Statistical model introduced in section 1.4 are
directly used here.

2.1 General Formula

2.1.1 State Based Model

To calculate the maximum likelihood value, we form the log-likelihood function,

L(ε) = log
∏

states

(yC̃i±(1± Pi±ε))Ni±

Ni± !
exp(−yC̃i±(1± Pi±ε))

=
∑

states

(
−yC̃i±(1± Pi±ε) + Ni± log

(
yC̃i±(1± Pi±ε)

))
+ Constant (2.1)

. We take the derivative of L with respect to parameter ε, y respectively and equate them to
zero:

0 =
dL

dε
= −y(C̃P,+ − C̃P,−) +

∑
states

±Ni±Pi±

1± εPi±
(2.2)

0 =
dL

dy
= −(C̃+ + C̃− + ε(C̃P,+ − C̃P,−)) +

N

y
(2.3)

7
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,where N± was defined in Eq. 1.15. Now we solve Eq. 2.3 for y:

y =
N

C̃+ + C̃− + ε(C̃P,+ − C̃P,−)
(2.4)

and send it back to Eq. 2.2 we get equation

− NACP

1 + εACP
+
∑
i+

Ni+Pi+

1 + εPi+

−
∑
i−

Ni−Pi−

1− εPi−
= 0 (2.5)

. There is no analytical solution to this equation (special cases see section 2.2). An expansion
over ε simplifies this problem:

−NACP (1−εACP )+
∑
i+

Ni+Pi+(1−εPi+)−
∑
i−

Ni−Pi−(1+εPi−)+O
(
(N+ −N−)ε2

)
= 0 (2.6)

. The non-linear residue of expansion is smaller than original form due to cancellation between
terms. Solving this equation, we have final estimator for ε:

ε̂ =
NP,+ −NP,− −ACP N

NP 2,+ + NP 2,− −A2
CP N

+ O
(
Arawε2

)
(2.7)

In Transversity case, all major asymmetries square are much smaller comparing to statis-
tical uncertainty. Therefore, bias O

(
Arawε2

)
could be ignored.

2.1.2 Event Based Model

Similar to last section, we first calculate log-likelihood function with event based model,

L =
∑
ev

log
(
C̃i±(1± Pi±ε)/Norm

)
=

∑
ev

(
log C̃ + log

(
1± Pi±ε

)
− log (Norm)

)
=

∑
ev

log
(
1± Pi±ε

)
−N log (1 + εACP ) + Constant

=
∑

states

Ni± log
(
1± Pi±ε

)
−N log (1 + εACP ) + Constant (2.8)

. Take derivative of L with respect to parameter ε and equate them to zero:

0 =
dL

dε
= − NACP

1 + εACP
+
∑
i+

Ni+Pi+

1 + εPi+

−
∑
i−

Ni−Pi−

1− εPi−
(2.9)

, which is identical with Eq. 2.5. Therefore, their results of ε̂ are exactly identical.
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2.1.3 Uncertainty Estimation,

With the event based model, the information contained in N events about the asymmetry (as
defined by Fisher and quoted in [5]) is given by

I (ε) = −E
[

∂2

∂ε2
log L

]
(2.10)

= −E

[
∂2

∂ε2

(∑
states

Ni± log
(
1± Pi±ε

)
−N log (1 + εACP )

)]
(2.11)

= E

[∑
states

Ni±

P 2
i±(

1± Pi±ε
)2 −N

A2
CP

(1 + εACP )2

]
(2.12)

. This expression is difficult to calculate. An expansion over ε would make it easier:

I (ε) =
∑

states

Ni±

(
P 2

i± ∓ 2εP 3
i±

)
−N

(
A2

CP − 2εA3
CP

)
+ O

(
Nε2

)
(2.13)

. The MLE is asymptotically efficient, i.e., it achieves the Cramér-Rao lower bound when the
sample size tends to infinity:

σ2 (ε̂) =
1

I (ε)

=
1

NP 2,+ + NP 2,− −NA2
CP

+ O
( ε

N

)
(2.14)

2.2 Discussion

2.2.1 Special Case : Polarization is identical for all spin states

In case that target polarization is same for all spin states, there are a simple equations of ε̂
by solving Eq. 2.5 exactly (without expansion on ε).

Here, Eq. 2.5 become

− NACP

1 + εACP
+ P (

∑
i+

Ni+

1 + εP
−
∑

i−
Ni−

1− εPi−
) = 0 (2.15)

, which is analytical solvable. Then we conclude that

ε̂ConstP =
1
P

Araw −AC

1−ArawAC
(2.16)

=
1
P

N+eC+
− N−eC−

N+eC+
+ N−eC−

(2.17)

Eq. 2.17 is same as getting MLE yield from spin ± states separately (as section 1.3) then form
an asymmetry, which is also reasonable.
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2.2.2 Special Case : There are only one spin state pair

In case that there are only two spin state and target polarization is same for both states,
Eq. 2.16 could be further simplified to

ε̂ConstP =
1
P

Araw −AC

1−ArawAC
=

1
P
×

N+eC+
− N−eC−

N+eC+
+ N−eC−

(2.18)

. As we expected, this expression is identical to that of Blue Team’s note[2].

2.2.3 Compared with Local-Pair Method : Statistics for Systematics

So, what’s the difference between MLE result Eq. 2.7 and local pair method developed in [2]?
I would argue that MLE gains lower statistic uncertainty by having risk of higher systematics,
which is related with time dependent efficiency drift. Size of this trade-off is proportional to
local charge asymmetry

(
C̃i+ − C̃i−

)
/
(
C̃i+ + C̃i−

)
. To help better illustrate this point, a

simple experiment is constructed:
Consider an experiment with 4 spin states: 1+, 1−, 2+, 2−. We set physical asymmetry is

0, so that any asymmetry given estimator is its bias. But yield is assumed to be drifting with
time, but remains constant in each state, say yi±. To simplify, target polarization is constant
100%. Just to be clear, estimators from both methods are expressed here:

ε̂MLE =

N1+−N1−+N2+−N2−
N1++N1−+N2++N2−

− eC1+− eC1−+ eC2+− eC2−eC1++ eC1−+ eC2++ eC2−

1− N1+−N1−+N2+−N2−
N1++N1−+N2++N2−

× eC1+− eC1−+ eC2+− eC2−eC1++ eC1−+ eC2++ eC2−

(2.19)

ε̂Local Pair =
a1

(
N1+eC1+

− N1−eC1−

)
+ a2

(
N2+eC2+

− N2−eC2−

)
a1

(
N1+eC1+

+ N1−eC1−

)
+ a2

(
N2+eC2+

+ N2−eC2−

) (2.20)

where a1/a2 = (C̃1+ + C̃1−)/(C̃2+ + C̃2−). In large event number estimation, Ni± → yi±C̃i± ,
we study following cases:

• C̃1+/C̃1− = C̃2+/C̃2− , or local charge asymmetry is equal to that of global. Then
ε̂MLE = ε̂Local Pair.

• To help better illustrate the effect of local charge asymmetry , we exaggeratedly assume
C̃1+ = 100C̃1− = 100C̃2+ = C̃2− and yi± is constant. Then σ (ε̂MLE) ≈

√
2

10 σ (ε̂Local Pair).

• At same huge local charge asymmetry, C̃1+ = 100C̃1− = 100C̃2+ = C̃2−, we further
assume y1+ = y1− 6= y2+ = y2−. Then ε̂MLE ≈ (y1+ − y2−) / (y1+ + y2−) gets biased by
yield drifts, while ε̂Local Pair=0 remain unbiased.

Therefore, when there is local charge asymmetry fluctuation, MLE achieves lower
statistical uncertainty by best (statistically) matching ± states beyond local pairs,
taking the risk that yield could drift. It’s possible to suppress this risk by applying time
dependent yield correction on effective charge C̃i± , if relative yield drift is well known. Possible
ways include
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• Average yield fitting of a stable period of runs. Blue Team has made this study. However,
for such period, total effective charge asymmetry is small, which mean, effectively, MLE
matches spin state within this period. Therefore, the total amount of this correction is
limited.

• Estimate relative coincidence yield drift by studying single channels, which have higher
statistics. However, coincidence yield drift will not be equal to multiply of drift of two
single channels due to acceptance/distribution difference. Extensive study is necessary
to get more precise prediction.



Chapter 3

Estimation of Angular Modulation
for SSA

In the case that electron beam is not polarized, SIDIS azimuthal yield, Eq. 1.1, can be
simplified as

y(φh, φS) = ρ · σ · a±(φh, φS)(1 + P
∑

j

εjAj(φh, φS)), (3.1)

, where ρ is longitudinal target density, σ is the unpolarized cross-section, a±(φh, φS) is the
acceptance at spin state ±, Aj(φh, φS) is the jth azimuthal angular modulation, sin(φh + φS)
for example, P is target polarization1, and εj as the amplitude of each modulation. Our goal
is to get estimators of ε̂j as well as their uncertainties and correlations, which takes the form
of covariance matrix. Further pointing out, acceptance for plus and minus spin states are
different. However, due to our exact spin direction flip, we have

a+(φh, φS) = a−(φh, φS + π) (3.2)

In section 3.1, a special case (no live time and charge asymmetry) will be studied with
both MLE and weighted sum method. It will be demonstrated that MLE give identical result
as weighted sum, given asymmetry is small. Then MLE will be expanded to process data in
real experiment situations (including live time, charge asymmetry and target polarization).

3.1 As a start : Single Data Section with Symmetric Accep-
tance

3.1.1 Introduction

As a start, we introduce to a complete solution to a simpler ideal case:
In a Transversity-like experiment with multiple target spin states, there is no overall charge

asymmetry, lift time asymmetry and time dependent yield drift. Target polarization is constant
(since it’s easy to process by transform ε → ε/P , σ (ε) → σ (ε) /P , we simply set it to be 100%)

1Since in transversity configuration, at SSA is most sensitive to data taken with vertical target direction,
during which target spin direction is mostly transverse to q. In this case ST → PTarget as in Eq. 1.1.

12
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In this special case, we can further expand event based model of section 1.4 to describe this
experiment. Here is an important step: by summing over all spin states, for each incoming
electron, it has equal chance to interact with a nuclei of spin plus or minus. Therefore, we
can use a single probability function to describe (φh, φS) distribution of each event with an
effective acceptance, a(φh, φS) = (a+(φh, φS) + a−(φh, φS)) /2. Now we can translate the
yield (Eq. 3.1) into probability, a normalization factor Norm({εj}) needs to be applied due
to the undetermined εj

f(φh, φS) = ρ · σ · a(φh, φS)(1 + P
∑

j

εjAj(φh, φS))/Norm(εi) (3.3)

where

Norm(εi) = (
∫ ∫ 2π

0
σ · a(φh, φS)(1 +

∑
j

εjAj(φh, φS))dφhdφS (3.4)

Consider the fact that a(φh, φS) = a(φh, φS + π), an interesting fact with this kind of
acceptance is that, when m + n = odd we have∫ 2π

0
a(φS) cosm(φS) sinn(φS)dφS = 0. (3.5)

In the case of single spin asymmetries on a transversely polarized target, we have at most five
azimuthal terms [3],

• Three in leading twist: sin(φh − φS), sin(φh + φS) and sin(3φh − φS);

• Two in higher twist: sin(φS) and sin(2φh − φS).

And all of these terms have odd total order of sin(φS) and cos(φS), or

Ai(φh, φS) = −Ai(φh, φS + π) (3.6)

. Now let’s go back to see the normalization factor in Eq. 3.4. Because of the nature of the
asymmetry components, the normalization become a constant:

Norm({εj}) =
∫ 2π

0

∫ 2π

0
σ · a(φh, φS)(1 + dφhdφS) = const. (3.7)

3.1.2 Maximum Likelihood

Therefore the log-likelihood function of all the event sample is

L = log
∏
ev

f(φh, φS). (3.8)

And the best sets of εis maximizes the total likelihood with

∂ log L

∂εi
= 0. (3.9)
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With N as a constant, we can rewrite Equation 3.9 as

∂L

∂εi
=

∑
ev

(
∂ log(σN · a(φh, φS))

∂εi
+

∂ log(1 +
∑

j εjAj(φh, φS))
∂εi

)

=
∑
ev

∂ log(1 +
∑

j εjAj(φh, φS))
∂εi

=
∑
ev

Ai(φh, φS)
1 +

∑
j εjAj(φh, φS)

= 0 (3.10)

And in case that the asymmetries are small, the denominator can be expanded into polyno-
mials∑

ev

Ai(φh, φS)
1 +

∑
j εjAj(φh, φS)

=
∑
ev

Ai(φh, φS)(1−
∑

j

εjAj(φh, φS) + O(A2)) = 0 (3.11)

With Aj � 1, we can ignore higher order terms to get a set of linear solutions for εj as written
in matrix format: 

∑
ev

A1A1

∑
ev

A1A2 . . .∑
ev

A2A1

∑
ev

A2A2 . . .

...
...

. . .


 ε1

ε2
...

 =


∑
ev

A1∑
ev

A1

...

 (3.12)

or  ε̂1
ε̂2
...

 =


∑
ev

A1A1

∑
ev

A1A2 . . .∑
ev

A2A1

∑
ev

A2A2 . . .

...
...

. . .


−1

∑
ev

A1∑
ev

A1

...

 (3.13)

3.1.3 Weighted Sum

The method of weighted sum [5] was successful used in various analysis of azimuthal asym-
metries with only one angular variable and symmetric acceptance, and now let’s see whether
we can adopted in the SIDIS case with two variables.

With Equation (??) and (3.5) and that fact that all five modulations, Ai, have odd total
order of φS in SIDIS, we have the following relations.∫ 2π

0

∫ 2π

0
y(φh, φS)AidφhdφS =

∫ 2π

0

∫ 2π

0
σ · a(φh, φS)(1 +

∑
j

εjAj)AidφhdφS

=
∑

j

εj

∫ 2π

0

∫ 2π

0
σ · a(φh, φS)AjAidφhdφS (3.14)

and∫ 2π

0

∫ 2π

0
y(φh, φS)AiAjdφhdφS =

∫ 2π

0

∫ 2π

0
σ · a(φh, φS)(1 +

∑
k

εkAk)AiAjdφhdφS

=
∫ 2π

0

∫ 2π

0
σ · a(φh, φS)AiAjdφhdφS (3.15)
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Combine Equation (3.14) and (3.15), we get∫ 2π

0

∫ 2π

0
y(φh, φS)AidφhdφS =

∑
j

εj

∫ 2π

0

∫ 2π

0
y(φh, φS)AiAjdφhdφS (3.16)

Since y(φh, φS) is the yield, doing the integral
∫ 2π
0

∫ 2π
0 y(φh, φS)x(φh, φS)dφhdφS is effectively

doing the sum over all obtained events with weight x(φh, φS),
∑

ev x(φh, φS), and the overall
scaling factor can be ignored since it’s applied on both sides of the equation. Therefore we
can rewrite Equation 3.16 with the sum and result is exactly same as Equation (3.12)

∑
ev

A1A1

∑
ev

A1A2 . . .∑
ev

A2A1

∑
ev

A2A2 . . .

...
...

. . .


 ε1

ε2
...

 =


∑
ev

A1∑
ev

A1

...

 .

3.1.4 Uncertainty Estimation

The uncertainty estimation procedure is similar to that of section 2.1.3. Therefore we just
quote the conclusion from reference[5]: the covariance matrix of ε̂i is

V

 ε̂1
ε̂2
...

 =


∑
ev

A1A1

∑
ev

A1A2 . . .∑
ev

A2A1

∑
ev

A2A2 . . .

...
...

. . .


−1

(3.17)

3.2 Angular Modulation Extraction with Spin States

Following last section, we will discuss angular modulation extraction in close-to-reality case
that

• During an experiment, there are multiple spin states. We categorize them into Tar-
get Transversely Polarized Plus/Minus States, indexed by iT±, and Vertically Polarized
Polarized Plus/Minus States, indexed by iV±

• there are charge/live time asymmetry between spin states

• each spin state could carry a different target polarization PiT/V±. However, all event in
same spin state share same polarization.

• yield is stable2

2

– time dependent drift is ignored in this section. It will introduce a systematic bias to estimator of this
study
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3.2.1 Building the statistical Model

Back to event based model as discussed in section 1.4, for each event, we have 3 observables
(StateID, φh, φS)ev. Considering equation 3.1, the probability distribution of each event is

Pr(StateID = iT/V±, φh, φS) ≡ fiT/V±(φh, φS) (3.18)

=
C̃iT/V±aT/V±(φh, φS)

Norm({εi})

1 + PiT/V±

∑
j

εjAj(φh, φS)

(3.19)

, where normalization function

Norm({εi}) =
∑

iT/V±

∫∫
dφhdφSC̃iT/V±aT/V±(φh, φS)

1 + Pi±

∑
j

εjAj(φh, φS)

 (3.20)

. Here
∑

iT/V±

is defined as sum over all spin states with state index iT/V±, while
∑

j

is sum

over all angular modulation terms Aj(φh, φS). Quoting Eq. 3.6 and Eq. 3.2, normalization
function could be further simplify to

Norm({εi}) =
∑

iT/V +

∫∫
dφhdφSC̃iT/V +

aT/V +(φh, φS)(1 + PiT/V +

∑
j

εjAj(φh, φS)

+
∑

iT/V−

∫∫
dφhdφSC̃iT/V−aT/V−(φh, φS)(1 + PiT/V−

∑
j

εjAj(φh, φS)

=
∑

iT/V +

∫∫
dφhdφSC̃iT/V +

aT/V +(φh, φS)(1 + PiT/V +

∑
j

εjAj(φh, φS)

+
∑

iT/V−

∫∫
dφhdφSC̃iT/V−aT/V +(φh, φS + π)

×

1− PiT/V−

∑
j

εjAj(φh, φS + π)


= ãT

(
C̃T+ + C̃T−

)
+ ãV

(
C̃V + + C̃V−

)
+
(
C̃P, T+ − C̃P, T−

)∑
j

εj ãT, j +
(
C̃P, V + − C̃P, V−

)∑
j

εj ãV, j

=
(
ãT

(
C̃T+ + C̃T−

)
+ ãV

(
C̃V + + C̃V−

))1 +
∑

j

εjACP, j

 (3.21)
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, where

ãT/V ≡
∫∫

aT/V +(φh, φS)dφhdφS (3.22)

ãT/V, i ≡
∫∫

aT/V +(φh, φS)Ai(φh, φS)dφhdφS (3.23)

ACP, i ≡
ãT, i

(
C̃P, T+ − C̃P, T−

)
+ ãV, i

(
C̃P, V + − C̃P, V−

)
ãT

(
C̃T+ + C̃T−

)
+ ãV

(
C̃V + + C̃V−

) (3.24)

in another word, for transverse or vertical polarized separately, ãT/V is integrated acceptance
and ãT/V, i is normalized Ai modulated acceptance, and ACP, i is polarization and acceptance
weighted effective charge asymmetry3. In ideal Transversity setup that instrument acceptance
and efficiency is symmetric relative to central horizontal plane, there will be ãT, i → 0 or the
affect of transverse charge asymmetry is much smaller than that of vertical4.

3.2.2 MLE estimator and uncertainty

To calculate the maximum likelihood value, we form the log-likelihood function,

L {εi} = log

(∏
ev

fi±(φh, φS)

)

=
∑
ev

log

1 + PiT/V±

∑
j

εjAj(φh, φS)

−N log Norm({εi}) + Constant(3.25)

where
∑

ev is summing over all events in both transverse and vertical target states, while∑
j remains summing over all angular modulations. Take derivative of L with respect to

parameter εk and equate them to zero:

0 =
dL

dεk

=
∑
ev

PiT/V±Ak(φh, φS)
1 + PiT/V±

∑
j εjAj(φh, φS)

−N
ACP, k

1 +
∑

j εjACP, j
(3.26)

=
∑
ev

PiT/V±Ak(φh, φS)

1− PiT/V±

∑
j

εjAj(φh, φS)


−NACP, k

1−
∑

j

εjACP, j

+ O

(
(N+ −N−)

∑
mn

εmεn

)
(3.27)

3Section 5.2 is dedicated to discuss property of acceptance and ACP, i, while its estimation is shown in
section 5.2.3.1.

4Real Transversity data suggests for Seivers modulation, ãT ∼ −3% while ãV ∼ −93%, which validates this
discussion
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To further simplify this expression, we define following event sums:∑
[PAk] ≡

∑
ev

PiT/V±Ak(φh, φS) (3.28)∑[
P 2AjAk

]
≡

∑
ev

P 2
iT/V±

Aj(φh, φS)Ak(φh, φS) (3.29)

So

0 =
∑

[PAk]−
∑

j

εj

∑[
P 2AjAk

]
−NACP, k+NACP, k

∑
j

εjACP, j+O

(
(N+ −N−)

∑
mn

εmεn

)
(3.30)

Therefore, we have multiple equations with index k

∑
j

εj

(∑[
P 2AjAk

]
−NACP ,jACP, k

)
=
∑

[PAk]−NACP, k + O

(
(N+ −N−)

∑
mn

εmεn

)
(3.31)

We define matrix

F ≡


∑[

P 2A1A1

]
−NA2

CP, 1

∑[
P 2A1A2

]
−NACP, 1ACP, 2 . . .∑[

P 2A2A1

]
−NACP, 2ACP, 1

∑[
P 2A2A2

]
−NA2

CP, 2 . . .
...

...
. . .

 (3.32)

B ≡


∑

[PA1]−NACP, 1∑
[PA2]−NACP, 2

...

 (3.33)

ε ≡

 ε1
ε2
...

 (3.34)

Then equation for estimators could be expressed in matrix

Fε = B + O

(
N+ −N−

N

∑
mn

εmεn

)
(3.35)

The estimator are solved by

ε̂ = F−1B + O

(
N+ −N−

N

∑
mn

εmεn

)
(3.36)

To estimate its uncertainty, again we build Fisher information matrix for log likelihood



CHAPTER 3. ESTIMATION OF ANGULAR MODULATION FOR SSA 19

formula 3.25:

[I (ε)]jk = −E
[

∂2L

∂εj∂εk

]
= −E

[
∂2

∂εj∂εk

(∑
ev

log

(
1 + PiT/V±

∑
i

εiAi(φh, φS)

)
−N log

(
1 +

∑
i

εiACP, i

))]

= −E

[
∂

∂εj

(∑
ev

PiT/V±Ak(φh, φS)
1 + PiT/V±

∑
i εiAi(φh, φS)

−N
ACP, k

1 +
∑

i εiãi

)]

= E

∑
ev

P 2
iT/V±

Ak(φh, φS)Aj(φh, φS)(
1 + PiT/V±

∑
i εiAi(φh, φS)

)2 −N
ACP, kACP, j

(1 + ACP
∑

i εiãi)
2


=

∑[
P 2AjAk

]
−NACP ,jACP, k + O

N
∑
ijk

ACP, iACP, jACP, k

∑
i

εi

 (3.37)

At large statistic approximation, covariance matrix is given by

V

 ε̂1
ε̂2
...

 =


∑[

P 2A1A1

]
−NA2

CP, 1

∑[
P 2A1A2

]
−NACP, 1ACP, 2 . . .∑[

P 2A2A1

]
−NACP, 2ACP, 1

∑[
P 2A2A2

]
−NA2

CP, 2 . . .
...

...
. . .


−1

+O

 1
N

∑
ijk

ACP, iACP, jACP, k

∑
i

εi

 (3.38)

or

V (ε̂) = F−1 + O


∑
ijk

ACPiACPjACPk

∑
i

εi

N

 (3.39)

3.2.3 Discussion

•
∑

T [PAk] and ãT, i are small relative to those from vertical spin states. Therefore, {ε̂i}
is less depending on transverse data. It is as we expected, since transverse data do not
carry single spin asymmetry to first order.

• If events distribution are correlated for two angular modulations Ai and Aj , then inter-
ference term,

∑[
P 2AjAk

]
, will be non-zero. Following Eq. 3.39, uncertainty of ε̂i will

increase. Besides, correlation elements will show up in the covariance matrix V.



Chapter 4

Estimation of Angular Modulated
for DSA

4.1 Build the statistical model

As a related physics goal with SSA, DSA concerns beam helicity related asymmetry, or DSAj

in Eq. 1.1. From analysis point of view it features,

• In general we treat target spin = ±1 states in two separate series. With in each series,
an angular modulation on helicity asymmetry could be extracted. Results between two
series are expected to be consistent.

• Charge asymmetry between helicity = ±1 states are very small (online monitoring
controlled to below 0.1%). Therefore, SSA asymmetry terms would largely canceled out
during the process of forming helicity asymmetry.

• Also because charge asymmetry between helicity is small, bias of MLE introduced by
yield drift will be suppressed, as shown in section 2.2.3.

• Back to first bullet, in real case there are 2 target spin direction: Transverse and Vertical.
To combine their information and form full statistics angular modulation, it’s best to
perform a global MLE analysis on all states. However, it’s possible to check consistency
between the following two series, whose results are largely statistically independent of
each other: series 1= VSpin=++TSpin=++VSpin=−, series 2= VSpin=++TSpin=−+VSpin=−

In this section we study DSA under following assumptions:

• During an experiment, there are multiple spin states. We categorize them into Target
Transversely Polarized Plus/Minus (T±) States, indexed by iT±, and Vertically Polarized
Polarized Plus/Minus (V±) States, indexed by iV±. Each spin state contains data from
two beam helicity, a second index is added to spin state index to specify helicity, eg.
N+,iV− for event count at ith minus spin state with helicity= +1.

• There could be charge/live time asymmetry between spin states. Charge/live time is
known for each spin. Similar as Eq. 1.13, we define effective charge C̃h,iT/V± ≡ L̃h,iT/V±×
LTh,iT/V±/ (Average Target Density)

20
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• each spin state could carry a different target/beam polarization. However, all event in
same spin state share same polarization. Transverse and longitudinal target polarization
could be expressed as 1

ST = PTarget sin θS (4.1)
SL = PTarget cos θS (4.2)

And for further simplification, we define composite polarization

PiT/V± ≡ (PBeam ∗ PTarget)iT/V±
(4.3)

• yield is stable (time dependent drift is ignored in this section; later it will show up as
systematic bias)

• longitudinal modulations, εLL and εcos φh
LL , are assumed as inputs, base on knowledge from

other experiment. It’s also possible to fit them from data as discussed in section ??.

Reviewing Eq. 1.1, DSA cross sections could be simplified as

y(φh, φS) = ρ · σ · aT/V±(φh, φS , θS)
(
1 + h · PiT/V±

×

sin θS ·
∑

j

εjAj(φh, φS) + cos θS ·
(
εLL + ε

cos(φh)
LL cos(φh)

) (4.4)

where aT/V±(φh, φS , θS) is 3D acceptance on (φh, φS , θS). Because of spin direction if flipped
exactly 90 degree between ± spin states,

aT/V +(φh, φS , θS) = aT/V−(φh, φS + π, π − θS) (4.5)

Aj(φh, φS) is double spin asymmetry angular modulation terms[3]:

• One in leading twist: cos(φh − φS)

• Two in higher twist: cos(φS) and cos(2φh − φS)

They are also following Eq. 3.6 as in single spin asymmetry case.
Further expanding event based model in section 1.4, each event from data stream is treated

as a measurement of a group of 5 random variables (helicity, StateID, φh, φS , θS). Joint prob-
ability distribution is

Pr(helicity = h, StateID = iT/V±, φh, φS , θS)
≡ fh,iT/V±(φh, φS , θS)

=
C̃h,iT/V±aT/V±(φh, φS , θS)

Norm({εi})
(4.6)

×

1 + h · PiT/V± sin θS

∑
j

εjAj(φh, φS) + h · PiT/V± cos θS

(
εLL + ε

cos(φh)
LL · cos(φh)

)(4.7)

1Notice the SL sign convention (spin along momentum transfer is +) is inverse to ref [3]
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, where normalization function

Norm({εi}) =
∑

iT/V±

∑
h=±1

∫∫∫
dφhdφSdθSC̃h,iT/V±aT/V±(φh, φS)

×

1 + h · PiT/V± sin θS

∑
j

εjAj(φh, φS) + h · PiT/V± cos θS

(
εLL + ε

cos(φh)
LL · cos(φh)

)
=

∑
iT/V±

∑
h=±1

C̃h,iT/V±

×

ãT/V + h · PiT/V±

∑
j

εj ã
sin θS

T/V±,j + εLLãcos θS

T/V± + ε
cos(φh)
LL ãcos θS cos φh

T/V±

 (4.8)

, where
∑

iT/V±
is sum over all spin states with StateID variable iT/V±,

∑
h=±1 is summing

over both helicity states with helicity variable h. Also, acceptance modulations are defined
below (also considering symmetry of Eq. 4.5 after spin flip φS → φS + π, θS → π − θS)

ãT/V ≡
∫∫∫

aT/V +(φh, φS , θS)dφhdφSdθS (4.9)

=
∫∫∫

aT/V−(φh, φS , θS)dφhdφSdθS (4.10)

ãsin θS

T/V, i ≡
∫∫∫

aT/V +(φh, φS , θS) sin θSAi(φh, φS)dφhdφSdθS (4.11)

= −
∫∫∫

aT/V−(φh, φS , θS) sin θSAi(φh, φS)dφhdφSdθS (4.12)

ãcos θS

T/V ≡
∫∫∫

aT/V +(φh, φS , θS) cos θSdφhdφSdθS (4.13)

= −
∫∫∫

aT/V−(φh, φS , θS) cos θSdφhdφSdθS (4.14)

ãcos θS cos φh

T/V ≡
∫∫∫

aT/V +(φh, φS , θS) cos θS cos φhdφhdφSdθS (4.15)

= −
∫∫∫

aT/V−(φh, φS , θS) cos θS cos φhdφhdφSdθS (4.16)
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Here ãcos θS

T/V and ãcos θS cos φh

T/V are suppressed compared with ãsin θS

T/V, i, because aT/V±(φh, φS , θS)
concentrate on θS ∼ 90◦ region. Then we redefine

C̃h,T/V± ≡
∑

iT/V±

C̃h,iT/V± (4.17)

C̃P, h, T/V± ≡
∑

iT/V±

C̃h,iT/V±PiT/V± (4.18)

ACP, j ≡

∑
T/V±±ãsin θS

T/V,j

(
C̃P,+,T/V± − C̃P,−,T/V±

)
∑

T/V± ãT/V

(
C̃+,T/V± + C̃−,T/V±

) (4.19)

Acos θS
CP ≡

∑
T/V±±ãcos θS

T/V

(
C̃P,+,T/V± − C̃P,−,T/V±

)
∑

T/V± ãT/V

(
C̃+,T/V± + C̃−,T/V±

) (4.20)

Acos θS cos φh
CP ≡

∑
T/V±±ãcos θS cos φh

T/V

(
C̃P,+,T/V± − C̃P,−,T/V±

)
∑

T/V± ãT/V

(
C̃+,T/V± + C̃−,T/V±

) (4.21)

where,
∑

T/V± is sum over 4 spin direction configurations. Estimation of above asymme-
tries are discussed in section 5.2.3.2. With new variables, normalization function is further
simplified to

Norm({εi}) =
∑

All States

((
C̃+,iT/V± + C̃−,iT/V±

)
ãT/V

+PiT/V±

(
C̃+,iT/V± − C̃−,iT/V±

)∑
j

εj ã
sin θS

T/V±, j + εLLãcos θS

T/V± + ε
cos(φh)
LL ãcos θS cos φh

T/V±


=

 ∑
T/V±

(
C̃+,T/V± + C̃−,T/V±

)
×

1 +
∑

j

εjACP, j + εLLAcos θS
CP + ε

cos(φh)
LL Acos θS cos φh

CP

 (4.22)

Here Acos θS
CP and Acos θS cos φh

CP are much suppressed compared with ACP, j due to similar sup-
pression on modulated acceptance as discussed above. And general ACP is small, because
helicity related charge asymmetry was controlled to be small (<∼ 0.1%) during data taking
as well as asymmetry of live time, LT±, was shown to be small too.
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4.2 Extraction of Modulated Asymmetry

To calculate the maximum likelihood value, we form the log-likelihood function,

L {εi} = log

(∏
ev

fh,iT/V±(φh, φS , θS)

)

=
∑
ev

log

1 + h · PiT/V± sin θS

∑
j

εjAj(φh, φS) + h · PiT/V± cos θS

(
εLL + ε

cos(φh)
LL · cos(φh)

)
−N log (Norm({εi})) + Constant (4.23)

where, N is total event counts,
∑

ev is summing over all events in both transverse and vertical
target states, while

∑
j is summing over all angular modulations. Take derivative of L with

respect to parameter εk and equate them to zero:

0 =
dL

dεk

=
∑
ev

h · PiT/V± sin θSAk(φh, φS)

1 + h · PiT/V± sin θS
∑

j εjAj(φh, φS) + h · PiT/V± cos θS

(
εLL + ε

cos(φh)
LL · cos(φh)

)
−N

ACP, k

1 +
∑

j εjACP, j + εLLAcos θS
CP + ε

cos(φh)
LL Acos θS cos φh

CP

In the case that modulations are small, above equations could be expanded with εj , εLL and
ε
cos(φh)
LL :

0 =
∑
ev

h · PiT/V± sin θSAk(φh, φS)

×

1− h · PiT/V± sin θS

∑
j

εjAj(φh, φS)− h · PiT/V± cos θS

(
εLL + ε

cos(φh)
LL · cos(φh)

)
−N ×ACP, k

1−
∑

j

εjACP,j − εLLAcos θS
CP − ε

cos(φh)
LL Acos θS cos φh

CP


+O

(
(N+ −N−)

∑
mn

εmεn

)
(4.24)

Define event sums ∑
[hPAk] ≡

∑
ev

h · PiT/V± sin θSAk(φh, φS) (4.25)∑[
P 2AjAk

]
≡

∑
ev

P 2
iT/V±

sin2 θSAj(φh, φS)Ak(φh, φS) (4.26)∑[
P 2 cos θSAk

]
≡

∑
ev

P 2
iT/V±

sin θSAk(φh, φS) cos θS (4.27)∑[
P 2 cos θS cos φhAk

]
≡

∑
ev

P 2
iT/V±

sin θSAk(φh, φS) cos θS cos φh (4.28)
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Eq. 4.24 could be expressed as∑
j

εj

(∑[
P 2AjAk

]
−N ×ACP, j ×ACP, k

)
=
∑

[hPAk]−N ×ACP, k (4.29)

−εLL

(∑[
P 2 cos θSAk

]
−N ×ACP, kA

cos θS
CP

)
−ε

cos(φh)
LL

(∑[
P 2 cos θS cos φhAk

]
−N ×ACP,kA

cos θS cos φh
CP

)
+O

(
(N+ −N−)

∑
mn

εmεn

)
(4.30)

Solution of which, also expressed in matrix form, are estimators ε̂1
ε̂2
...

 =


∑[

P 2A1A1

]
−NA2

CP, 1

∑[
P 2A1A2

]
−NACP, 1ACP, 2 . . .∑[

P 2A2A1

]
−NACP, 2ACP, 1

∑[
P 2A2A2

]
−NA2

CP, 2 . . .
...

...
. . .


−1

×



∑

[hPA1]−NACP, 1∑
[hPA2]−NACP, 2

...


−εLL


∑[

P 2 cos θSA1

]
−N ×Acos θS

CP ACP,1∑[
P 2 cos θSA2

]
−N ×Acos θS

CP ACP,2
...



−εcos φh
LL


∑[

P 2 cos θS cos φhA1

]
−N ×Acos θS cos φh

CP ACP,1∑[
P 2 cos θS cos φhA2

]
−N ×Acos θS cos φh

CP ACP,2
...


 (4.31)

≡ F−1
(
B − εLLFLL − εcos φh

LL Fcos φh
LL

)
where

Fi, j ≡
∑[

P 2AiAj

]
−NACP, iACP, j (4.32)

Bi ≡
∑

[hPAi]−NACP, i (4.33)

FLL, i ≡
∑[

P 2 cos θSAi

]
−N ×Acos θS

CP ACP, i (4.34)

Fcos φh
LL, i ≡

∑[
P 2 cos θS cos φhAi

]
−N ×Acos θS cos φh

CP ACP, i (4.35)

It’s covariance matrix is

V

 ε̂1
ε̂2
...

 =


∑[

P 2A1A1

]
−NA2

CP, 1

∑[
P 2A1A2

]
−NACP, 1ACP, 2 . . .∑[

P 2A2A1

]
−NACP, 2ACP, 1

∑[
P 2A2A2

]
−NA2

CP, 2 . . .
...

...
. . .


−1

≡ F−1 (4.36)
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4.3 Discussion

4.3.1 Longitudinal asymmetries

4.3.1.1 Size of Impact on DSA measurements

Longitudinal asymmetries, εLL and εcos φh
LL , show up as two correction terms in Eq. 4.31. Size

of this correction is proportional to FLL, i ∼
∑

[cos θS ]. Therefore, in a perfect situation, that
target spin direction perfectly transverse relative to ~q or θS , longitudinal terms will not affect
DSA results. In experiment Transversity, θS take an average of 90 ± 7◦, which suggests the
suppression is around 12%.

4.3.1.2 Extracting Longitudinal Asymmetries from Transversity Data

It’s also possible to treat longitudinal asymmetries as unknown variables. Following similar
procedure as last section, treating longitudinal term as additional modulation other than n
known DSA modulations

Ã1...n(φh, φS , θS) ≡ sin θSA1...n(φh, φS) (4.37)
Ãn+1(φh, φS , θS) ≡ cos θS (4.38)
Ãn+2(φh, φS , θS) ≡ cos θS cos φh (4.39)

Defining ∑[
hPÃi

]
≡

∑
ev

h · PiT/V±Ãi(φh, φS , θS) (4.40)∑[
P 2ÃiÃj

]
≡

∑
ev

P 2
iT/V±

sin2 θSÃi(φh, φS , θS)Ãj(φh, φS , θS) (4.41)

F(n+2)
i, j ≡

∑[
P 2ÃiÃj

]
−NACP, iACP, j (4.42)

B
(n+2)
i ≡

∑[
hPÃi

]
−NACP, i (4.43)

it’s easy to show the estimator are solution of following equation

F(n+2)


ε1
...
εn

εLL

εcos φh
LL

 = B(n+2) (4.44)

or 
ε̂1
...
ε̂n

ε̂LL

ε̂cos φh
LL

 =
(
F(n+2)

)−1
B(n+2) (4.45)



CHAPTER 4. ESTIMATION OF ANGULAR MODULATED FOR DSA 27

with covariance matrix of

V


ε̂1
...
ε̂n

ε̂LL

ε̂cos φh
LL

 =
(
F(n+2)

)−1
(4.46)

In case that εLL and εcos φh
LL are known from other experiment, which is assumption of last

section, only the first n equation of n + 2 equation set 4.44 is useful. Therefore, it reduces to
a n(equation)× n(variable) format, with index i = 1 · · ·n:

n∑
j=1

F(n+2)
i, j εj + εLLF(n+2)

i, n+1 + εcos φh
LL F(n+2)

i, n+2 = B
(n+2)
i (4.47)

Solution of this equation is exactly Eq. 4.31, as we expected.

4.3.1.3 Rough Estimation of Longitudinal Modulation from World Data

It’s more likely that transversity data would not provide a better information on longitudinal
modulations than world data. Therefore, it’s important to translate world data into εLL and
εcos φh
LL as input to this study. By comparing equation 4.4 with Eq. 2.7 as of ref [3], we have

εLL = −
√

1− ε2FLL

FUU,T + εFUU,L
(4.48)

εcos φh
LL = −

√
2ε (1− ε)F cos φh

LL

FUU,T + εFUU,L
(4.49)

where to leading order

FUU,T = C [f1D1] (4.50)
FUU,L = 0 (4.51)

FLL = C [g1LD1] (4.52)

F cos φh
LL =

2M

Q
C [. . .] (4.53)

F cos φh
LL is higher twist term. C [f D] is sum over quark species and convolution over transverse

pT and kT

C [f D] ≡ x
∑
α

e2
α

∫
d2pT d2kT δ2 (pT − kT − ph⊥/z) fα(x,p2

T )Dα(z,k2
T ) (4.54)

Therefore, εcos φh
LL is assumed to be 0 for this section. Besides, consider the leading contribution

of Dπ±
1 is valance u/d quark in transversity, we ignore other quark species. Further by
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assuming a Gaussian like pT /kT distribution

D1(z,k2
T ) = D1(z)

1
πµ2

D

exp
(
−k2

T

µ2
D

)
(4.55)

f1(x,p2
T ) = f1(x)

1
πµ2

0

exp
(
−

p2
T

µ2
0

)
(4.56)

g1(x,p2
T ) = g1(x)

1
πµ2

1

exp
(
−

p2
T

µ2
1

)
(4.57)

and assumption of
µ2

D ≈ µ2
0 ≈ µ2

1 (4.58)

we have

εLL = −
√

1− ε2
C [g1LD1]
C [f1D1]

= −
√

1− ε2

∑
α e2

αgα
1 (x)Dα(z)

∫
d2pT d2kT δ2 (pT − kT − ph⊥/z) 1

πµ2
D

exp
(
−k2

T

µ2
D

)
1

πµ2
1
exp

(
−p2

T

µ2
1

)
∑

α e2
αfα

1 (x)Dα(z)
∫

d2pT d2kT δ2 (pT − kT − ph⊥/z) 1
πµ2

D
exp

(
−k2

T

µ2
D

)
1

πµ2
0
exp

(
−p2

T

µ2
0

)
≈ −

√
1− ε2

∆u

u
(or

∆d

d
) (4.59)

εcos φh
LL = O

(
M

Q

)
∼ 0 (4.60)

where ∆u
u and ∆d

d could be extracted from fitting of world data[6].

4.3.2 Asymmetry of Effective Charge

Asymmetry of effective charge is generally small between helicity states. This bring two effects

Correction on final modulation due to effective charge asymmetry (ACP, i) is small. Real
data show overall ACP, i . PPM

Extra Bias Due to Yield Drift is tiny in DSA case. Referring to discussion on section
2.2.3, extra yield drift dependence on MLE than local pair method is proportional to
effective charge asymmetry. Upper limit of the systematic bias could be estimated by

bias ≤ (Max Yield Drift)× (Local Charge Asymmetry) (4.61)
∼ 10%× 1000PPM (4.62)
∼ 100PPM (4.63)

which is far negligible relative to uncertainties of coincidence asymmetry.

4.3.3 Higher Twist F sin φh

LU term

There is an other helicity dependent term F sin φh
LU as of Eq. 2.7 in ref [3]. Although it’s a higher

twist term, it do not flip sign of asymmetry when spin flips (all other helicity dependent term
flips). Therefore, we have another clean channel to separate this term.
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Discussion and Conclusions

5.1 Application and Comparison

There are two major steps in Transversity asymmetry extraction:

1. combining data from spin states

2. extract angular modulation

It’s possible to use either MLE or Blue Team’s method[2] of each of the steps. Therefore
useful combinations besides Blue Team’s notes are listed below.

5.1.1 MLE for both steps

Directly use Eq. 3.36 for estimator and Eq. 3.39 for uncertainty estimation. There are potential
higher systematics due to detector efficiency drift as discussed in section 2.2.3. It’s probably
best method for Kaon case, whose statistics are very limited. Also for MLE is also great for
DSA analysis, since MLE became unbiased to yield drift due to small charge asymmetries.

5.1.2 MLE for step 1, Fitting for step 2

First divide data into 2D angular bins, then for each bin, use Eq. 2.7 and 2.14 to get asymmetry
for each bin by summing over spin states. Then perform a 2D angular fitting to extract
angular modulations. It’s doable for pion case, could serve as a check/alternative to Blue
Team’s method.

5.1.3 MLE for step 2 then perform local pair sum

For each super local spin pairs, extract it’s angular modulation with Eq. 3.36 and 3.39 (set
spin state =1±). Then do χ2 fit modulations over all pairs. There is potential danger of low
count in some pair, leaving a point with very large and unreliable error bar.

5.1.4 possible local pair based MLE

There is possibility to form a local pair based MLE method, which similar to 5.1.1, but
preserve the structure of local pair. This method is expected to be as robust as blue team

29
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local pair method, as well as features MLE reliability at low statistics. One naive way to
construct is as following:

Reevaluating Eq. 3.35, and applying it to each local pair. Then there will be Npair equa-
tions with matrix form, call them

Fiε = Bi (5.1)

Then add them together with coefficient

wi =
1

1/C̃i+ + 1/C̃i−

(5.2)

and we have one matrix equation (∑
i

wiFi

)
ε =

∑
i

wiBi (5.3)

or

ε̂ =

(∑
i

wiFi

)−1(∑
i

wiBi

)
(5.4)

Similar to the one on Blue Team’s method[2], this equation features same resistance to yield
drift1, while remain free of angular binning. However, a mathematical study is necessary to
perfect this idea.

5.2 Acceptance

5.2.1 Why Acceptance is in MLE estimators?

Acceptance is shown in final modulation results of both SSA (Eq. 3.36) and DSA (Eq. 4.31).
It appear in asymmetry correction terms (Eq. 3.24 and Eq. 4.19), which take a general form
of

ACP ∼
∫∫∫

aT/V±(φh, φS , θS)Ai(φh, φS)dφhdφSdθS∫∫∫
aT/V±(φh, φS , θS)dφhdφSdθS

× C̃+ − C̃−

C̃+ + C̃−
(5.5)

where Ai(φh, φS) is SIDIS angular modulation and
eC+− eC−eC++ eC− is asymmetry of effective charge.

It suggests

• In case that there is no asymmetry of effective charge between ± states, acceptance will
not affect our result.

• In case that acceptance is symmetric, ACP = 0 independent of asymmetry of effective
charge. In another word, angular modulation is not extracted by comparing between
spin states, rather than comparing data between opposite parts of acceptance.

Following is an naive explanation, why acceptance is in the MLE estimator, while local pair
method is free of it:

1To be more precise, bias of this method is 0 if yield remain constant with in each spin pair (although it is
allowed to drift from pair to pair).
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• if the charge asymmetry = 0, or there are comparable amount of data from both spin
direction, the MLE would compare them, form asymmetry and give an modulation on
the asymmetry.

• In case there are difference charge between spin states, local pair method, would scale
down weight of larger state and form an asymmetry between ± then get an modulation
without worrying about acceptance. However, effectively, MLE splits larger state in two
parts: one of them paired with smaller state and do the same as local pair method. For
rest part, MLE compare it’s yield with acceptance, which is suppose by MLE to be well
known parameter. Final MLE result are combination this two parts.

5.2.2 How to Get Acceptances, to What Precision?

Since our effective charge asymmetry is small (< 1% for SSA and PPM level for DSA),
precision required on acceptance is also suppress by same ratio. Therefore, the requirement
is loose, considering we are expecting order of magnitude of ~1% level statistics precision.

To extract acceptance, we can bin data into angular bins and sum over equal amount
(effective charge) of ± states. As shown in Eq. 1.1, the distribution of the sum is equivalent
to

sum = 〈y+(φh, φS) + y−(φh, φS + π)〉helicity ∝ aT/V +(φh, φS) (5.6)

Besides, since only relative angular modulated terms are shown in expression, it’s also
possible to extract the ratio using event sums,

∫∫∫
aT/V +(φh, φS , θS)Ai(φh, φS)dφhdφSdθS∫∫∫

aT/V +(φh, φS , θS)dφhdφSdθS
∼

∑
ev

Ai(φh, φS)∑
ev

N
(5.7)

which will be further explained in following sections. Uncertainty in this study is comparable
to extraction of yield, which means usually much more precise than asymmetries.

5.2.3 Acceptance Estimation with Event Sum

As suggested by last section, it’s possible to estimate relative angular modulation from event
sum method. Advantage of this method is that it’s using similar method and data structure
as those in MLE, which simplifies analysis procedures. In this section we will discuss how to
estimate SSA acceptance related term ACP, i as of Eq. 3.24 and DSA acceptance related term
ACP,j , Acos θS

CP and Acos θS cos φh
CP as of Eq. 4.19.

5.2.3.1 SSA Acceptance Estimation

Starting with Eq. 3.24, although acceptance aT+(φh, φS) is no necessarily equal to aV +(φh, φS+
π/2) (due to virtual photon is not exactly transverse to ~q), it’s fair to assume that∫∫

aV +(φh, φS)dφhdφS =
∫∫

aT+(φh, φS)dφhdφS (5.8)

or
ã ≡ ãT = ãV (5.9)
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As a result, Eq. 3.24 is simplified to

ACP, i ≡

(
C̃P, T+ − C̃P, T−

)
(ãT, i/ã) +

(
C̃P, V + − C̃P, V−

)
(ãV, i/ã)(

C̃T+ + C̃T−

)
+
(
C̃V + + C̃V−

) (5.10)

Then by checking Eq. 3.1, relative angular modulation ãT/V, i/ã is estimated by

ãT/V, i

ã
≡

∫∫
aT/V +(φh, φS)Ai(φh, φS)dφhdφS∫∫

aT/V +(φh, φS)dφhdφS

=

∫∫ (
yT/V +(φh, φS) + yT/V−(φh, φS + π)

)
Ai(φh, φS)dφhdφS∫∫ (

yT/V +(φh, φS) + yT/V−(φh, φS + π)
)
dφhdφS

=
∫∫

y+(φh, φS)Ai(φh, φS)dφhdφS −
∫∫

y−(φh, φS)Ai(φh, φS)dφhdφS∫∫
y+(φh, φS)dφhdφS +

∫∫
y−(φh, φS)dφhdφS

Estimate
[
ãT/V i

ã

]
=

∑
ev,T/V + Ai(φh, φS)/C̃T/V + −

∑
ev,T/V− Ai(φh, φS)/C̃T/V−

NT/V +/C̃T/V + + NT/V−/C̃T/V−
(5.11)

Where N/C̃T/V + are sums of event numbers or effective charges as defined in Eq. 1.15,∑
ev,T/V± is defined as sum over event in a specific spin direction (T/V±).

5.2.3.2 DSA Acceptance Estimation

Similar as SSA case, we follow Eq. 4.19 and assume ã ≡ ãV = ãT , which is reasonable due to
spin rotations and flips. Therefore,

ACP, j ≡

∑
T/V±±ãsin θS

T/V, j

(
C̃P,+,T/V± − C̃P,−,T/V±

)
∑

T/V± ãT/V

(
C̃+,T/V± + C̃−,T/V±

)
=

∑
T/V±±

(
C̃P,+,T/V± − C̃P,−,T/V±

)(
ãsin θS

T/V, j/ã
)

∑
T/V±

(
C̃+,T/V± + C̃−,T/V±

) (5.12)

where ãsin θS

T/V, j/ã could be calculated with Eq. 5.11.

5.3 To Be Further Studied

• Yield drift correction as discussed in section 2.2.3

• Removing angular dependent background

• Simulations to evaluate effect of efficiency drift on bias

• Weighted sum with charge correction
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