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Abstract

The electromagnetic form factors of the nucleon characterize the effect of its internal
structure on its response to an electromagnetic probe as studied in elastic electron-
nucleon scattering. These form factors are functions of the squared four-momentum
transfer Q2 between the electron and the proton. The two main classes of observables
of this reaction are the scattering cross section and polarization asymmetries, both
of which are sensitive to the form factors in different ways. When considering large
momentum transfers, double-polarization observables offer superior sensitivity to the
electric form factor. This thesis reports the results of a new measurement of the ratio
of the electric and magnetic form factors of the proton at high momentum transfer
using the recoil polarization technique. A polarized electron beam was scattered from
a liquid hydrogen target, transferring polarization to the recoiling protons. These
protons were detected in a magnetic spectrometer which was used to reconstruct
their kinematics, including their scattering angles and momenta, and the position
of the interaction vertex. A proton polarimeter measured the polarization of the
recoiling protons by measuring the azimuthal asymmetry in the angular distribution
of protons scattered in CH2 analyzers. The scattered electron was detected in a large-
acceptance electromagnetic calorimeter in order to suppress inelastic backgrounds.
The measured ratio of the transverse and longitudinal polarization components of
the scattered proton is directly proportional to the ratio of form factors Gp

E/G
p
M .

The measurements reported in this thesis took place at Q2 =5.2, 6.7, and 8.5 GeV2,
and represent the most accurate measurements of Gp

E in this Q2 region to date.
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Chapter 1

Introduction

The nucleon occupies a position of fundamental importance in the physics of
strongly interacting matter. It is the building block of the nucleus, and it is the
only stable baryon. The challenge of understanding its structure and dynamics has
engaged experimental and theoretical physicists in an effort that has spanned gen-
erations and continues to this day. The first clue that nucleons are not pointlike,
elementary particles came from Otto Stern’s measurements of the magnetic moment
of the proton and the deuteron in 1933[1]1. These measurements showed drastic de-
viation from the expected value in the Dirac equation for a “point” spin-1

2
particle,

implying that protons and neutrons are composite and have internal structure. Since
that groundbreaking discovery, a modern understanding of the nucleon has taken
shape, answering many questions and raising many more.

In the Standard Model of elementary particles and interactions, protons and neu-
trons are composed of elementary fermions called quarks, which are bound together
by strong “color” interactions. Quarks come in six different “flavors”: u(“up”),
d(“down”), c(“charm”), s(“strange”), t(“top”), and b(“bottom”). They are grouped
into families by increasing mass, as shown in table 1. Each family has an “up” mem-
ber with charge +2/3e and a “down” member with charge −1/3e. The distinguishing

Q = +2
3
e u c t

Q = −1
3
e d s b

Table 1.1: Quark families in the Standard Model

characteristic of quarks is that they have color and therefore feel color forces, as op-
posed to other elementary fermions, which are collectively referred to as leptons. Both
quarks and leptons experience electromagnetic and weak interactions. While leptons
all exist as free particles in nature or can be readily produced in the laboratory, quarks
only occur in “colorless” combinations that fall into one of two categories:

1The first measurement of the free neutron magnetic moment using magnetic resonance methods
was performed by Bloch and Alvarez in 1940[2].
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1. Mesons, which include pions and kaons, are understood to be quark-antiquark
bound states

2. Baryons, including nucleons, are understood to be bound states of three quarks.

This dichotomy is a consequence of the fact that quarks come in three different colors,
called red, green, and blue, which form an SU(3) symmetry group that is thought
to be an exact symmetry of nature. To form an SU(3) singlet state requires, at a
minimum, either three quarks to form the singlet 3⊗ 3⊗ 3 state, or a quark and an
antiquark with color and anticolor to form a singlet 3⊗ 3̄ state.

The history of quarks and color begins with the advent of modern particle physics,
in which rapid advances in particle accelerator technology provided increasingly ener-
getic collisions for physicists to study, and the number of known strongly interacting
particles proliferated rapidly. The growing “zoo” of baryons and mesons inspired
efforts to classify them, i.e., to write down the “periodic table” of subnuclear con-
stituents from which all the newly discovered particles could be built; in other words,
the quark families of the Standard Model.

It was the nearly identical masses of the proton and neutron that originally led
physicists to the conclusion that they are different quantum states of a single entity,
the nucleon. In the language of spin, the proton and the neutron, respectively, are the
“isospin-up” and “isospin-down” states of an isospin-1/2 system. In the basic quark
model, they are composed of u(“up”) and d(“down”) quarks, so named because they
have isospin up and down, respectively. The proton contains two up quarks and one
down quark, with net charge 2

(
2
3
e
)
− 1

3
e = +e and isospin +1/2, while the neutron

has two down quarks and one up quark, for a net charge of 2
3
e − 2

(
1
3
e
)

= 0 and
isospin −1/2. Carrying this idea further, as Gell-Mann did with his “Eightfold-Way”
symmetry, the nucleons can be grouped together with all baryons that can be built
from the three lightest quark flavors (u, d, and s) according to an approximate flavor
SU(3) symmetry, reflecting the approximate mass equality of the lightest three quark
flavors. Building a three-quark state from the basic triplet of flavors gives

3⊗ 3⊗ 3 = 10⊕ 8⊕ 8⊕ 1

unique flavor states grouped according to their exchange symmetry properties. Since
baryons are fermions, their overall flavor-spin-orbital-color wavefunction must be an-
tisymmetric under the exchange of any two quarks. Since only colorless quark combi-
nations occur in nature, all baryons are in the color-singlet state, so that the combined
flavor-spin-orbital state must be symmetric to guarantee overall antisymmetry. For
the lightest, ground state baryons, it is assumed that the orbital wavefunction of
the three quarks is a symmetric S-state, so that the combined spin-flavor state must
also be symmetric. It is found that the lightest observed baryons can be grouped
into a spin-3/2 decuplet2 and a spin-1/2 octet. The decuplet results from the com-
bination of the ten symmetric flavor states with the symmetric spin states resulting

2In fact, this was one of the original motivations for introducing the color quantum number, since
it would be impossible to preserve the Pauli principle for the decuplet states without it.
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when three spin-1/2 quarks are combined to give spin-3/2. The octet results from the
symmetric product of the eight mixed-symmetry flavor states with the appropriate
mixed-symmetry spin states resulting when three quark spins are combined to give
total spin-1/2. The nucleons fall within the octet, and their spin-flavor wavefunction
can be written down simply by respecting the required symmetry. For example, a
proton with spin up has the state

|p, ↑〉 =

√
1

2
[|pS〉 |χS, ↑〉+ |pA〉 |χA, ↑〉]

where p and χ denote the flavor and spin states, respectively, while the subscripts S
and A refer to symmetry and antisymmetry under exchange of the first two quarks.
The flavor combination for the proton is two up quarks and a down quark. For the

antisymmetric state, the flavor wave function is |pA〉 =
√

1
2
|udu− duu〉 while for

the symmetric state, the correct flavor combination is |pS〉 =
√

1
6
|udu+ duu− 2uud〉

which is obtained by requiring orthogonality to both |pA〉 and the totally symmetric
decuplet uud state. Similarly, the antisymmetric and symmetric spin-1/2 states are

|χA, ↑〉 =
√

1
2
|↑↓↑ − ↓↑↑〉 and |χS, ↑〉 =

√
1
6
|↑↓↑ + ↓↑↑ −2 ↑↑↓〉, respectively. The

total spin-flavor state of a proton with spin up, then, is:

|p, ↑〉 =

√
1

18
[2 (|u ↑ u ↑ d ↓〉+ |u ↑ d ↓ u ↑〉+ |d ↓ u ↑ u ↑〉)−

(|u ↑ u ↓ d ↑〉+ |u ↓ u ↑ d ↑〉+ |u ↑ d ↑ u ↓〉+ |u ↓ d ↑ u ↑〉 +

|d ↑ u ↑ u ↓〉+ |d ↑ u ↓ u ↑〉)]

=

√
1

18
[2 |u ↑ u ↑ d ↓〉 − |u ↑ u ↓ d ↑〉 − |u ↓ u ↑ d ↑〉

+ flavor permutations ] (1.1)

The proton’s magnetic moment is obtained from this quark model spin-flavor wave-
function as follows:

µp =
∑
i

〈p, ↑| Qi

2mi

σ3 |p, ↑〉 (1.2)

Substitution of the proton’s spin-flavor wavefunction (1.1) into the definition of the
magnetic moment (1.2) gives:

µp = 3× 1

18

[
4

(
2

(
2

3

e

2mu

)
−
(
−1

3

e

2md

))
+ 2

(
−1

3

e

2md

)]
=

1

6

[
16

3

e

2mu

+
2

3

e

2md

]
=

8

9

e

2mu

+
1

9

e

2md

The neutron wavefunction is obtained by interchanging u ↔ d, so the neutron mag-
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netic moment is given by

µn = 3× 1

18

[
4

(
2

(
−1

3

e

2md

)
− 2

3

e

2mu

)
+ 2

(
2

3

e

2mu

)]
=

1

6

[
−8

3

e

2md

− 4

3

e

2mu

]
= −2

9

e

2mu

− 4

9

e

2md

If the up and down quark masses are naively assumed to be mu = md ≈ 1
3
MN , then

the quark model predictions for the nucleon magnetic moments are:

µp =
3e

2MN

µn =
−2e

2MN

µn
µp

= −2

3

In nuclear magnetons, then, the quark model predicts µp = 3, compared with µp =
2.79 experimentally, and µn = −2, compared with µn = −1.91 experimentally. More-
over, the experimental ratio µn

µp
= −.685 is also very close to the quark-model predic-

tion. The magnetic moments of the other octet baryons calculated in this model are
in similar rough agreement with their experimental values, which is quite remarkable
given its simplicity. Another success of the basic quark model is that the main features
of the baryon mass spectrum can be reproduced using a basic spin-spin interaction
between the quarks’ color-magnetic moments analogous to the hyperfine splitting of
spectral lines in atoms, though this again requires some ad hoc assumptions about
the masses of the constituent quarks.

The considerable success of the early quark model in explaining gross features of
the observed spectrum of baryons and mesons suggests an important role for these
“constituent” or “valence” quarks in going beyond the qualitative description fur-
nished by the quark model to a quantitative understanding of the strong interaction.
The theory of color forces is called Quantum Chromodynamics (QCD) and is based on
invariance of the Lagrangian under local SU(3) gauge transformations of the quark
color fields. While QCD is generally accepted as the correct theory of the strong
interaction, a complete understanding of nucleon and nuclear structure in terms of
QCD has eluded physicists for decades, owing to several complicating characteristics
of the theory:

1. The coupling strength between quarks and gluons, the gauge bosons of the
color interaction, is strong and increases at large distances. This property,
called confinement, is responsible for the fact that only colorless mesons and
baryons are found in nature. In fact, a free quark has never been observed
experimentally. Instead, the existence of quarks was established in deep inelastic
electron-proton scattering experiments at SLAC in the late 1960s, for which the
1990 Nobel Prize in Physics was awarded to Friedman, Kendall, and Taylor.
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2. The flipside of the confinement property is that QCD is an “asymptotically
free” theory. In other words, the coupling strength of the interaction decreases
at short distance, enabling a perturbative description of quark interactions at
sufficiently high energies. The discovery of this property by Gross, Politzer
and Wilczek was awarded the Nobel Prize in Physics in 2004. The agreement of
perturbative QCD (pQCD) predictions with experimental data on the evolution
of the proton structure function F2 in a remarkably large dynamic range is
among the strongest evidence in favor of QCD.

3. Unlike in QED, in which the gauge bosons (photons) are electrically neutral, the
gluons possess color charge and are thus self-interacting, further complicating ef-
forts to make empirical predictions from QCD, especially in the strong-coupling
regime. This self-interaction of gluons is a consequence of the non-Abelian
character of the SU(3) gauge symmetry of QCD.

Despite the lack of a complete and self-consistent description of nuclear (and
nucleon) structure and dynamics from the first principles of QCD, very successful
models exist in which mesons and baryons take the place of quarks and gluons as
the degrees of freedom in effective field theories, in which the residual strong force
between baryons with no net color is mediated by meson exchange. A great deal of the
empirical knowledge of nuclei can be described within this framework. One of the most
challenging outstanding problems of nuclear physics is to bridge the gap in theoretical
understanding between the meson-baryon models that hold at low energies and the
successful pQCD description at very high energies. On the experimental side, it
requires, in principle, that key properties of the nucleon be measured from low energies
all the way up to the onset of pQCD-consistent behavior, in order that theoretical
predictions can be rigorously confronted with data in the region of transition between
the two limiting cases. One such measurement is the subject of this thesis.

1.1 Elastic eN Scattering: Formalism

Ever since Rutherford, Geiger, and Marsden discovered the atomic nucleus by mea-
suring the distribution of alpha particles scattered from gold foils ([3], [4], and [5]),
scattering experiments have been the method of choice of nuclear and particle physi-
cists to examine the microscopic structure of matter. In the mid-1950s, a series of
experiments led by Robert Hofstadter at Stanford established electron scattering as
a powerful technique for exploring nuclear structure([6], [7], [8]). In particular, this
work firmly established that the proton has an extended charge distribution and
measured its size. Hofstadter was awarded the Nobel Prize in Physics in 1961 for
his pioneering work. To this day, electron scattering remains one of the most pow-
erful techniques to study nuclear and nucleon structure. The interaction of a beam
of electrons with a nuclear target is well understood and precisely calculable within
Quantum Electrodynamics (QED), making possible a straightforward interpretation
of the results in terms of the underlying nuclear physics. One of the main drawbacks
of the technique is that it can only reveal the electromagnetic structure of a nucleon or
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nucleus, since electrons interact only with the charged quarks. The gluon structure,
then, can only be probed indirectly through the quark structure. Also, the small cross
sections associated with electromagnetic processes necessitate a very high-luminosity
experiment, with intense electron beams and dense nuclear targets. Despite these
limitations, electron scattering or lepton scattering more generally is unparalleled as
a precision probe of nuclear structure.

Of all the things that can happen when an energetic electron beam scatters from
a nucleon target, arguably the simplest and most basic is elastic scattering, that is,
the reaction e+N → e+N in which the struck nucleon stays intact and in its ground
state and the energy and momentum of the electron-nucleon system is conserved.
The cross section for elastic scattering is characterized by form factors, which are
fundamental properties of the nucleon representing the effect of its structure on its
response to electromagnetic probes such as electrons. The electron and the nucleon are
both spin-1/2 objects. The electron, at any length/energy scale presently accessible
to experiment, and for all practical purposes of this thesis, is a structureless, point
particle; its magnetic moment is determined entirely by its spin. The nucleon, on
the other hand, has a complex internal structure; its magnetic moment is determined
by the combined spin and orbital angular momentum of its three valence quarks
and the surrounding sea of transient quark-antiquark pairs and gluons that fluctuate
in and out of existence in the strong color field of the valence quarks. Since the
magnetic moment of the electron interacts with the magnetic moment distribution of
the nucleon in the scattering process, it is useful to ask how the reaction depends on
the initial and final spin orientations of both the electron and the nucleon. As it turns
out, the spin dependence of the scattering amplitude gives rise to a set of polarization
observables directly related to the form factors. These observables can be used as an
alternative or a complement to cross section measurements in determining the form
factors.

Figure 1.1 shows the leading-order Feynman diagram for the elastic scattering
process. At leading order in α, the scattering occurs through the exchange of a
single photon. Because the fine-structure constant of electromagnetism is so small
(α ≡ e2

4πh̄c
= 1

137.03599911
experimentally[9]), first-order perturbation theory in α is a

very good approximation to the real physical process. The circle drawn around the
nucleon vertex in figure 1.1 indicates that the QED vertex factor is to be modified
to take into account the nucleon’s internal electromagnetic structure. According to
the Feynman rules for QED3, the invariant amplitude for elastic eN scattering can
be read off from the diagram as follows4:

−iM = ū(k′) (ieγµ)u(k)

(
−igµν

q2

)
ū(p′) (−ieΓν)u(p) (1.3)

In equation 1.3, k and k′ are the initial and final electron four-momenta, p and p′

are the initial and final proton four-momenta, and q2 = (k − k′)2 = (p′ − p)2 is the
four-momentum transfer squared and also the invariant mass of the virtual photon.

3See e.g. [10], Section 4.8, or [11], Table 6.2
4From this point on, unless otherwise noted, natural units will be assumed, i.e., h̄ = c = 1.
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|N(p)〉 〈N(p′)|

|e(k)〉 〈e(k′)|

γ∗

Figure 1-1: Leading-order Feynman diagram for e+N → e+N
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gµν is the Minkowski metric tensor. The de Broglie wavelength of the virtual photon
can be thought of as the resolution with which it “sees” the nucleon structure. This
wavelength is given by λ = h̄

Q
, where Q ≡

√
|q2|. With h̄c ≈ 197 MeV · fm, it is

found that λ ≈ .2 fm/Q, with Q in GeV/c. The u’s and ū’s are free-particle Dirac
spinors and their adjoints5, respectively. −ieΓν is the modified nucleon vertex factor.
In its most general possible form, it is expressed as a linear combination of bilinear
covariants of the Dirac equation6 and the independent four-vectors pν and p′ν :

Γν = K1γ
ν + iK2σ

να(p′ − p)α + iK3σ
να(p′ + p)α +

K4(p′ − p)ν +K5(p′ + p)ν (1.4)

where the tensor σµν ≡ i
2

[γµ, γν ]. The structure factors Ki are all functions of q2.
Demanding Lorentz invariance of the single photon exchange amplitude requires that
the form factors are functions of only one variable, q2. All other Lorentz scalars
involved in the problem can be expressed in terms of q2 by energy and momentum
conservation. The terms involving σνα are multiplied by i so that the invariant
amplitude is real-valued7. From (1.4) it appears that there are five independent
form factors; however, not all of the terms are independent. Keeping in mind that
the vertex factor is sandwiched between spinors that obey the Dirac equation, the
number of independent form factors can be reduced to three:

σµν(p′ν + pν) =
i

2
[γµ(6 p′+ 6 p)− (6 p′+ 6 p)γµ]

=
i

2
[−Mγµ + 2p′µ +Mγµ −Mγµ +Mγµ − 2pµ]

= i(p′ − p)µ (1.5)

σµν(p′ν − pν) =
i

2
[γµ(6 p′− 6 p)− ( 6 p′− 6 p)γµ]

=
i

2
[−Mγµ + 2p′µ −Mγµ −Mγµ −Mγµ + 2pµ]

= i(p′µ + pµ − 2Mγµ) (1.6)

In equations (1.5)-(1.6), the anticommutation relation for Dirac gamma matrices
{γµ, γν} = 2gµν , the Dirac equation for free-particle spinors ((γµpµ −M)u = 0 and
ū(γµpµ − M) = 0), and the standard notation 6 a ≡ γµaµ have all been applied.
Equations (1.5)-(1.6) show that the term in (1.4) proportional to p′µ + pµ can be
absorbed into a combination of the terms proportional to γµ and σµν(p′ν − pν), and
the term proportional to σµν(p′ν + pν) can be absorbed into the p′µ− pµ term, leaving
just three independent form factors and the following expression for the vertex factor

5ū = u†γ0

6Axial vector terms including γ5 are not allowed, as they would violate parity conservation, which
is known to hold in electromagnetic interactions.

7Because no other diagrams interfere with figure 1.1 at this order in α, one is free to choose the
phase of the amplitude (1.3) arbitrarily, since it will not affect any physical observables. However,
once a phase convention is adopted, it must be applied consistently when calculating the contribution
of any higher-order diagrams to the process.
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(with q = p′ − p by 4-momentum conservation):

Γν = F1γ
ν + i

F2

2M
σναqα + F3

p′ν − pν

M

Finally, current conservation at the nucleon vertex requires that qµJ
µ = 0, which

implies:

qµJ
µ = ū(p′)

[
F1 6 q + i

1

2M
F2qµσ

µνqν + q2F3

]
u(p) = 0

⇒ F3 = 0 (1.7)

The first term can be shown to vanish by applying the Dirac equation to the spinors
sandwiching 6 q. The second term is zero because σµν is totally antisymmetric, while
qµqν is symmetric, leaving q2F3 = 0. So in the one photon exchange approximation,
the nucleon current is characterized by just two independent form factors, which are
functions of q2:

Γν = F1(q2)γν + F2(q2)iσνα
qα

2M
(1.8)

Substituting (1.8) into (1.3) for the scattering amplitude gives:

M =
e2

q2
ū(k′)γµu(k)gµν ū(p′)

[
F1(q2)γν + F2(q2)iσνα

qα
2M

]
u(p) (1.9)

The convention (1.8) for the nucleon vertex factor is commonly used in the literature
on nucleon form factors; F1 and F2 are known as the Dirac and Pauli form factors,
respectively. Another commonly used choice of the form factors uses the linear com-
binations

GE(q2) ≡ F1(q2)− τF2(q2) (1.10)

GM(q2) ≡ F1(q2) + F2(q2) (1.11)

τ ≡ Q2

4M2
=
−q2

4M2
(1.12)

which are known as the Sachs electric and magnetic form factors, respectively. These
form factors have the advantage that the scattering cross section has only terms pro-
portional to G2

E and G2
M , and no terms proportional to GEGM , making an extraction

of GE and GM separately from a cross section measurement that much simpler. They
also have the advantage of an intuitive physical interpretation, at least in a specific
reference frame in the low-energy limit.

The nucleon vertex factor can be reexpressed in terms of Sachs form factors and
simplified. Substituting (1.6) into (1.8) gives:

Γν = F1γ
ν +

1

2M
F2 (2Mγν − p′ν − pν)

Γν = (F1 + F2)γν − 1

2M
F2 (p′ν + pν)
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Using the definitions (1.10)-(1.12), Γν becomes:

Γν = GMγ
ν +

GE −GM

2M (1 + τ)
(p′ν + pν) (1.13)

Finally, the scattering amplitude in terms of Sachs form factors is given by

M =
e2

q2
ū(k′)γµu(k)ū(p′)

[
GMγµ +

GE −GM

2M (1 + τ)

(
p′µ + pµ

)]
u(p) (1.14)

This formula, equation (1.14), will be the point of departure for all the derivations
that follow.

1.2 Elastic eN Scattering: Rosenbluth Cross Sec-

tion

The cross section for elastic eN scattering in terms of the invariant amplitude M
is given by Fermi’s Golden Rule (see e.g. [11], section 4.3, p. 88):

dσ = |M|2dQ
F

(1.15)

dQ ≡ d3p′

(2π)32p′0
d3k′

(2π)32k′0
(2π)4δ(4)(k + p− k′ − p′)

F ≡ 4k · p = 4MEe

dQ is the Lorentz invariant phase space factor representing the density of final states
available to the outgoing electron and proton, while F is the incident flux in the
lab frame, in which the target proton is at rest. The electron mass is neglected
throughout; this is a very good approximation in all situations encountered in this
thesis, which deals with incident and scattered electron energies roughly in the range
of 0.5-6 GeV, while the mass of an electron is about .511 MeV or at most one part
in 103 of any of the energies involved. The bar over the square of the scattering
amplitude indicates that it is to be averaged over the spin states of the initial particles
and summed over the spin states of the outgoing particles; in other words, (1.15) refers
to the unpolarized cross section.

The square of the invariant amplitude (1.14) averaged over initial spins and
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summed over final spins can be written as:

|M|2 =
e4

q4
LeµνW

µν
N (1.16)

Leµν ≡
1

2

∑
s

∑
s′

ū(s′)(k′)γµu
(s)(k)ū(s)(k)γνu

(s′)(k′) (1.17)

W µν
N ≡ 1

2

∑
s

∑
s′

ū(s′)(p′)

[
GMγ

µ +
GE −GM

2M(1 + τ)
(p′µ + pµ)

]
u(s)(p)×

ū(s)(p)

[
GMγ

ν +
GE −GM

2M(1 + τ)
(p′ν + pν)

]
u(s′)(p′) (1.18)

The completeness relation for the sum over spin states is (see (A.22))∑
s

u(s)(p)ū(s)(p) =6 p+M (1.19)

Again neglecting the electron mass, the electron tensor Leµν is easily evaluated using
standard trace technology (see (A.25)):

Leµν =
1

2
Tr [γµ 6 kγν 6 k′]

= 2
(
kµk

′
ν + kνk

′
µ − (k · k′)gµν

)
(1.20)

Note that it is symmetric, Leνµ = Leµν . Using (A.25), the nucleon tensor W µν
N evaluates

to:

W µν
N =

1

2
Tr

[{
GMγ

µ +
GE −GM

2M(1 + τ)
(p′µ + pµ)

}
(6 p+M)×{

GMγ
ν +

GE −GM

2M(1 + τ)
(p′ν + pν)

}
(6 p′ +M)

]
= (i) + (ii) + (iii)

(i) ≡ 1

2
G2
MTr [γµ(6 p+M)γν(6 p′ +M)]

(ii) ≡ 1

2

GM(GE −GM)

2M(1 + τ)
[(p′ν + pν)Tr {γµ( 6 p+M)(6 p′ +M)}+

(p′µ + pµ)Tr {(6 p+M)γν( 6 p′ +M)}]

(iii) ≡ 1

2

(
GE −GM

2M(1 + τ)

)2

(p′µ + pµ)(p′ν + pν)Tr [(6 p+M)(6 p′ +M)]

The expression for W µν above is grouped into smaller, more easily digestible terms
(i), (ii) and (iii) which are evaluated separately below and then added. Using the
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trace theorems of A.3, these three terms become

(i) = 2G2
M

[
pµp′ν + pνp′µ + (M2 − p · p′)gµν

]
(ii) = 2

GM(GE −GM)

1 + τ
(p′µ + pµ)(p′ν + pν)

(iii) = 2

(
GE −GM

2M(1 + τ)

)2

(p′µ + pµ)(p′ν + pν)(M2 + p · p′)

q2 = (p′ − p)2 = 2M2 − 2p · p′ ⇒M2 + p · p′ = 2M2(1 + τ)

(ii) + (iii) = 2

[
GM(GE −GM)

1 + τ
(p′µ + pµ)(p′ν + pν)+

G2
E +G2

M − 2GEGM

2(1 + τ)
(p′µ + pµ)(p′ν + pν)

]
= 2

[
G2
E −G2

M

2(1 + τ)
(p′µ + pµ)(p′ν + pν)

]
Note that in the sum (ii) + (iii), the terms proportional to GEGM cancel, leaving
only separate G2

E and G2
M terms, so that, finally, W µν

N becomes:

W µν
N = 2G2

M

[
pµp′ν + pνp′µ + (M2 − p · p′)gµν

]
+

G2
E −G2

M

1 + τ
(p′µ + pµ)(p′ν + pν) (1.21)

The nucleon tensor is also symmetric. Before proceeding any further, it is useful
to write down some kinematic identities which will be useful for expressing the cross
section in terms of lab frame quantities, and define the invariant Mandelstam variables
s, t, and u:

s ≡ (k + p)2 = M2 + 2k · p = M2 + 2MEe = (k′ + p′)2 = M2 + 2k′ · p′

t = −Q2 = (k − k′)2 = −2k · k′ = (p′ − p)2 = 2(M2 − p′ · p)
u = (k − p′)2 = (p− k′)2 = M2 − 2k · p′ = M2 − 2k′ · p

= M2 − 2ME ′e

k′ · k =
Q2

2

p′ · p = M2 +
Q2

2
k · p = k′ · p′ = MEe

k · p′ = k′ · p = ME ′e = MEe −
Q2

2
(1.22)

Here Ee and E ′e refer to the lab-frame energies of the incident and scattered electron,
respectively. They are related by energy and momentum conservation. Choosing the
incident electron direction along the z axis, and defining the scattering plane as the
xz plane, with the electron scattering in the positive x direction, the four-momenta
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of the particles involved in the reaction are:

kµ = (k0,k) = (Ee, 0, 0, Ee) (1.23)

pµ = (p0,0) = (M, 0, 0, 0)

k′µ = (k′0,k′) = (E ′e, E
′
e sin θe, 0, E

′
e cos θe)

p′µ = (p′0,p′) = (Ep,−pp sin θp, 0, pp cos θp)

The following important relationships among the various kinematic quantities fol-
low from energy and momentum conservation and the relativistic energy-momentum
relation:

Q2 = 2k · k′ = 2EeE
′
e(1− cos θe) = 4EeE

′
e sin2 θe

2
Ep = M + ν

ν ≡ Ee − E ′e
Q2 = 2(p′ · p−M2) = 2(M(M + ν)−M2) = 2Mν

E ′e sin θe = pp sin θp

Ee − E ′e =
EeE

′
e

M
(1− cos θe)

⇒ E ′e =
Ee

1 + Ee
M

(1− cos θe)
=

Ee

1 + 2Ee
M

sin2 θe
2

The contraction of the electron and nucleon current tensors is given in terms of the
relevant four-momenta by:

LeµνW
µν
N = 2

(
kµk

′
ν + kνk

′
µ − k · k′gµν

)
×{

2G2
M

[
pµp′ν + pνp′µ + (M2 − p · p′)gµν

]
+

G2
E −G2

M

1 + τ
(p′µ + pµ)(p′ν + pν)

}

= 4G2
M

[
2{(p · k)(p′ · k′) + (p · k′)(p′ · k)} − 2(p · p′)(k · k′)−

4M2k · k′ + 4(p · p′)(k · k′) + 2M2k · k′ − 2(p · p′)(k · k′)

]
+

2
G2
E −G2

M

1 + τ

[
2{k · (p′ + p)k′ · (p′ + p)} − k · k′(p′ + p)2

]
= 8G2

M

[
(p · k)(p′ · k′) + (p · k′)(p′ · k)−M2k · k′

]
+

4
G2
E −G2

M

1 + τ

[
{k · (p′ + p)k′ · (p′ + p)} − k · k′(M2 + p′ · p)

]
(1.24)

Using the kinematic relations (1.22), the contraction (1.24) in terms of lab frame
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quantities and the invariant Q2 is given by:

LeµνW
µν
N = 8G2

M

[
M2E2

e +

(
MEe −

Q2

2

)2

− Q2M2

2

]
+

4
G2
E −G2

M

1 + τ

[(
2MEe −

Q2

2

)2

−Q2M2(1 + τ)

]

= 8G2
M

[
2M2E2

e −Q2MEe +
Q4

4
− Q2M2

2

]
+

4
G2
E −G2

M

1 + τ

[
4M2E2

e − 2Q2MEe +
Q4

4
−Q2M2(1 + τ)

]

= 8

 G2
M

[
2M2E2

e −Q2MEe + Q4

4
− Q2M2

2

]
+

G2
E−G

2
M

1+τ

[
2M2E2

e −Q2MEe − Q2M2

2

] 
= 8

[
Q2M2τG2

M +
G2
E + τG2

M

1 + τ

(
2M2E2

e −Q2MEe −
Q2M2

2

)]
= 8M2

[
Q2τG2

M +
G2
E + τG2

M

1 + τ

(
2E2

e −Q2Ee
M
− Q2

2

)]
(1.25)

It is possible to rewrite (1.25) in a simpler form using the kinematic relations above.
In particular, the quantity in parentheses in equation (1.25) becomes:

2E2
e −Q2Ee

M
− Q2

2
= 2E2

e −
Q2

2

(
2Ee
M

+ 1

)
Q2

2 sin2 θe
2

Ee
E ′e

=
4EeE

′
e sin2 θe

2

2 sin2 θe
2

Ee
E ′e

= 2E2
e

Ee
E ′e

= 1 +
2Ee
M

sin2 θe
2

2E2
e −Q2Ee

M
− Q2

2
=

Q2

2 sin2 θe
2

(
1 +

2Ee
M

sin2 θe
2

)
− Q2

2

(
2Ee
M

+ 1

)
=

Q2

2 sin2 θe
2

(
1 +

2Ee
M

sin2 θe
2
−
(

2Ee
M

+ 1

)
sin2 θe

2

)
=

Q2

2
cot2 θe

2
(1.26)

With this useful result, the squared amplitude becomes:

|M|2 =
4e4

q4
Q2M2

[
G2
E + τG2

M

1 + τ
cot2 θe

2
+ 2τG2

M

]
(1.27)

q2 = −Q2 ⇒ q4 = Q4

|M|2 = 4e4M
2

Q2

[
G2
E + τG2

M

1 + τ
cot2 θe

2
+ 2τG2

M

]
(1.28)
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The next step is to calculate the cross section using this amplitude:

dσ =
|M|2

64π2MEe

d3p′

p′0
d3k′

k′0
δ(4)(k + p− k′ − p′) (1.29)

Integrating over all possible outgoing proton momenta, the delta function sends p′ →
k− k′, leaving:

dσ =
|M|2

64π2MEe

d3k′

E ′eE
′
N

δ(Ee +M − E ′e − E ′N)

∣∣∣∣∣
p′=k−k′≡q

(1.30)

Using the identity δ(f(x)) = δ(x−x0)
|f ′(x0)| , (f(x0) = 0), and temporarily reinstating the

electron mass in order to recall the functional relationship between its energy and its
momentum, the delta function can be rewritten as:

E ′e + E ′N =

√
k′2 +m2

e +
√

q2 +M2
N

q2 = (k− k′)2 = k2 + k′
2 − 2 |k| |k′| cos θe

d(E ′e + E ′N)

d |k′|
=

|k′|√
k′2 +m2

e

+
|k′| − |k| cos θe√

q2 +M2
N

=
|k′|
E ′e

+
|k′| − |k| cos θe

E ′N

Returning now to the approximation of massless electrons, the delta-function be-
comes:

d(E ′e + E ′N)

d |k′|
= 1 +

E ′e − Ee cos θe
M + ν

δ(Ee +M − E ′e − E ′N) → M + ν

M + ν + E ′e − Ee cos θe
δ

(
|k′|+ Q2

2M
− Ee

)
(1.31)

Using this form of the delta function, the cross section reduces to:

d3k′ = k′
2
d |k′| dΩe

|k′| = E ′e

dσ

dΩe

=
|M|2

64π2MEe

E ′ed |k′|
M + Ee(1− cos θe)

δ

(
|k′|+ Q2

2M
− Ee

)
(1.32)

Integrating now over all outgoing electron momenta, and recognizing the factor in the
denominator M(1 + Ee

M
(1− cos θe)) = Ee

ME′e
, the cross section becomes:

dσ

dΩe

=
|M|2

64π2M2

(
E ′e
Ee

)2

(1.33)

Substitution of the result (1.28) for the spin-averaged, squared scattering amplitude,
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and using α ≡ e2/4π, the final expression for the cross section is obtained.

dσ

dΩe

=
1

64π2M2

(
E ′e
Ee

)2
64π2α2M2

Q2

[
G2
E + τG2

M

1 + τ
cot2 θe

2
+ 2τG2

M

]
=

α2

Q2

(
E ′e
Ee

)2 [
G2
E + τG2

M

1 + τ
cot2 θe

2
+ 2τG2

M

]
dσ

dΩe

=
α2

4E2
e sin4 θe

2

E ′e
Ee

cos2 θe
2

[
G2
E + τG2

M

1 + τ
+ 2τG2

M tan2 θe
2

]
(1.34)

In this form, equation (1.34)8, it is clear that the cross section factors neatly into the
product of the Mott cross section, representing spin-1/2 electron scattering from a
point charge, and a “structure” factor determined by the form factors. It is useful to
define a “reduced” cross section σr to isolate the effect of the nucleon’s structure:

σr ≡
σeN
σMott

(1.35)

σMott ≡
α2

4E2
e sin4 θe

2

E ′e
Ee

cos2 θe
2

(1.36)

(1 + τ)εσr = εG2
E + τG2

M (1.37)

ε ≡
[
1 + 2(1 + τ) tan2 θe

2

]−1

(1.38)

It is clear from (1.37) that the form factors (or at least the squares of the form factors)
can be extracted separately by measuring the electron-nucleon elastic scattering cross
section at fixed τ and varying the scattering angle θe. Then, a plot of σr vs. ε yields
a straight line with slope proportional to G2

E and intercept proportional to G2
M . This

procedure is called Rosenbluth or L/T separation9. It is informative to compare the
Rosenbluth Formula (1.34) to the cross section for elastic electron scattering from
a structureless, pointlike nucleon. In that case the vertex factor simply becomes
Γν ⇒ γν , meaning F1 = 1 and F2 = 0 by definition, so that GE = GM = 1, and the
cross section becomes

dσ

dΩ
= σMott

[
1 + 2τ tan2 θe

2

]
(1.39)

The Mott cross section describes the scattering of spin-1/2 electrons from pointlike,
spinless charged particles10. The cos2 θe

2
suppression of large-angle scattering in the

Mott cross section is a consequence of helicity conservation in interactions mediated
by vector fields at high energies. Because a spinless target lacks a magnetic moment, it
cannot flip the spin of the electron, and since the helicity ~σ · k̂ is conserved, scattering
at backward angles is suppressed. On the other hand, when the target is spin-1/2,

8Equation (1.34) is commonly known as the Rosenbluth Formula after M. N. Rosenbluth, who
first derived it in 1950 [12].

9L/T refers to the separation between longitudinally and transversely polarized (virtual) photons,
with the degree of longitudinal polarization of the virtual photon characterized by ε

10See e.g. [11], equation 6.51.
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scattering at backward angles is enhanced at high energies by the spin-flip interaction
between the magnetic moments, resulting in the tan2 θe

2
term in (1.39).

The physical nucleon is a composite object with a rich substructure. However, in
the limit as Q2 → 0, the long-wavelength virtual photon has insufficient resolution to
be sensitive to this detailed structure. The nucleon should behave like a point particle
with charge ze (z = 1 for the proton or 0 for the neutron) and magnetic moment
e/2MN(z+κ). Demanding point-like limiting behavior fixes the normalization of the
Dirac and Pauli form factors at Q2 = 0.

Expressing the current for a Dirac particle (Γµ = γµ) in the form

ū(p′)γµu(p) =
1

2M
ū(p′) [pµ + p′µ + iσµν(p′ − p)ν ]u(p) (1.40)

which is simply a rearrangement of (1.6), it is clear that the spin-dependent part of
the interaction, which arises from the Dirac magnetic moment e/2MN , is contained
in the σµν term, while the spin-independent part of the interaction, which arises from
the nucleon charge, is contained in the (p+p′)µ term. To generalize (1.39) to the case
of a nucleon with charge z and anomalous magnetic moment κ, then, simply requires
a factor of z multiplying the charge and (Dirac) magnetic moment terms above and
an additional anomalous magnetic moment term iκσµν(p′ − p)ν :

ū(p′)Γµu(p)|point =
1

2M
ū(p′) [z(pµ + p′µ) + i(z + κ)σµν(p′ − p)ν ]u(p) (1.41)

Comparing (1.41) to (1.8), the low-Q2 limit of the Dirac and Pauli form factors must
be

FN
1 (0) = zN

FN
2 (0) = κN

F p
1 (0) = 1

F p
2 (0) = 1.79

F n
1 (0) = 0

F n
2 (0) = −1.91

The Sachs form factors simply reduce to the nucleon charges and magnetic moments:

Gp
E(0) = 1

Gp
M(0) = µp = 2.79

Gn
E(0) = 0

Gn
M(0) = µn = −1.91

In order to give an intuitive meaning to the form factors, it is useful to consider
the Rosenbluth Formula in the non-relativistic limit, Q2 � M2. The electric form
factor dominates the cross section in this limit, since all G2

M terms in the cross section
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are multiplied by τ . Neglecting these terms, the Rosenbluth formula reduces to:

dσ

dΩe

=

(
dσ

dΩe

)
Mott

(
GE(q2)

)2
(1.42)

In this limit, the energy transfer ν is negligible, as is the recoil momentum of the
proton, so that the reaction can be viewed as scattering of the electron by the static
charge distribution of a stationary proton. Comparing (1.42) to the cross section
for scattering from a static charge distribution (see [11], equation 8.1), GE can be
identified with the Fourier transform of the proton’s charge distribution F (q) =∫
ρ(x)eiq·xd3x. Expanding the exponential in powers of q gives

GE =

∫
ρ(x)

(
1 + iq · x− (q · x)2

2
+ . . .

)
d3x (1.43)

For a spherically symmetric charge distribution, ρ = ρ(r ≡ |x|), this becomes

GE =

∫ ∞
0

ρ(r)r2dr

∫ π

0

sin θdθ

(
1 + i |q| r cos θ − 1

2
q2r2 cos2 θ + . . .

)
(1.44)

GE = 1− 1

6
q2

∫
|x|2 ρ(|x|)d3x + . . . = 1− 1

6
q2
〈
r2
〉

+ . . . (1.45)

meaning that, at leading order in q2, the electric form factor simply measures the
r.m.s. charge radius of the nucleon. Similar reasoning leads to the interpretation
of the magnetic form factor as the Fourier transform of the nucleon’s magnetization
distribution in the non-relativistic limit.

1.3 Polarization Transfer in Elastic eN Scattering

Given the availability of high-energy, high-intensity polarized electron beams, it is
fruitful to examine how the amplitude for elastic scattering depends on the initial
and/or final spin orientations of the electron and the nucleon. The density matrix
for a mixed ensemble of spin-1/2 particles with spins preferentially aligned along a
direction n̂ is given by:

ρ ≡
∑
s

w(s)
∣∣χ(s)

〉 〈
χ(s)
∣∣ (1.46)

where s refers to the spin state of the particle and the sum runs over a complete
set of spin states, and the weight w(s) is the fraction of particles in state s. Taking
the polarization direction n̂ as the quantization axis, and denoting the degree of
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polarization as h, the weights and the density matrix become

h ≡ N ↑ −N ↓
N ↑ +N ↓

(1.47)

w↑ =
1

2
(1 + h) (1.48)

w↓ =
1

2
(1− h) (1.49)

ρ = w↑ |n̂, ↑〉 〈n̂, ↑|+ w↓ |n̂, ↓〉 〈n̂, ↓| (1.50)

ρ =
1

2
(1 + h~σ · n̂) (1.51)

where ~σ is the vector of Pauli spin matrices σx, σy, and σz, and |n̂, ↑〉 and |n̂, ↓〉 are, by
definition, eigenstates of the operator ~σ · n̂ with eigenvalues +1 and −1, respectively.

In polarized elastic scattering, there are four possible polarization observables that
one might attempt to measure:

1. The polarization of the incident electron beam

2. The polarization of the nucleon target

3. The polarization of the scattered nucleon

4. The polarization of the scattered electron

If the electron beam is polarized, and the nucleon target is unpolarized, the scattering
can impart some polarization to the recoiling nucleon, which can then be measured
with a suitable secondary analyzing reaction. This class of experiment is called po-
larization transfer or recoil polarization and is the subject of this thesis. If both
beam and target are polarized, but the polarization of the reaction products is not
measured, the corresponding polarization observable is the asymmetry in the scatter-
ing cross section resulting from reversal of either the beam or the target polarization
while holding the other fixed (for practical reasons, it is usually the beam polarization
that is reversed while holding the target polarization fixed). If both the beam and
the target are unpolarized, any measured polarization of the scattered nucleon is said
to be induced. In the Born (single photon exchange) approximation, the induced
polarization turns out to be identically zero.

In the following section, the electron and nucleon current tensors Lµνe and W µν
N

are calculated, allowing for polarization of the incident electron and the scattered
nucleon. The target nucleon is unpolarized, and the polarization of the scattered
electron is not derived, because it won’t be measured. The nucleon current tensor is
given by

W µν
N = J µ

NJ
ν∗
N (1.52)

J µ
N = ū(p′)Γµu(p) (1.53)

Γµ ≡ GMγ
µ +

GE −GM

2M(1 + τ)
(p+ p′)µ (1.54)
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Since the product LeµνW
µν
N is Lorentz-invariant, the electron and nucleon current

tensors may be calculated in any reference frame, as long as both tensors are calculated
in the same reference frame. The result is applicable in the lab frame as well. It turns
out that for the problem at hand, it is most convenient to work in the Breit or “brick-
wall” frame in which there is no energy transfer and the nucleon recoils backward
along its incident direction; i.e., p′ = −p. Before evaluating W µν

N , the kinematics of
the Breit frame are presented.

1.3.1 Breit Frame Kinematics

The defining characteristic of the Breit frame is p′ = −p. This implies that the
energy transfer ν is zero.

q2 = (p′ − p)2 = −(p′ − p)2 = −4p2

Q2 = −q2 = 4p2

⇒ |p| =
Q

2

EN =
√

p2 +M2 =
√
M2(1 + τ) = M

√
1 + τ

In the following, a coordinate system for the Breit frame is adopted in which the
positive z axis coincides with the direction of the transferred momentum. The x-axis
is taken to be the coordinate transverse to the momentum transfer in the scattering
plane, and the y-axis is the coordinate transverse to the momentum transfer normal to
the scattering plane, and is directed such that (x̂, ŷ, ẑ) forms a right-handed coordinate
system. Figure 1-2 illustrates the chosen coordinate system. With these definitions,
the momentum four-vectors of the incident and the scattered nucleon in the Breit
frame are:

pµ =


M
√

1 + τ
0
0

−Q
2

 , p′µ =


M
√

1 + τ
0
0
Q
2

 (1.55)

The kinematics of the electron in the Breit frame are also simplified. The y-
components of k and k′ are zero by definition. However, the collision is not required to
be “head-on” in the Breit frame, so nonzero x-components kx and k′x must be allowed.
Because the momentum transfer is, by definition, along the z-axis, the x-component of
the electron’s momentum is conserved, that is, k′x = kx. Four-momentum conservation
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Figure 1-2: Elastic scattering in the Breit frame

fixes the z-component of the incident and outgoing electron momenta k and k′:

q = Qẑ

qz = Q = kz − k′z
kz = k′z +Q

ν = 0 ⇒ |k′| = |k|
⇒ k2

z = k′2z

⇒ k′z = −Q
2

kz =
Q

2
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The four-momenta of the incident and scattered electron are thus given by:

kµ =


√
k2
x + Q2

4

kx
0
Q
2

 , k′µ =


√
k2
x + Q2

4

kx
0

−Q
2

 (1.56)

From (1.56), k and k′ can be expressed in terms of Q and the scattering angle of the
electron in the Breit frame:

k′ · k = |k| |k′| cos θB

k2
x −

Q2

4

k2
x + Q2

4

= cos θB

k2
x(1− cos θB) =

Q2

4
(1 + cos θB)

⇒ k2
x =

Q2

4
cot2 θB

2

⇒ kx =
Q

2
cot

θB
2

kµ =


Q

2 sin
θB
2

Q
2

cot θB
2

0
Q
2

 , k′µ =


Q

2 sin
θB
2

Q
2

cot θB
2

0

−Q
2

 (1.57)

In the lab frame, the nucleon is at rest in the initial state. Temporarily redefining
the coordinate system of the lab frame so that the z-axis is along the transferred
momentum, the x and y axes point in the same direction in the lab frame and the
Breit frame. The two frames are related by a boost along the transferred momentum,
which coincides with the z-axis in this temporary coordinate system. The relativistic
boost factor γ is given by:

(pz)L = 0 = γ((pz)B + βEB)

⇒ β =
Q

2M
√

1 + τ
=

√
τ

1 + τ

γ = (1− β2)−
1
2 =

√
1 + τ

The next step is to derive the boosted four-momenta of the incident and scattered
particles in the lab frame, and determine the relation between the lab-frame and Breit
frame electron scattering angles. In the following, the subscript L denotes lab-frame
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quantities, while the subscript B denotes Breit frame quantities:

(kx)L = (k′x)L = (kx)B =
Q

2
cot

θB
2

(1.58)

(ky)L = (k′y)L = (ky)B = 0

In the lab frame, a different coordinate system (see (1.23)) was defined above in
which the z-axis is along the direction of the beam momentum k. In the Breit-frame
coordinate system, the z-component of the incident electron momentum in either the
lab frame or the Breit frame is given by

kz =
k · q
|q|

q ≡ k− k′

k2
z =

(k · q)2

q2
(1.59)

Similarly, the x-component of k is given by:

k2
x + k2

z = k2

⇒ k2
x = k2 − k2

z

k2
x =

k2q2 − (k · q)2

q2
(1.60)

In the lab frame, the expression for k2
x can be derived as follows:

k2 = E2
e

q2 = E2
e + E ′2e − 2EeE

′
e cos θe

k · q = E2
e − EeE ′e cos θe

q2 = ν2 − q2 = −Q2

⇒ q2 = Q2 + ν2 = Q2(1 + τ)

k2q2 − (k · q)2 = E2
eE
′2
e sin2 θe = 4E2

eE
′2
e sin2 θe

2
cos2 θe

2

=
Q4

4
cot2 θe

2

⇒ k2
x =

Q2

4(1 + τ)
cot2 θe

2
(1.61)

Since kx,B = kx,L, equation (1.61) implies the following relationship between the
lab-frame and Breit-frame electron scattering angles:

k2
x =

Q2

4
cot2 θB

2
=

Q2

4(1 + τ)
cot2 θe

2

cot2 θe
2

= (1 + τ) cot2 θB
2

(1.62)
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1.3.2 Transferred Polarization Components in the Breit Frame

Rather than use the trace theorems of appendix A.3 that were used to derive the
Rosenbluth formula, one can take advantage of the fact that the nucleon current J
reduces to a particularly simple form in the Breit frame (see appendix B for a full
derivation) to derive the polarized component of the nucleon current tensor. The
Breit frame expression for J µ

N is given by:

J µ
N =

(
J 0
N
~JN

)
=

(
2MGEχ

′†χ
2iGMχ

′†(p× σ)χ

)
(1.63)

In the Breit-frame coordinate system, the incident proton momentum is p = −Q
2
ẑ,

leading to the following expression for the current:

J µ
N =


2MGEχ

′†χ
iQGMχ

′†σyχ
−iQGMχ

′†σxχ
0

 (1.64)

The adjoint of the current is given by the complex-conjugate transpose of (1.64):

J ν†
N =

(
2MGEχ

†χ′,−iQGMχ
†σyχ

′, iQGMχ
†σxχ

′, 0
)

(1.65)

Now it is straightforward to form the tensor product W µν
N . To save space, the

outer product χχ† is replaced wherever it appears with the completeness relation∑
s χ

(s)χ†(s) = 1 for the unpolarized target proton with a factor of 1/2 for the average
of initial spin states. The normalization condition χ′†χ′ = 1 for the two-component
spinor χ′ of the scattered proton has also been applied.

W µν
N =


2M2G2

E −iMQGEGMχ
′†σyχ

′ iMQGEGMχ
′†σxχ

′ 0

iMQGEGMχ
′†σyχ

′ Q2G2
M

2
i
Q2G2

M

2
χ′†σzχ

′ 0

−iMQGEGMχ
′†σxχ

′ −iQ
2G2

M

2
χ′†σzχ

′ Q2G2
M

2
0

0 0 0 0


(1.66)

In equation (1.66), it is clear that the Breit-frame nucleon current tensor has
real, spin-independent diagonal elements with terms proportional to G2

E and G2
M

which survive the sum over final-state polarizations in calculating the unpolarized
amplitude. The polarization effects are contained in the imaginary, off-diagonal,
spin-dependent elements. These elements, which vanish when summed over final spin
states in the calculation of the unpolarized amplitude, determine the polarization of
the scattered nucleon.

To calculate the transferred polarization, the current tensor of the incident polar-
ized electron beam is required. For this calculation, the trace techniques of Appendix
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A.3 are used. After summing over spin states of the scattered electron, Leµν becomes:

Leµν = ū(k′)γµu(k)ū(k)γνu(k′)

= Tr

[
γµ
∑
s

u(s)(k)ū(s)(k)γν 6 k′
]

For the polarized part of Leµν , the average over initial spin states is to be replaced
by the polarized spin sum (A.24). For the (assumed to be) massless electron, (A.24)
reduces to:

2
∑
s

u(s)(k)ū(s)(k) = k0γ5γ0(~γ · he) + (k · he)γ5γ0 +

iγ0~γ · (k× he)−
k · he
k0

γ5(1 + γ0)(~γ · k) (1.67)

The trace above is actually relatively simple to evaluate in a general reference frame,
since the electron mass is neglected and the structureless electron vertex factor con-
tains γµ rather than Γµ. Considering each of the four terms of the spin sum (1.67)
separately, one finds:

1.

k0Tr
(
γµγ5γ0~γ · heγν 6 k′

)
= 0

2.

(k · he)Tr
(
γµγ5γ0γν 6 k′

)
= 4i(k · he)k′αεµν0α

3.

i(k× he) · Tr
(
γµγ0~γγν 6 k′

)
= 0

4.

−(k · he)
k0

Tr
(
γµγ5(1 + γ0)(~γ · k)γν 6 k′

)
= −(k · he)

k0
Tr
(
γµγ5(~γ · k)γν 6 k′

)
= −4i

(k · he)
k0

kjk′αε
µνjα

Adding the two nonzero terms together and multiplying by the factor of 1/2 from the
completeness relation (1.51), the trace can be written in the covariant notation:

Lµν,Ae = 2i
(k · he)
k0

k′α
(
k0εµν0α − kjεµνjα

)
= 2i(k̂ · he)kαk′βεµναβ

Leµν,A = 2ihkαk′βεµναβ (1.68)
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where on the second line the longitudinal polarization h of the electron beam has
been introduced. The total leptonic current tensor Leµν is obtained by adding (1.20)
to (1.68)11:

Le,totµν = 2
[
kµk

′
ν + kνk

′
µ − (k · k′)gµν + ihkαk′βεµναβ

]
(1.69)

An interesting property of the result (1.68) is that only the longitudinal component
of the incident electron’s polarization contributes. This is a consequence of treating
the electron as massless, and it is a result that could have been anticipated from
the results for the transverse polarization-dependent elements of the nucleon tensor,
both of which are proportional to the nucleon mass. Since the effect of any transverse
polarization of the electron beam is suppressed by at least a factor of me/Ee relative to
the effect of longitudinal polarization, polarization transfer experiments at relativistic
energies require longitudinally polarized electron beams.

The next step toward calculating the physical polarization transfer observables is
to calculate the contraction LµνW

µν in the Breit frame and then express the result,
which is invariant, in terms of lab-frame kinematic quantities and the nucleon form
factors. In terms of the Breit frame scattering angle θB and Q, the polarized term of
Lµν in the Breit frame is given by:

Leµν,A = 2ihkαk′βεµναβ

kα =


Q

2 sin
θB
2

Q
2

cot θB
2

0
Q
2

 , k′β =


Q

2 sin
θB
2

Q
2

cot θB
2

0

−Q
2



Leµν,A = 2ih


0 0 k3k′1 − k1k′3 0
0 0 k0k′3 − k3k′0 0

k1k′3 − k3k′1 k3k′0 − k0k′3 0 k0k′1 − k1k′0

0 0 k1k′0 − k0k′1 0



= 2ih
Q2

4


0 0 2 cot θB

2
0

0 0 −2 csc θB
2

0
−2 cot θB

2
2 csc θB

2
0 0

0 0 0 0



= ihQ2


0 0 cot θB

2
0

0 0 − csc θB
2

0
− cot θB

2
csc θB

2
0 0

0 0 0 0

 (1.70)

11Note that since the electron beam is now polarized, the factor of 1/2 for the average over initial
spin states is no longer needed. On the other hand, the factor of 1/2 from the polarized completeness
relation (1.51) is now required, so these factors of two cancel and the proper normalization of Lµν
is unchanged.
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For completeness, the unpolarized term is:

Leµν,S = 2kµk
′
ν + 2kνk

′
µ − 2(k · k′)gµν

= 2kµk
′
ν + 2kνk

′
µ −Q2gµν

=


Q2 cot2 θB

2
−Q2 cot θB

2
csc θB

2
0 0

−Q2 cot θB
2

csc θB
2

Q2 csc2 θB
2

0 0
0 0 Q2 0
0 0 0 0

 (1.71)

Like the nucleon tensor W µν , the lepton tensor is the sum of a real-valued, totally
symmetric term and a purely imaginary, totally antisymmetric term. Since the con-
traction of symmetric and antisymmetric tensors always vanishes, the total amplitude
is real-valued. Decomposing the contraction into symmetric and antisymmetric terms
gives:

LeµνW
µν
N = Leµν,SW

µν,S
N + Leµν,AW

µν,A
N (1.72)

The first term reproduces the unpolarized amplitude:

Leµν,SW
µν,S
N = 2M2Q2G2

E cot2 θB
2

+
Q4G2

M

2

(
csc2 θB

2
+ 1

)
= 2M2Q2

[
cot2 θB

2

(
G2
E +

τG2
M

cos2 θB
2

)
+ τG2

M

]
(1.73)

Substituting the relation between the Breit-frame and lab-frame electron scattering
angles (1.62) in the above result gives

Leµν,SW
µν,S
N = 2M2Q2

[
cot2 θe

2

1 + τ

(
G2
E + τG2

M

(
1 + (1 + τ) tan2 θe

2

))
+ τG2

M

]

= 2M2Q2

[
G2
E + τG2

M

1 + τ
cot2 θe

2
+ 2τG2

M

]
(1.74)

After multiplying by the factor e4/q4 appearing in the definition of the squared ampli-

tude |M|2 = e4/q4LeµνW
µν
N , the above result is equal to the unpolarized result (1.27)

up to a factor of two. The missing factor of two comes from the fact that the sum
over final proton spin states has not yet been applied. For the contraction of the
antisymmetric terms, the result is:

Leµν,AW
µν,A
N = −2hMQ3GEGM cot

θB
2
χ′†σxχ

′ + hQ4G2
M csc

θB
2
χ′†σzχ

′ (1.75)

The presence of the expectation values of σx and σz, with χ′†σxχ in the first term and
χ′†σzχ in the second term, is responsible for the polarization of the scattered proton.
The absence of a χ′†σyχ term means that there is no net polarization normal to the
scattering plane. For this exercise it is useful to write down the Pauli matrices and
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the eigenvectors of σx, σy, and σz explicitly:

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
(1.76)

χ′(ẑ,+) =

(
1
0

)
, χ′(ẑ,−) =

(
0
1

)
(1.77)

χ′(x̂,+) =

(
1√
2

1√
2

)
, χ′(x̂,−) =

(
1√
2

− 1√
2

)
(1.78)

χ′(ŷ,+) =

(
1√
2
i√
2

)
, χ′(ŷ,−) =

(
1√
2

− i√
2

)
(1.79)

The amplitudes resulting from (1.75) for purely longitudinal, purely transverse, and
purely normal polarization of the scattered proton are considered separately. Lon-
gitudinal is understood to mean parallel to the scattered proton’s momentum (i.e.;
the momentum transfer). Transverse is understood to mean parallel to the reaction
plane, but perpendicular to the momentum transfer. Normal is understood to mean
perpendicular to the reaction plane, along the direction defined by q× k.

Longitudinal Polarization For the case in which the scattered proton has spin-up
along the z axis, the expectation values of σx and σz are given by:

〈σx〉 = χ′†(ẑ,+)σxχ
′(ẑ,+) =

(
1 0

)( 0 1
1 0

)(
1
0

)
= 0

〈σz〉 = χ′†(ẑ,+)σzχ
′(ẑ,+) =

(
1 0

)( 1 0
0 −1

)(
1
0

)
= 1

The second term of equation (1.75) is therefore to be interpreted as an enhanced
(or reduced, depending on the sign of the coefficient of χ′†σzχ) probability for the
scattered proton to have spin-up along its momentum direction, which coincides
with the momentum transfer.

Transverse Polarization For a final state with spin-up along the x-axis, which is
parallel to the reaction plane but perpendicular to the momentum transfer, the
appropriate expectation values are:

〈σx〉 = χ′†(x̂,+)σxχ
′(x̂,+) =

(
1√
2

1√
2

)( 0 1
1 0

)( 1√
2

1√
2

)
= 1

〈σz〉 = χ′†(x̂,+)σzχ
′(x̂,+) =

(
1√
2

1√
2

)( 1 0
0 −1

)( 1√
2

1√
2

)
= 0

The first term of (1.75) should thus be understood as an enhanced/reduced
probability for the scattered proton to have spin-up along the direction perpen-
dicular to the momentum transfer, but parallel to the reaction plane.
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Normal Polarization Finally, for a state with spin-up along the y axis, which is
normal to the scattering plane, both terms vanish:

〈σx〉 = χ′†(ŷ,+)σxχ
′(ŷ,+) =

(
1√
2
− i√

2

)( 0 1
1 0

)( 1√
2
i√
2

)
= 0

〈σz〉 = χ′†(ŷ,+)σzχ
′(ŷ,+) =

(
1√
2
− i√

2

)( 1 0
0 −1

)( 1√
2
i√
2

)
= 0

The probability for the scattered proton to have spin-up along the y axis, normal
to the scattering plane, is unchanged.

The same exercise can be repeated for the spin-down eigenstates, which gives the
same results with opposite sign. This means that the total scattering cross section,
which is summed over final spin states, is unchanged. The results are summarized
thusly:

Leµν,AW
µν,A
N (hN = ẑ) = h

Q4

sin θB
2

G2
M

Leµν,AW
µν,A
N (hN = x̂) = −2hMQ3GEGM cot

θB
2

(1.80)

Leµν,AW
µν,A
N (hN = ŷ) = 0

This completes the derivation of the squared polarized scattering amplitude in the
Breit frame.

A few remarks on the physical interpretation of equations (1.80) are in order.
The squared amplitude LµνW

µν , up to dimensionless coupling constants and a factor
Q−4 for the virtual photon propagator (see (1.16)), is the probability amplitude for
scattering into the specified final state. In the unpolarized case, the probability of
scattering at a specific momentum transfer Q2 and virtual photon polarization ε was
derived, regardless of the spin state of either the incoming or the outgoing particles.
On the other hand, equations (1.80) represent the change in probability relative to
the unpolarized case when the spin states of the incident electron and the scattered
nucleon are specified.

It is important not to confuse the different probabilistic concepts at work here,
and to use conceptually precise language to interpret the meaning of equations (1.80).
In any single reaction, the individual electron and the individual nucleon taking part
in the collision are each in some actual spin state which is a linear superposition of
spin-up and spin-down eigenstates with respect to an arbitrary quantization axis, and
in fact, the quantization axis for either particle can be chosen so that it is in a pure
spin-up state with respect to that direction12. For the electron, the natural choice of
axis is its momentum direction, and any single electron will be in a quantum state
that is a superposition of positive and negative helicity states. Consider a single event

12The spin state may be changing with time, but a quantization axis can always be chosen for
which this statement is instantaneously true.
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in which the incident electron is in a pure positive helicity state13. Then h = 1 and
equation (1.80) can be read as follows:

1. The probability that the scattered nucleon is in a state with spin-up along its
direction of motion is enhanced by Q4

sin
θB
2

G2
M relative to the unpolarized case.

The probability that the nucleon is in a spin-down state along the same direction
is reduced by the same amount.

2. The probability that the scattered nucleon is in a state with spin up transverse
to its motion in the scattering plane is reduced by 2MQ3GEGM cot θB

2
relative

to the unpolarized case and the probability of a spin-down state along the same
direction is enhanced by the same amount.

3. The probability that the scattered nucleon is in a state with spin up along the
direction normal to the scattering plane is unchanged relative to the unpolarized
case.

In an actual experiment, the spin state of any individual nucleon or electron at the
space-time instant of the collision is unknown. Instead, there is a mixed ensemble of
many electrons which are spin-polarized, that is, there is a direction in space along
which the electron spins are preferentially aligned, with more spin-up than spin-down.
Hopefully that direction is as close to longitudinal as possible. There is also a mixed
ensemble of initial-state nucleon spins which are unpolarized, meaning that while any
single nucleon spin points in some direction, there is no preferred direction in space–
the target nucleon’s spin is equally likely to point in any direction. The probability
amplitudes (1.80) imply that if the electron beam is longitudinally polarized, the
statistical ensemble of scattered nucleons will acquire a net polarization, in other
words, a preferred direction in space along which more scattered nucleons will have
spin-up than spin-down. This acquired polarization is said to be transferred from the
electron to the scattered nucleon.

Equations (1.80) imply that the transferred polarization has longitudinal and
transverse components in the scattering plane, and zero component normal to the
scattering plane. The components of the transferred polarization are obtained by
taking the ratio of the polarized term (1.80) to the unpolarized term (1.74). Adopt-
ing a self-explanatory notation for the components, one can write

Pl =

(
Lµν,AW

µν,A
)
hN=ẑ

(Lµν,SW µν,S)
(1.81)

Pt =

(
Lµν,AW

µν,A
)
hN=x̂

(Lµν,SW µν,S)
(1.82)

Pn = 0 (1.83)

13If the electron is in a pure negative helicity state, then the above results can be read the same
way, but with opposite sign, h→ −h. Even if the electron is in an admixture of positive and negative
helicity states, it just means that the spin vector of the electron has a nonzero transverse component,
and the factor h in Lµν is modulated by the cosine of the angle between the electron’s spin and its
momentum.
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which is true in the coordinate system of the Breit frame, in which the ẑ direction
is defined as the direction of the momentum transfer and the x̂ direction is defined
as the in-plane transverse coordinate. In a generic coordinate system, one should
rename (x̂, ŷ, ẑ) to (t̂, n̂, l̂) to avoid confusion.

Of particular interest is the ratio of transverse to longitudinal transferred polar-
ization, because it directly measures the electric-to-magnetic form factor ratio:

Pt
Pl

= −GE

GM

2M

Q
cos

θB
2

(1.84)

This result leads to distinct advantages of polarization transfer experiments over
Rosenbluth separation experiments in measuring the electric form factor at high mo-
mentum transfer.

1.3.3 Back to the Lab Frame

The polarization components, defined as ratios of tensor contractions LµνW
µν , are

Lorentz-invariant physical observables. The results (1.82) and (1.81) thus also apply
in the lab frame. It is preferable to express Pt, Pl, and their ratio in terms of lab-
frame kinematic variables. Equation (1.62) can be rearranged in order to rewrite the
kinematic factor in (1.84) in terms of lab-frame quantities:

cot2 θe
2

1 + τ
=

cos2 θB
2

1− cos2 θB
2

1

cos2 θB
2

= 1 + (1 + τ) tan2 θe
2

(1.85)

=
1

cos2 θe
2

[
1 + τ sin2 θe

2

]
= tan2 θe

2

[
csc2 θe

2
+ τ

]
(1.86)
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Recalling some general properties of elastic scattering, (1.86) simplifies to:

Q2 = 2Mν = 2M(Ee − E ′e)

τ =
Q2

4M2
=

ν

2M
Ee
E ′e

= 1 +
2Ee
M

sin2 θe
2

sin2 θe
2

=
M

2Ee

Ee − E ′e
E ′e

⇒ csc2 θe
2

+ τ =
2EeE

′
e

M(Ee − E ′e)
+
Ee − E ′e

2M

=
4EeE

′
e + (Ee − E ′e)2

2Mν

=
(Ee + E ′e)

2

Q2

⇒ 1

cos2 θB
2

= tan2 θe
2

(Ee + E ′e)
2

Q2

1

cos θB
2

= tan
θe
2

Ee + E ′e
Q

(1.87)

Substituting (1.87) into (1.84) and rearranging gives a simple formula for the ratio of
the electric and magnetic form factors in terms of the ratio of transferred polarization
components:

GE

GM

= −Pt
Pl

Ee + E ′e
2M

tan
θe
2

(1.88)

The final step is to derive the individual transferred polarization components Pl
(1.81) and Pt (1.82) in the lab frame. The symmetric(unpolarized) term Lµν,SW

µν,S

is given by (1.74). Recalling the definition of the reduced cross section (1.35), the
unpolarized amplitude is given by:(

Leµν,SW
µν,S
N

)
= 2Q2M2

[
G2
E + τG2

M

1 + τ
cot2 θe

2
+ 2τG2

M

]
= 2Q2M2 cot2 θe

2
σr (1.89)
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so that the longitudinal component is

σrPl = h
Q2

2M2 sin θB
2

cot2 θe
2

G2
M

= h
2τ

(1 + τ) sin θB
2

cot2 θB
2

G2
M

= h
2τ

(1 + τ) cos θB
2

cot θB
2

G2
M

= 2h
τ

1 + τ
tan2 θe

2

Ee + E ′e
Q

√
1 + τG2

M

= h

√
τ

1 + τ
tan2 θe

2

Ee + E ′e
M

G2
M (1.90)

and the transverse component is

σrPt = −2h
Q

2M

cot θB
2

cot2 θe
2

GEGM

= −2h

√
τ

1 + τ
tan

θe
2
GEGM (1.91)

Another popular convention in the literature uses a slightly different definition of the
reduced cross section, which differs from (1.35) by a factor of 1+τ . In this convention,
the reduced cross section is defined as σr = G2

E+ τ
ε
G2
M , whereas in the definition (1.35),

the reduced cross section equals 1
1+τ

(
G2
E + τ

ε
G2
M

)
. Under the alternative definition,

the transferred polarization components become

I0Pl = h
√
τ(1 + τ) tan2 θe

2

Ee + E ′e
M

G2
M (1.92)

I0Pt = −2h
√
τ(1 + τ) tan

θe
2
GEGM (1.93)

I0Pn = 0 (1.94)

I0 ≡ G2
E +

τ

ε
G2
M (1.95)

This concludes the derivation of the components of the transferred polarization in
elastic electron-nucleon scattering in the Born approximation. The key results are
(1.88), (1.92), and (1.93). They were first derived in the late 1960s ([13], [14]), and
again in the early 1980s ([15]). Published in the early days of polarized electron beam
technology, [15] described a specific program of polarization transfer experiments to
measure the proton and neutron electric form factors and the deuteron charge and
quadrupole form factors. Although the derivation presented here focused exclusively
on polarization transfer experiments, there is another class of double-polarization
experiment that deserves mention. Instead of measuring the transferred polarization
to an unpolarized target, one can measure the cross-section asymmetry between + and
− electron helicity states in elastic scattering on a polarized nucleon target, without
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measuring the polarizations of the outgoing particles. This technique is sensitive to
the form factor ratio in a similar fashion. Rather than proceed with another lengthy
derivation along the same lines as the one just given, the relevant formula is quoted
below. The asymmetry in elastic scattering between positive and negative electron
helicity states is equal to Ameas = PbeamPtargetAphys, where Aphys is given by[16, 17, 18]

Aphys = −
2
√
τ(1 + τ) tan θe

2
G2
E

G2
M

+ τ
ε

[
sin θ∗ cosφ∗

GE

GM

+

√
τ

[
1 + (1 + τ) tan2 θe

2

]
cos θ∗

]
(1.96)

The angles θ∗ and φ∗ are, respectively, the polar and azimuthal angles of the target
polarization vector P with respect to the direction of the momentum transfer q. The
azimuthal angle is measured from the reaction plane defined by k × k′ toward the
plane defined by q × P as shown in figure 1-3. In order to measure the electric

Figure 1-3: Definition of angles in (1.96)
. Reproduced with permission from [18].

form factor using this technique, the optimal orientation of the target polarization is
perpendicular to the momentum transfer and parallel to the reaction plane.

1.4 Existing Nucleon Form Factor Data

A recent review paper [18] contains an exhaustive compilation of previous experi-
mental data on nucleon form factors, from Hofstadter’s Nobel Prize experiments to
the present day. In order to fully characterize the nucleon’s electromagnetic structure,
it must be studied in both isospin states, the proton and the neutron. The proton can
be studied directly using hydrogen targets. The neutron, on the other hand, happens
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to be unstable; it decays weakly by the reaction n → p + e− + ν̄e with a lifetime
τ = 885.7± 0.8 seconds[9], so there are no free neutron targets available for electron
scattering experiments. Since stable neutrons only exist in nuclei, the neutron must
be studied indirectly using light, weakly bound nuclei such as deuterium (2H) and
Helium-3 (3He). It is for this reason that the proton form factors are known much
more precisely and over a greater Q2 range than the neutron form factors.
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Figure 1-4: Proton electric form factor data obtained by the Rosenbluth separation
technique, normalized to the dipole form factor GD(Q2) = (1 + Q2/Λ2)−2, Λ2 =
.71 GeV 2.

For relatively low Q2 values, below about 2.0 GeV2, it is found that the Q2-
dependence of the electric and magnetic form factors of the proton, and the magnetic
form factor of the neutron, are well described by a dipole form

GD(Q2) = (1 +
Q2

Λ2
)−2 (1.97)

Gp
E = GD

Gp
M = µpGD

Gn
M = µnGD
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Figure 1-5: Proton magnetic form factor data obtained from Rosenbluth separa-
tion/cross section data, normalized to the dipole form factor GD(Q2) = (1+Q2/Λ2)−2,
Λ2 = .71 GeV 2.

with Λ2 = .71 GeV 2. Figure 1-4 shows a representative sample of Gp
E data obtained

by the Rosenbluth separation technique spanning close to three orders of magnitude
in Q2, normalized to GD to remove the dominant Q2 dependence. From very low Q2

up to about 1−2 GeV 2, the agreement of Gp
E with the dipole form factor is excellent.

At higher Q2, the precision of the data rapidly gets worse, and although most of the
data is consistent with GD, the electric form factor is clearly not very well known
from Rosenbluth separation at high Q2. Recalling the Rosenbluth formula (1.34) for
the elastic electron-proton scattering cross section in the Born approximation, the
reason for this immediately becomes clear. The magnetic form factor is multiplied by
a factor τ ; the electric form factor isn’t.

At higher Q2, the contribution of the magnetic form factor begins to dominate
the total cross section. The fact that Gp

M is a factor of µp ≈ 2.793 larger than the
electric form factor at Q2 = 0 shifts the onset of Gp

M -dominance of the cross section
to even lower Q2. For example, assuming Gp

E = Gp
M/µp, then at Q2 = 2.0 GeV 2, the

magnetic contribution to the Born cross section is already about 82% for a “small”
electron scattering angle of 15◦ and 95% for a “large” electron scattering angle of
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90◦. At 5 GeV 2, the magnetic contribution is 92% at θe = 15◦ and 98.5% at θe =
90◦. Clearly, starting at one to several GeV 2 in Q2, the magnetic dominance of the
cross section makes Rosenbluth separations prohibitively difficult. Even assuming the
exact validity of the one-photon exchange approximation, one must measure the cross
section with very high precision over a wide range of ε and have very good control
of point-to-point systematic uncertainties and overall normalization uncertainties in
the experimental setup.

In fact, effects beyond the Born approximation cannot be neglected in a Rosen-
bluth separation experiment at high Q2. Radiative corrections to the cross section
must be calculated to relate the cross section measured in an experiment to the
Born-level cross section which measures the form factors. At leading order in α, the
radiative corrections to the cross section include both virtual terms, such as one-loop
vacuum polarization and vertex corrections, and electron self-energy corrections, and
the radiation of real photons; i.e., Bremsstrahlung. The Bremsstrahlung corrections
are further divided into external Bremsstrahlung, in which the incident and scattered
particles radiate due to interactions with the material they traverse before reaching
the detectors (before and after the primary scattering), and internal Bremsstrahlung,
in which the incident or scattered electron radiates a real photon in the field of the
nucleon participating in the scattering and vice versa.

The difference between the external and internal Bremsstrahlung correction is
that the internal correction is coherent with the Born-level scattering amplitude,
meaning the amplitudes interfere, whereas the external correction is incoherent and
factorizes from the Born-level process. The virtual corrections depend on Q2, but
are independent of ε. They do, however, modify the value of (Gp

M)2 as an overall Q2

dependent correction to the cross section. Bremsstrahlung corrections, on the other
hand, are energy (and therefore ε) dependent, and change the value of Q2. In general,
the radiative corrections to the cross section in a Rosenbluth experiment are strongly
ε-dependent, and the slope of the Rosenbluth plot can change dramatically in going
from uncorrected to corrected cross sections. The accuracy with which G2

E can be
determined in a Rosenbluth separation experiment at high Q2 depends critically on
the accuracy of the radiative correction, as discussed in [18].

Figure 1-5 shows a representative sample of existing measurements of Gp
M from

Rosenbluth separation and/or elastic-ep cross section data. Gp
M is known to higher

Q2 than Gp
E–the data extend to Q2 ≈ 30 GeV 2. In the highest-Q2 measurements

[29], the magnetic form factor was extracted from a single cross section measurement
assuming Gp

E = Gp
M/µp as opposed to a Rosenbluth separation. The cross section is

too small at this Q2 to perform a meaningful Rosenbluth separation, given the energy
and luminosity capabilities of electron accelerators existing today (or in 1993, when
the experiments [29] were published). Although the assumption of form factor scaling
is not valid above Q2 ≈ 1−2 GeV 2, the error introduced is approximately as small as
the electric contribution to the cross section, i.e., less than one percent. Conversely,
at very low Q2, the dominant contribution to the cross section comes from (Gp

E)2, and
the magnetic form factor data are sparse below Q2 ≈ .03 GeV 2 while Gp

E is known
all the way down to Q2 ≈ .005 GeV 2.

If the form factors are interpreted as Fourier transforms of its charge and magneti-
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zation distributions, and these distributions are assumed to be spherically symmetric,
then the dipole form factor corresponds to a charge distribution with an exponential
radial dependence:

ρ(r) =
Λ3

8π
e−Λr (1.98)

The charge density in (1.98) is normalized so that its integral over all space equals
1, the total charge of the proton. Taking the Fourier transform of (1.98) leads to the
dipole form factor as follows:

G(Q) =
Λ3

4

∫ ∞
0

e−Λrr2dr

∫ 1

−1

eiQr cos θd cos θ

G(Q) =
Λ3

4iQ

∫ ∞
0

re−Λr
[
eiQr − e−iQr

]
dr

G(Q) =
Λ3

4iQ

[
re−Λr

(
eiQr

−Λ + iQ
+

e−iQr

Λ + iQ

)∣∣∣∣r=∞
r=0

−
∫ ∞

0

dre−Λr

(
eiQr

−Λ + iQ
+

e−iQr

Λ + iQ

)]
=

Λ3

4iQ

[
e(−Λ+iQ)r

(−Λ + iQ)2
− e(−Λ−iQ)r

(Λ + iQ)2

]r=∞
r=0

=
Λ3

4iQ

[
4iΛQ

(Λ2 +Q2)2

]
= (1 +

Q2

Λ2
)−2

= GD(Q2) (1.99)

with Λ−1 as the characteristic “size” of the proton. Noting the agreement of the data
with the dipole form factor at sufficiently low Q2, the r.m.s. proton charge radius can
be estimated as〈

r2
〉

= −6

(
d

dQ2
GE(Q2)

)
Q2=0

= 12(1 +
Q2

Λ2
)−3Λ−2

∣∣∣∣
Q2=0

⇒
〈
r2
〉

= 12Λ−2 ≈ 16.9 GeV −2 = 0.68 fm2√
〈r2〉 ≈ 0.82 fm (1.100)

Of course, the Fourier transform interpretation of the form factors is naive and ignores
the substantial relativistic effects that invalidate such a simple and intuitive picture
of their physical meaning.

The ability to perform double-polarization experiments allows a precise determi-
nation of the proton electric form factor to higher Q2 than is generally possible with
Rosenbluth separations. As (1.88) and (1.96) show, the polarization observables, un-
like the scattering cross section, are sensitive to the interference between the electric
and magnetic contributions to the scattering amplitude, making such experiments
competitive with and in fact superior to cross section measurements in determining
the proton and neutron electric form factors at high Q2, where the magnetic form fac-
tor completely takes over the cross section. Figure 1-6 shows a representative sample
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of data obtained from both cross section and polarization experiments on the proton
form factor ratio µpG

p
E/G

p
M . Experiments [19, 28, 20, 22, 25] were all Rosenbluth sep-
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Figure 1-6: The proton form factor ratio µpG
p
E/G

p
M from cross section and polariza-

tion experiments.

aration experiments. Experiments [31, 33, 35, 36, 37] used recoil polarization, while
[30, 34] used polarized targets and measured the beam-target asymmetry (1.96). The
polarization transfer experiments at high Q2 [33, 31] revealed with high precision a
strong deviation from the empirical scaling law µpG

p
E/G

p
M = 1 and from all existing

Rosenbluth separation data at similar Q2. This “crisis” precipitated renewed interest
in nucleon form factors and intense experimental and theoretical efforts to understand
the discrepancy and the form factors themselves that continues today. It is worth re-
marking that there is little theoretical justification for form factor scaling; it is simply
a rough experimental fact for Q2 < 1 GeV 2. In fact, the very definitions of the Sachs
form factors, GE = F1−τF2 and GM = F1 +F2, suggest that GE/GM should decrease
with increasing Q2 and possibly become negative14 (under certain assumptions on the

14The high-Q2 asymptotic behavior of the Sachs form factor ratio should eventually approach
the leading asymptotic behavior expected from perturbative QCD. As will be discussed later, sim-
ple valence-quark counting rules suggest the ratio of Pauli and Dirac form factors should scale as
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behavior of F1 and F2). In response to the surprising results [33, 31], a new, high-
precision Rosenbluth separation experiment[25] was conducted to discern whether a
problem existed with earlier cross section-based experiments in this Q2 region that
could be revealed by a more precise experiment. This “Super-Rosenbluth” experiment
was different from previous Rosenbluth separation experiments in that the scattered
proton was detected instead of the scattered electron. Detecting the scattered pro-
ton in an elastic ep cross section measurement has several inherent advantages over
detecting the scattered electron.

• The ε dependence of the proton cross section dσ/dΩp is much weaker than the ε
dependence of the electron cross section dσ/dΩe. At low ε values in particular,
the Jacobian of the reaction, defined as the ratio of the electron and proton
solid angles dΩe/dΩp, grows quite large.

• The proton momentum is constant at fixed Q2, whereas the electron momentum
varies strongly with ε.

• The ε-dependence of radiative corrections to the cross section is smaller when
the proton is detected.

• The ε-dependence of the effect of offsets in beam energy and/or scattering angle
on the extracted cross section is smaller when the proton is detected.

These advantages greatly reduce the systematic uncertainties in a Rosenbluth sepa-
ration experiment relative to experiments in which the electron is detected, allowing
a more precise separation of G2

E and G2
M . The results of [25] were consistent with

previous Rosenbluth separation experiments, appearing to rule out an undiscovered
systematic error in those experiments, and establishing an even stronger disagreement
between the cross section and polarization data at high Q2. Presently, significant the-
oretical and experimental efforts are being devoted to understanding the discrepancy
in terms of physics beyond the Born approximation and the standard radiative cor-
rection procedures upon which most of the published cross section data are based.

It is thought that the discrepancy can be largely accounted for by the effect of
the two-photon-exchange(TPEX) process, in which both photons are “hard”. This
process is generally neglected in the standard radiative correction procedures. Since
the calculation of the TPEX process in elastic eN scattering is necessarily sensitive
to the structure of the nucleon through the virtual intermediate hadronic state, it
is inherently model dependent and cannot be calculated exactly, in contrast to the
case where one of the two photons is “soft”, which is part of the standard radia-
tive corrections and is well understood, because its dominant infrared part can be
factorized in the observables. The process is generally thought to affect the cross
section by at most several percent, but in a strongly ε dependent way. Guichon and
Vanderhaeghen[38] showed how a TPEX effect of this size could affect the outcome
of a Rosenbluth separation drastically while only affecting the result of a polarization

Q2F2/F1 −−−−−→
Q2→∞

constant. This would imply that µpG
p
E/G

p
M −−−−−→

Q2→∞
constant
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Figure 1-7: Recent neutron magnetic form factor data from cross section and polar-
ization experiments, normalized to the dipole form factor GD = (1+Q2/Λ2)−2, where
Λ2 = .71 GeV 2.

transfer experiment at the few percent level. This dramatically illustrates the diffi-
culty of extracting a εG2

E term whose contribution to the cross section is similar in
relative importance to incompletely understood effects beyond the Born approxima-
tion and standard radiative corrections. The enhanced sensitivity to GE of the recoil
polarization method and the diminished relative importance of radiative corrections
and TPEX in the determination of GE through the ratio of polarizations makes it
the superior technique to measure this form factor at high momentum transfers.

The neutron form factors are not as well known as the proton form factors. They
have been measured in both cross section and polarization experiments on deuterium
and 3He. Extraction of the free neutron elastic form factors from electron scattering
experiments on these nuclei requires theoretical models to correct the results for the
fact that the neutron in the initial state is bound in a nucleus. Figure 1-7 shows recent
results for the neutron magnetic form factor Gn

M from both cross section and polar-
ization experiments, normalized to GD. The experiments [39, 40, 41, 42, 45, 48, 49]
measured simultaneously the cross sections for the reactions 2H(e, e′n) and 2H(e, e′p)
in quasi-elastic kinematics. The ratio of the neutron and proton cross sections σn/σp
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Figure 1-8: Neutron electric form factor data from double-polarization experiments
on 2H and 3He.

on deuterium, combined with knowledge of the free elastic ep scattering cross sec-
tion, allows one to extract the neutron magnetic form factor in a way that minimizes
the dependence of the extraction on the specific deuteron model used. The experi-
ments [46, 47] both measured the quasi-elastic 2H(e, e′n) scattering cross section but
did not measure the ratio to 2H(e, e′p). The experiments [43, 44, 50, 51] used the
double-polarization beam-target asymmetry technique with the (inclusive) reaction
3 ~He(~e, e′) to extract Gn

M . Extractions of the neutron magnetic form factor from cross
section measurements generally assume Gn

E = 0 or use values of Gn
E measured in other

experiments. Full Rosenbluth separations of the neutron electric and magnetic form
factors are very difficult because the overall neutrality of the neutron fixes Gn

E(0) = 0,
and Gn

M dominates the cross section at high Q2, as in the proton case. In addition
to the “small”-ness of Gn

E, the nuclear model dependence of the extraction further
complicates Rosenbluth separation experiments on the neutron. The neutron electric
form factor is the most poorly known of the four nucleon form factors. Figure 1-8
shows recent results on Gn

E obtained from double-polarization experiments on 2H and
3He. The data shown include beam-target asymmetry measurements in the exclusive
reactions 3 ~He(~e, e′n) [52, 57, 61] and 2 ~H(~e, e′n)1H [54, 59, 62, 63] and polarization
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transfer measurements using the reaction 2H(~e, e′~n) [53, 55, 56, 58, 60]. A full dis-
cussion of the technical and theoretical challenges involved in measuring the neutron
form factors is somewhat beyond the scope of this thesis, which is concerned with
the proton form factors. The interested reader can consult the review [18] and the
references in figures 1-7 and 1-8.

To summarize, the preceding chapter motivated the use of elastic electron-nucleon
scattering to study the structure of the nucleon. The electromagnetic interaction
between the electron and the nucleon is governed by QED, and first order perturbation
theory in α is a very good approximation to the true physical process. Working in the
Born approximation, results were derived for both the scattering cross section and
polarization transfer observables in terms of electric (GE) and magnetic (GM) form
factors which fully characterize the effect of the nucleon’s electromagnetic structure
on the reaction. The formula for the beam-target asymmetry in polarized target
experiments was also presented. Existing proton and neutron form factor data from
cross section and polarization experiments were presented and discussed.
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Chapter 2

Physics of Nucleon Form Factors

In this chapter, the present theoretical understanding of nucleon form factors is
addressed, emphasizing the insight that can be gained by measurements at high mo-
mentum transfer. As long as calculations of the structure and dynamics of the nucleon
from first principles in QCD remain elusive, approximations and phenomenological
models of the nucleon continue to provide important insight into their behavior.

2.1 Charge and Magnetization Distributions

As shown in appendix B, the nucleon current in the Breit frame has a simple form
in terms of the Sachs form factors. The timelike component of the current operator is
proportional to GE(Q2), while the spacelike three-vector component is proportional
to GM(Q2). It is tempting to regard GE and GM as the Fourier transforms of the
charge and magnetization densities of the nucleon in the Breit frame. Though this
interpretation is technically correct, it is not terribly meaningful, since the Breit frame
corresponds to a different Lorentz boost from the nucleon rest frame for each value
of Q2. The traditional density interpretation of the form factors is in fact only valid
in the strictly non-relativistic limit Q2 � M2

N , in which the recoil of the nucleon is
negligible and the process can be viewed as the scattering of electrons from a static
charge distribution as in chapter 1. In this limit, the Breit frame and the lab frame
(approximately) coincide.

Kelly [64] derived a prescription for relating the Sachs form factors to the rest
frame charge and magnetization densities taking relativity into account by defining
intrinsic form factors ρ̃(k) as Fourier-Bessel transforms of the rest frame charge and
magnetization densities, and relating the non-relativistic wavenumber k2 of the intrin-
sic form factor to the Lorentz-invariant four-momentum transfer Q2 through a boost
from the Breit frame to the rest frame. The boost factor γ =

√
1 + τ was derived in

the discussion of the kinematics of the Breit frame in section 1.3.1. The wavenumber
is given by k2 = Q2

1+τ
. This aspect of the prescription is trivial. However, the appro-

priate relationship between the intrinsic form factor ρ̃(k) and the Sachs form factor
G(Q2) is inherently model-dependent, since the Lorentz boost for a composite object
such as the proton depends on the interactions among the constituent quarks.
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In a number of different models, the relationship can be written as ρ̃(k) = G(Q2)(1+
τ)λ, where the model dependence is contained in the exponent λ. Following Mitra
and Kumari [65], Kelly chose the prescription λ = 2 for both the electric and mag-
netic form factors, which automatically leads to the asymptotic form factor scaling
behavior predicted by perturbative QCD at large Q2, and proceeded to fit the pro-
ton and neutron electric and magnetic form factor data to obtain the coefficients of
an expansion of the rest frame densities in terms of a complete set of radial basis
functions, which minimizes the model dependence of the fitted densities. Figure 2-1

Figure 2-1: Radial proton and neutron charge and magnetization densities obtained
from proton and neutron form factor data by Kelly. The neutron charge density has
been magnified by a factor of 6 to illustrate its similarity to the magnetization density.
The uncertainty bands include statistical uncertainties in the form factor data and
incompleteness errors.

shows the proton and neutron charge and magnetization densities obtained by [64],
with uncertainty bands indicating the statistical errors in the form factor data and
the incompleteness errors due to the finite Q2 range of available data1. The neutron
charge distribution features a positive core surrounded by a negative exterior, which
is thought to be a signature of the pion cloud of the nucleon, in which a neutron is
pictured as a proton core dressed by a π− cloud. The most notable feature of the
proton densities is the broader shape of the charge density relative to the magnetiza-
tion density, reflecting the precise recoil polarization data which established that Gp

E

falls faster than Gp
M at large Q2.

1Reproduced with permission from [18].
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2.2 Dispersion Relations and Vector Meson Dom-

inance

Based on the principles of unitarity and analyticity of the form factors considered
as functions of q2 in the complex plane, dispersion relations linking the spacelike
momentum transfers q2 ≤ 0 accessible in electron scattering to the timelike region
(q2 > 0) accessible in the crossed-channel reaction e+e− → NN̄ can be derived using
Cauchy’s integral formula:

F (q2) =
1

π

∫ ∞
t0=4m2

π

ImF (t)

(t− q2)
dt (2.1)

Along the positive real axis, the form factor acquires an imaginary part correspond-
ing to the mass spectrum of intermediate virtual hadronic states through which the
timelike virtual photon couples to the NN̄ final state, the lightest of which is two
pions, as indicated by the cutoff of the dispersion integral at t0 = 4m2

π. In dispersion
theory analyses of the nucleon form factors, it is customary to work with the isoscalar
and isovector Dirac and Pauli form factors instead of the usual proton and neutron
Sachs form factors. As their names suggest, they are defined as linear combinations
of the proton and neutron form factors of definite isospin:

F iv
1,2(q2) ≡ F p

1,2(q2)− F n
1,2(q2) (2.2)

F is
1,2(q2) ≡ F p

1,2(q2) + F n
1,2(q2) (2.3)

F p
1,2 =

1

2

(
F is

1,2 + F iv
1,2

)
(2.4)

F n
1,2 =

1

2

(
F is

1,2 − F iv
1,2

)
(2.5)

These linear combinations of the proton and neutron form factors are the most con-
venient for dispersion analysis since the virtual hadronic states which contribute to
the dispersion integrals can be classified according to their isospin properties. For
example, the cutoff at t0 = 4m2

π applies to the isovector form factors only. For the
isoscalar form factors, the lightest hadronic state that can contribute is three pions,
which modifies the cutoff to t0 = 9m2

π.

Of particular importance for low to intermediate values of Q2 are the three lightest
vector mesons ρ(770), ω(782), and φ(1020), which carry the same spin (1) and parity
(negative) as the photon. The basic quark model flavor wavefunctions of these mesons
are given by[9]

ρ0 =

√
1

2

(
uū− dd̄

)
, IG(JPC) = 1+(1−−) (2.6)

ω =

√
1

2

(
uū+ dd̄

)
, IG(JPC) = 0−(1−−) (2.7)

φ = ss̄, IG(JPC) = 0−(1−−) (2.8)
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The coupling of the electromagnetic current operator to these vector meson states
is determined by their partial decay width to e+e−, which is known experimentally.
Based on the quantum numbers of these mesons, the ρ meson should contribute
significantly to the isovector form factor at low Q2, whereas the ω should contribute
to the isoscalar form factor. The contribution of the φ is largely suppressed by the
Zweig/OZI rule. Neglecting finite-width effects, the contribution of the lowest-lying
vector meson poles to the dispersion integrals takes the form

FV (q2) = GV N
m2
V

m2
V − q2

FV N(q2) = GV N
m2
V

m2
V +Q2

FV N(q2) (2.9)

where GV N is a meson-nucleon coupling constant to be determined experimentally,
and FV N is an intrinsic meson-nucleon form factor. In the basic Vector Meson Domi-
nance (VMD) model, the isovector form factor is determined by GρN and the isoscalar
form factor is determined by GωN . The meson-nucleon form factor FV N is universal;
i.e., it assumes the same form for the ρ and the ω, and is commonly assumed in the
literature to be of monopole form:

FV (q2) =
1

1− q2

Λ2

=
1

1 + Q2

Λ2

(2.10)

In 1973, a VMD-based model by Iachello et al. [66] was among the earliest to
predict a decrease of the proton GE/GM ratio for Q2 ≥ 1 GeV 2, which was in rough
agreement with the not-yet-available recoil polarization data from Jefferson Lab[32,
33, 31]. In this model, as few as three adjustable parameters were used to fit the
form factor data available at the time. In addition to the basic structure outlined
above, the authors considered the effect of the finite width of the ρ meson, allowed
for a direct photon-nucleon Dirac coupling in F1 in addition to the vector meson pole
terms, and considered several alternative functional forms of the intrinsic form factor.

In 1985, Gari and Krümpelmann[67] presented a model in which a smooth tran-
sition from the VMD picture expected to hold at low Q2 and the asymptotic form
factor behavior expected at high Q2 in perturbative QCD (see section 2.4) was built
in to the parametrization of the intrinsic form factor, characterized by two different
scale parameters Λ1 and Λ2 governing the transition from meson-baryon dynamics to
quark-gluon (pQCD) dynamics in the form factor behavior. This model was further
extended in the early 1990s [68, 69] to include the contribution of the φ meson using
an independent parametrization designed to conform to the constraints imposed on
the φNN coupling imposed by the OZI rule, and the φ meson contribution was found
to have a significant effect on the neutron electric form factor in particular.

In 2001, Lomon[70] extended the model of [67, 68, 69] to include the effect of the ρ
meson width by replacing the ρ meson pole term with the ρ contribution obtained in
the dispersion relation analysis of [71], and by adding new ρ′(1450) and ω′(1420) pole
terms, obtaining reasonable fits to all four nucleon form factors. Lomon’s fit was soon
updated[72] to incorporate the high-Q2 Gp

E/G
p
M recoil polarization data from Hall A

at Jefferson Lab[31]. In light of the qualitative agreement of the recoil polarization
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data for Gp
E/G

p
M with [66], Iachello and Bijker[73] published an extended version of

the 1973 VMD model modified to include a direct coupling in the isovector Dirac form
factor as a model for an intrinsic three-quark structure, with the goal of bringing the
model into agreement with the data for the neutron electric form factor Gn

E while
preserving the successfully predicted decrease of Gp

E/G
p
M with Q2.

VMD models are a special case of more general dispersion-theoretical analysis of

the nucleon form factors, in which the spectral function ImF (t)
π

is constructed from
experimental data on the coupling of the nucleon and the electromagnetic current to
all possible intermediate hadronic states contributing to the isoscalar and isovector
dispersion integrals. Höhler et al.[74] performed such an analysis using pion-nucleon
scattering data and pion form factor data to derive the two-pion continuum contribu-
tion to the isovector spectral function, which is found to be an important contribution
in addition to the ρ resonance. The analysis was updated in the 1990s[71] to include
timelike proton form factor data and again in 2004 to include new precise Gn

E data[75].
A more recent dispersion relation analysis of the nucleon form factors by Belushkin
et al. [76] added the KK̄ and ρπ continuum contributions to the isoscalar spectral
function along with the 2π continuum based on the latest available pion form factor
data.

In summary, dispersion-relation analyses and the closely related VMD models of
the nucleon form factors provide important insight into the nucleon structure. Most
of these models involve a number of adjustable parameters to be fitted to experimen-
tal data, and most manage to describe all of the available spacelike and timelike form
factor data with reasonable accuracy. As additional constraints on the form factors
and the spectral functions become available from experimental data, the number and
range of free parameters should decrease. If data of infinite precision were available
on all possible reaction channels over an infinite range of momentum transfers, then
dispersion relation analysis would provide a crucial check on the internal consistency
of the data sets. Since the experimental data are finite in terms of both Q2 coverage
and the reaction channels that are measured with reasonable accuracy, dispersion
analyses of increasing sophistication can be used to make increasingly strong pre-
dictions of observables in the Q2 range where data do not yet exist. Increasing the
Q2 coverage and precision of the nucleon form factor data constrains the spectral
functions. Similarly, improving the available data base for the relevant hadronic re-
action channels contributing to the spectral functions constrains the nucleon form
factors in a more-or-less model-independent fashion. Although strict Vector Meson
Dominance of the form factor behavior is only expected to hold for relatively low
momentum transfers, the fit results for models which incorporate the transition to
perturbative QCD shed important light on the evolution with momentum transfer
of the relative importance of “soft”, non-perturbative meson-baryon dynamics and
“hard”, perturbative quark-gluon dynamics.
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2.3 Constituent Quark Models

In chapter 1, the success of the non-relativistic constituent quark model in baryon
spectroscopy was described in terms of the spin-flavor structure of three-quark states
from which the spin-1/2 octet and spin-3/2 decuplet baryon states are constructed.
To move beyond static properties to predictions of dynamical properties such as form
factors, a prediction for the wave function of the quarks in the nucleon is required. The
class of nucleon models collectively referred to as constituent quark models involves
treating baryons as bound states of three quarks moving in a confining potential, with
the nucleon emerging as the ground state of this system.

In non-relativistic constituent quark models(CQM), the quarks are treated as
massive, quasi-particle effective degrees of freedom. A famous example is the Isgur-
Karl model[77], in which the quarks are confined by a long-range harmonic oscillator
potential, supplemented by a short-range one-gluon-exchange quark-quark interaction
which leads to the color hyperfine interaction which successfully accounts for the mass
splittings between the octet and decuplet baryons. This model also predicts a small
D-state probability for the nucleon ground state, implying a slightly non-spherical
charge density and a non-zero electric quadrupole moment of the nucleon charge
distribution, which can be accessed indirectly by measuring the N → ∆ electric
quadrupole (E2) and Coulomb quadrupole (C2) amplitudes.

Since the elementary quarks of QCD are light compared to both the confinement
scale ΛQCD and the nucleon mass, taking relativity into account is important for
calculating dynamic quantities such as form factors even at low momentum trans-
fers. The inclusion of relativity in the Hamiltonian formalism of quantum mechanics
was explored by Dirac[78], who presented three forms of relativistic dynamics which
differ according to the subset of the dynamical variables which are “kinematical”;
i.e., interaction-independent, and those which are dynamical; i.e., quantities that de-
pend on the interactions among the constituents. In general, there are ten dynamical
variables (generators of the Poincaré group) corresponding to four space-time trans-
lations, three spatial rotations, and three boosts.

Instant form In the instant form, the dynamical generators are the energy and
the three boost operators. The instant form has the advantage that rotations
are kinematical, so that constructing states of definite angular momentum is
straightforward.

Point form In point-form dynamics, boosts and rotations are kinematical, and all
four components of the four-momentum are dynamical.

Light-front form In light-front dynamics, seven of the dynamical variables are kine-
matical, which is the largest possible number. The dynamical variables are one
component of the four momentum operator and two transverse rotations.

Light-front dynamics are advantageous for the calculation of nucleon form factors
because the boost operator for the quark wavefunctions is independent of the details
of the interactions among the quarks, effectively separating the center-of-mass motion
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of the nucleon from the internal motion of its constituents. Its main drawback is that
the construction of states with definite total angular momentum depends on the
interactions among the quarks.

All relativistic constituent quark model calculations of the nucleon form fac-
tors involve the calculation of matrix elements of the electromagnetic current op-
erator between nucleon states defined by an ansatz for the quark wavefunction.
Schlumpf[79, 80] adopted a wavefunction with a power law dependence in terms of
the quark internal momentum variables. This model has only two free parameters,
the constituent quark mass m = 263 MeV and the confinement scale α = 607 MeV,
determined by fitting the magnetic moments and semileptonic decays of the baryon
octet, and gives a reasonable description of the existing nucleon form factor data.
This wavefunction is of the form

φ(M) =
N

(M2 + α2)3.5
(2.11)

M ≡
∑
i

√
q2
i +m2 (2.12)

where M is a function of the internal quark momenta and masses and N is a normal-
ization constant.

Frank, Jennings, and Miller[81, 82] demonstrated that the light-front wave func-
tion in Schlumpf’s constituent quark model leads to a violation of hadron helicity
conservation at high energies, leading to a slower falloff of F p

2 /F
p
1 than 1/Q2, as ob-

served in the recoil polarization data for GE/GM . In particular, the ratio QF2/F1

is expected to be roughly constant for Q2 between 2 and 20 GeV2, a result which is
borne out by the recoil polarization data between 2.0 and 5.6 GeV2. In all of these
models, the importance of relativity is paramount. When working in light-front dy-
namics in particular, boosting the spin state of the nucleon wave function from the
rest frame, in which the spin-flavor state is constructed in the same way as in the
non-relativistic quark model, to the light-front (i.e.; the infinite momentum frame)
causes the light-cone spinors to undergo Melosh rotations[83] which mix different spin
states, introducing non-trivial spin dependence in the light-cone wavefunction, which
is responsible for observable effects such as the predicted scaling of QF2/F1. The
Melosh rotation takes the form

< λ′|RM(ξ, q⊥,m,M)|λ > =

[
m+ ξM − iσ · (n× q)√

(m+ ξM)2 + q2
⊥

]
λ′λ

(2.13)

where m is the constituent quark mass, M is the mass operator which depends on
the internal quark momenta, and ξ is a kinematic factor which also depends on light
cone quantities (see, e.g. [79] for definitions.). In the model of Frank, Jennings and
Miller[81, 82], the strong decrease of Gp

E/G
p
M with Q2 emerges as an important conse-

quence of the spin-dependent relativistic effects on the light-front quark wavefunctions
embodied by the Melosh rotation (2.13) which is qualitatively confirmed by the re-
coil polarization data [32, 31, 33]. This model tends to predict a somewhat faster
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Figure 2-2: One-loop virtual pion diagrams in the Light-Front Cloudy Bag Model.

falloff of Gp
E/G

p
M than that exhibited by the data, and also predicts a zero crossing

of Gp
E/G

p
M near Q2 = 6 GeV2. The results of this experiment provide a severe test

of this prediction.
Despite the relative phenomenological success of nucleon models based entirely on

constituent quarks, the shortcomings of these models are well known. In particular,
they do not generally satisfy the symmetry properties of the QCD Lagrangian, par-
ticularly chiral symmetry. The elementary u and d quarks are nearly massless, and
in the limit of exactly massless u and d quarks, the QCD Lagrangian exhibits chiral
symmetry; i.e., it is invariant under SU(2)L × SU(2)R rotations of left and right-
handed quarks; i.e., quark chirality is conserved in this limit. In nature, the lightest
pseudoscalar mesons (pions) appear as the Goldstone bosons of the spontaneously
broken chiral symmetry of the QCD Lagrangian. The nonzero masses of the pions
observed in nature are acquired through the explicit chiral symmetry breaking of the
non-zero u and d quark masses.

As the lightest hadrons, pions play a particularly important role in the long-
distance structure of the nucleon. Miller[84] added the effects of the pion cloud of the
nucleon to the relativistic constituent quark model(rCQM) of [81] by calculating one-
loop diagrams involving virtual pions, characterizing the probability that a nucleon
fluctuates into a nucleon-virtual pion pair while interacting with the electromagnetic
field of a virtual photon, which may couple to either the charged pion or the nucleon,
as shown in figure 2-2. The calculation of these diagrams requires bare virtual photon-
nucleon form factors, which are calculated within the rCQM, and relativistic pion-
nucleon form factors with an assumed form used by [85, 86], and is called the Light-
Front Cloudy Bag Model. The pion cloud effects within this model are found to
yield important contributions at low momentum transfer, particularly for the neutron
electric form factor, which is not well reproduced by relativistic constituent quarks
alone. On the other hand, quarks are found to dominate at large momentum transfers.

2.4 Form Factors and Perturbative QCD

The discussion of perturbative QCD (pQCD) and the nucleon form factors begins
with the property of asymptotic freedom in QCD, the theory of the strong interac-
tions. The running coupling constant of QCD is given to leading logarithmic order
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in the renormalization scale µ by (see [87], page 82)

αs(µ) =
4π

β0 ln
(
µ2

Λ2

) (2.14)

β0 = 11− 2

3
nf (2.15)

where nf is the number of quark flavors that can appear in the qq̄ “vacuum polariza-
tion” loop correction to the gluon propagator. In the Standard Model and certainly
at any energy scale currently accessible to experiment, the number of flavors does not
exceed six, and the coefficient multiplying ln (µ2/Λ2) in the denominator is positive,
implying that αs(µ

2) −−−−→
µ2→∞

0. The QCD scale Λ is the only free parameter of the

theory, and determines the energy scale at which the theory becomes strongly coupled
and a perturbative expansion in powers of αs is no longer meaningful. Based on in-
formation about αs from a variety of experiments including deep inelastic scattering,
the widths of the Z boson and the τ lepton, and e+e− annihilation data at various
energies, the Particle Data Group[9] quotes a value of αs(µ = MZ) = 0.1176± 0.002
for the QCD coupling constant at the Z pole. The results in this thesis are mea-
surements at Q of 2− 3 GeV , where αs ≈ 0.3 based on the running of αs from high
energies where it is measured with reasonable precision. Even if the behavior of the
nucleon as measured by form factors is assumed to be calculable entirely within a
pQCD framework, the expansion is not likely to converge very rapidly for such a
value of αs. In order to calculate the form factors with reasonable precision would
require the calculation to several orders beyond the leading order in αs of all possible
Feynman graphs contributing to elastic eN scattering, a non-trivial calculation to say
the least for this hard, exclusive process.

Despite these obvious difficulties, this experiment takes place at sufficiently high
momentum transfer that quark-gluon dynamics is likely to play an important, if not
dominant role in the form factor behavior. Perturbative QCD makes a prediction for
the behavior of the nucleon form factors for asymptotically large Q2. In a reference
frame in which the nucleon is moving with infinite momentum, it can be viewed as
a system of three massless, weakly-interacting quarks moving collinearly with the
nucleon, each carrying a light-front momentum fraction xi, (i=1,2,3) where the xi are
required to add up to the total nucleon momentum x1 + x2 + x3 = 1. The transverse
momenta of the quarks are assumed small, |k⊥,i| ≈ Λ� Q and are neglected. In order
for elastic scattering to take place when one of the quarks is struck by a virtual photon
with large momentum Q, the struck quark must interact with the “spectator” quarks
such that the three quarks remain collinear after the collision. In perturbative QCD,
the quarks interact via single-gluon exchange to leading order in αs. A minimum
of two hard2 gluon exchanges among the three quarks is required for this exclusive

2If one of the exchanged gluons is “soft”, then the coupling αs for that gluon exchange increases,
perhaps to the point where perturbative QCD no longer applies. However, “soft” gluon exchange
corresponds to long-distance physics. If either of the “hard” (Q2

i � Λ2) gluon exchanges fails to
occur, the nucleon is much more likely to break up than to remain in its qqq ground state after the
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Figure 2-3: Example feynman diagrams contributing to eN → eN at leading order
in αs in pQCD. The total Oα2

s contribution includes all possible permutations and
time-orderings of the two required gluon exchanges.

process to occur. A subset of the possible two-gluon exchanges is shown in figure 2-3.
The virtual photon carries the momentum transfer Q2, while the two gluons carry
momentum transfers q2

1 and q2
2, respectively, where Q2, Q2

1,2 � Λ2.

It was shown in [89] that the nucleon form factor in this high Q2 limit can be
written in the factorized form

F (Q2) =

∫ 1

0

dx

∫ 1

0

dyΦ∗(y)T (x, y,Q2)Φ(x) (2.16)

where dx ≡ dx1dx2dx3δ(1− x1 − x2 − x3) and dy ≡ dy1dy2dy3δ(1− y1 − y2 − y3) are
the momentum fractions of the quarks in the initial and final nucleons, respectively,

collision. This can be understood in terms of confinement. If one of the quarks is struck by a very
hard virtual photon and fails to share the imparted momentum among the two spectator quarks, it
will move rapidly away from the original three-quark center of mass. As the attractive color potential
between the struck quark and the inert spectator quarks increases with distance, it becomes more
energetically favorable for a qq̄ pair to pop out of the vacuum, leaving two or more colorless hadrons
in the final state. In other words, the struck quark fragments into secondary hadrons. Another
possibility is the excitation of nucleon resonances such as the ∆. In either case, the reaction is no
longer elastic scattering, which is why at very high momentum transfers corresponding to very short
distances, elastic scattering cannot occur without a minimum of two hard gluon exchanges sharing
the transferred momentum among the three quarks. Formally speaking, the arguments leading to the
dimensional scaling law rest on certain assumptions about the ultraviolet and infrared behavior of
the bound-state nucleon wave function–namely, each of the hadronic constituents must carry a finite
fraction of the hadron momentum and no internal mass scale may be present. These assumptions are
naturally satisfied in renormalizable field theories such as QCD[88] for sufficiently large momentum
transfers.
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and the sums of the quark momenta are restricted by the δ-functions to add up
to the respective nucleon momenta. T (x, y,Q2) is the transition operator for the
“hard” scattering process, and Φ(x), Φ∗(y) are the light-front quark distribution
amplitudes (DAs) integrated over transverse momenta of the quarks in the initial and
final nucleons. The perturbative physics is contained in T , while the non-perturbative
information about the nucleon’s ground state wavefunction is contained in the DAs Φ,
which are universal. The form of T is obtained by calculating the Feynman diagrams
in figure 2-3 (and permutations thereof). The leading asymptotic Q2 dependence of
the form factor is contained in T .

The basic Q2 dependence of T can be guessed by recognizing that each gluon
exchange contributes a factor of αs(q

2
i ) for the two qqg vertices, and a factor of 1/q2

i

for the gluon propagator:

T (x, y,Q2) ∝ αs(q
2
1)αs(q

2
2)

q2
1q

2
2

f(x, y) ∝ Q−4 (2.17)

The gluon momenta q2
1 and q2

2 are proportional to Q2. The multiplicative factor f ,
and the proportionality between q2

1,2 and Q2, are functions of the quark momentum
fractions x and y determined by the arrangement of the gluon and photon lines in the
Feynman diagram under consideration. The leading asymptotic Q2 dependence of the
form factor contained in T is clearly F (Q2) ∝ 1

Q4 . This result for the nucleon form fac-
tor is a special case of the dimensional scaling laws for large momentum transfer pro-
cesses derived in [88]. The leading Q−4 dependence applies to the helicity-conserving
Dirac form factor. On the other hand, the Pauli form factor F2 characterizes the
nucleon spin-flip amplitude. In the limit of massless quarks, which is certainly ap-
proximately satisfied in nucleons composed of light u and d quarks at high energies,
quark helicity is conserved in interactions mediated by vector fields such as photons
and gluons. Therefore, F2 is suppressed by a factor m2/Q2 relative to F1, where m
is an effective quark mass. This leads to the prediction F2(Q2) ∝ 1/Q6, Q2 → ∞.
The ratio F2/F1, which is a simple function of the ratio GE/GM measured by this
experiment, is expected to scale as Q2F2/F1 −−−−→

Q2→∞
constant. The proton magnetic

form factor has been measured to higher Q2 values than any of the other nucleon
form factors. Figure 2-4 shows the data extending to Q2 above 30 GeV2, plotted as
Q4Gp

M(Q2)/µp. Clearly Gp
M at least approximately satisfies the pQCD scaling ex-

pectation starting at Q2 of 5 to 10 GeV2. The data shown in the figure are from
[28, 20, 19, 90, 29].

Since the bare (current) masses of the quarks in the nucleon are negligible in
comparison to the mass of the nucleon and to Q2, it has been argued by Belitsky et
al.[91] that the quark mass contribution to the helicity-flip amplitude is also negligible,
and instead the dominant mechanism for nucleon spin flip in QCD is quark orbital
angular momentum. In [91], the authors derived the asymptotic Q2 dependence of
the Pauli form factor in terms of the amplitude for one of the quarks in either the
initial or final state to carry one unit of orbital angular momentum. The leading order
contribution to F2 has a 1/Q6 dependence with a coefficient depending on the light-
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Figure 2-4: Q4Gp
M/µp at high Q2. See text for references.

cone nucleon wavefunctions at leading (twist-3) and subleading (twist-4) twist. In
contrast to the pQCD analysis of F1, in this calculation, the quark transverse momenta
k⊥ were considered to first order in k2

⊥/Q
2 in order to allow for orbital angular

momentum of the constituents. Logarithmic singularities arising in the integration
of the nucleon DAs over momentum fractions in this approach contribute an extra
logarithmic Q2 dependence of F2. Of particular interest where the results presented
in this thesis are concerned is that these considerations lead to a modified scaling
behavior for the ratio F2/F1 at large Q2. Instead of Q2F2 ∝ F1, Belitsky et al.[91]
find

Q2

log2
(
Q2

Λ2

)F2 ∝ F1 (2.18)

at large momentum transfer, where Λ is loosely related to the QCD scale parameter
ΛQCD. The recoil polarization data[32, 33, 31] for F p

2 /F
p
1 are compatible with such a

scaling starting at surprisingly low Q2 for a surprisingly wide range of Λ values (see
figure 2-5). As this experiment extends the database of F p

2 /F
p
1 to higher Q2, it will

be interesting to determine the extent to which this scaling continues to be satisfied.
The ratio of Pauli and Dirac form factors F2/F1 is given in terms of Sachs form factors
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by

F1 =
GE + τGM

1 + τ
(2.19)

F2 =
GM −GE

1 + τ
(2.20)

F2

F1

=
1− GE

GM

τ + GE
GM

(2.21)
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Figure 2-5: Jefferson Lab Hall A recoil polarization data plotted as Q2

log2
“
Q2

Λ2

” F2
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, as a

function of Q2, with an arbitrary choice of Λ = 300 MeV. See text for references.

2.5 Form Factors and Generalized Parton Distri-

butions

The preceding discussion of the insight into the nucleon form factors gained from
perturbative QCD was but an example of the more general method of probing the
short-distance structure of hadrons using “hard” probes; i.e., high momentum-transfer
processes. Another classic example is deep inelastic scattering (DIS), in which in-
clusive electron scattering from nucleons and nuclei for large values of Q2 and the
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Figure 2-6: Handbag diagram for DVCS, illustrating the factorization into the pertur-
bative quark-level subprocess γ∗q → γq, and the universal nucleon structure (pictured
as the lower “blob”) responsible for the presence of the quark line in the upper part
of the diagram. The blob is parametrized in terms of GPDs.

invariant mass W of the recoiling hadronic system probes the quark structure of the
target. Perhaps the most striking success of pQCD, as alluded to previously, is its
prediction of the Q2 evolution of the proton structure function F p

2 (not to be confused
with the identically named Pauli form factor F2).

A more recent development is the potential for hard exclusive processes such as
deeply virtual Compton Scattering (DVCS) and hard exclusive meson production to
open up new frontiers in the understanding of nucleon structure[92]. This effort has
been driven by the recent theoretical development of Generalized Parton Distributions
(GPDs). The proof of QCD factorization theorems [93, 94, 95] for hard exclusive re-
actions allows the factorization of the amplitude for these processes into a quark-level
subprocess which can be calculated perturbatively and a universal, non-perturbative
generalized parton distribution function which contains process-independent nucleon
structure information. Figure 2-6 illustrates the factorization for the DVCS reaction
(γ∗(qh)+N(p)→ γ(q′)+N(p′)) through the “handbag” mechanism. In this exclusive
reaction, a hard virtual photon (momentum qh) Compton-scatters from an individual
quark inside the nucleon, a pure QED process, leaving a real photon of momentum q′

and a nucleon of momentum p′ = p+ q in the final state (note that q 6= qh is the total
momentum transferred to the nucleon in the process). The amplitude for the process
is integrated over all possible momenta k of the struck quark. The reaction kinematics
are characterized by the light-cone momentum fraction x of the struck quark defined
as k+ ≡ xP̄+, P̄ ≡ (p+p′)/2, the “skewness” ξ defined as q+ ≡ −2ξP+, and t ≡ −q2,
the squared momentum transfer to the nucleon. The amplitude is a function of these
three variables, and is given at leading twist in terms of four chiral-even structure
functions called Hq(x, ξ, t), Eq(x, ξ, t), H̃q(x, ξ, t), Ẽq(x, ξ, t), each defined for a given
quark flavor q and pictured as the blob in the lower part of the diagram in figure 2-6.
These functions are known as the generalized parton distributions (GPDs)[96, 97, 98].
They encode new information about nucleon structure to be gained by studying ex-
clusive reactions which cannot be obtained from inclusive reactions such as DIS. The
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functions H,E, H̃, Ẽ characterize respectively the vector, tensor, axial vector, and
pseudoscalar transition amplitudes.

GPDs provide a consistent synthesis of nucleon structure data from a variety of
different classes of reactions. In the forward limit, they reduce to the usual parton
distribution functions measured in DIS[92]:

Hq(x, 0, 0) =

{
q(x), x > 0
−q̄(−x), x < 0

(2.22)

H̃q(x, 0, 0) =

{
∆q(x), x > 0

∆q̄(−x), x < 0
(2.23)

By integrating over x at any ξ, the elastic nucleon form factors are recovered:∫ 1

−1

dxHq(x, ξ, t) = F q
1 (t) (2.24)∫ 1

−1

dxEq(x, ξ, t) = F q
2 (t) (2.25)

Given a model for the GPDs, a prediction for the nucleon form factors can be derived.
Guidal et al.[99] use a modified Regge ansatz for the GPDs at zero skewness. In order
to reduce the integration region for the GPD moments to 0 < x < 1, the authors
define nonforward parton densities Hq(x, t) ≡ Hq(x, 0, t)+Hq(−x, 0, t) (and similarly
for Eq(x, t)) such that ∫ 1

0

Hq(x, t) = F q
1 (t) (2.26)∫ 1

0

Eq(x, t) = F q
2 (t) (2.27)

for quark flavor q = u, d. The proton form factors are given in terms of the form
factors for valence quark flavors u and d by F p

1,2 = euF
u
1,2 + edF

d
1,2, and the neutron

form factors are obtained from the proton by interchanging u ↔ d; i.e., F 1
1,2n =

euF
d
1,2 + edF

u
1,2. Under this construction, the Dirac form factor automatically satisfies

the required normalization condition at t = 0, namely F p
1 (0) = 1 and F n

1 (0) = 0. The
modified Regge ansatz of [99] relevant to the form factor behavior at large t = −Q2

is parametrized as follows:

Hq
R2(x, t) = qv(x)x−α

′(1−x)t (2.28)

EqR2(x, t) =
κq
Nq

(1− x)ηqHq(x, t) (2.29)

where α′ and ηq, q = u, d are three adjustable parameters which can be fitted to the
form factor data, and the normalization factors κq/Nq guarantee the required q2 → 0
behavior F p,n

2 (0) = κp,n. qv(x) is the valence unpolarized parton distribution function
(PDF) for quark flavor q, which is taken from the MRST2002 global NNLO fit[100],
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evolved to a scale µ2 = 1 GeV 2. Given this relatively simple ansatz for the functional
form of the GPDs and only three adjustable parameters, the model of [99] achieves a
remarkably good agreement with experiment for all four nucleon form factors in the
entire Q2 range over which they are known. Of particular relevance to the outcome
of this experiment is the prediction of a zero crossing of Gp

E/G
p
M at approximately

9 GeV 2.

The connection between form factors and GPDs is a powerful one, as form factor
data provide powerful constraints on the x dependence of the GPDs through the
moments (2.25). GPDs have been related to the total angular momentum Jq carried
by quark flavor q in the nucleon [96] through Ji’s angular momentum sum rule:

2Jq =

∫ 1

−1

dxx {Hq(x, 0, 0) + Eq(x, 0, 0)} (2.30)

In the model of [99], the behavior of the ratio F p
2 /F

p
1 determines the behavior of

the GPD E as x → 1, allowing an evaluation of the sum rule (2.30). The F p
2 /F

p
1

measurements of this experiment to higher Q2 will further constrain this GPD, thus
improving the understanding of the spin structure of the proton.

Another promising application of GPDs is the concept of nucleon tomography, a
modern version of the traditional interpretation of the form factors as Fourier trans-
forms of the Breit frame charge and magnetization densities. The two-dimensional
Fourier transform of GPD Hq with respect to t has been shown to yield the transverse
quark density in impact parameter space in the infinite momentum frame (IMF)[101]
as a function of longitudinal momentum fraction x:

q(x,b) =

∫
d2q

(2π)2
eiq·bHq(x, t = −q2) (2.31)

Integrating this distribution over all x and summing over quark flavors, one obtains
the model-independent IMF transverse charge density ρ(b)[102] equal to the two-
dimensional Fourier transform of the Dirac form factor F1:

ρ(b) =
∑
q

eq

∫
dxq(x,b) =

∫
d2q

(2π)2
F1(Q2 = q2)eiq·b (2.32)

In contrast to the result of Kelly’s analysis of the form factors in terms of three-
dimensional Fourier transforms of the charge and magnetization densities with rela-
tivistic corrections to go from the Breit frame to the rest frame, which finds a neutron
charge density with a positive core and a negative exterior, Miller’s analysis[102] of
the IMF charge density in impact parameter space using (2.32) results in a negative
central charge density for the neutron, with a positive component at intermediate
distances (≈0.5-1.0 fm), and another sign change at large (1-2 fm) distances.

Diehl et al.[103] presented a somewhat more complicated parametrization of the
GPDs H, H̃, and E, and fitted their model to nucleon Dirac, Pauli, and isovector
axial form factor FA(q2) data. Using their fit results, they constructed tomography
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plots of unpolarized and (transversely) polarized valence u and d quark distributions
in the two-dimensional impact parameter plane for various longitudinal momentum
fractions x. An interesting property of the polarized transverse quark densities, which
are related to Fourier transforms of Eq with respect to t, is that for polarization
along the bx direction, the densities are shifted along the by axis. The acquired shifts
for the u and d quark densities are in opposite directions. The (valence) polarized
densities defined in [103] are interpreted as the probability density to find a quark
with momentum fraction x and impact parameter b in a nucleon polarized along the
bx direction, less the probability to find an antiquark.

In summary, the development of GPDs has provided the opportunity for a con-
sistent synthesis of nucleon structure data from a wide variety of reactions in terms
of universal, non-perturbative, generalized structure functions which can potentially
be measured directly in hard exclusive reactions such as DVCS. They connect the
inclusive regime of deep inelastic scattering and PDFs to the exclusive regime of elas-
tic scattering and form factors through constraints on their limiting forward behavior
and their first x moments. Through sum rules relating the x moments of GPDs to the
total angular momentum carried by quarks in the nucleon, GPDs provide insight into
its spin structure. Finally, GPDs enable nucleon tomography in impact parameter
space as a function of longitudinal momentum fraction x. By integrating over quark
momentum, model-independent transverse charge densities in the IMF are obtained
as two-dimensional Fourier transforms of the nucleon Dirac form factor F1. The nu-
cleon form factors are an important input to this highly promising field of research,
and the measurements of Gp

E/G
p
M (or F p

2 /F
p
1 ) reported in this thesis in particular will

help constrain the x dependence of the tensor GPD E.

2.6 Summary

This chapter presented an overview of the physics of nucleon form factors with an
emphasis on high momentum transfers. Several important topics have been omitted,
including a thorough discussion of the pion cloud, the insight gained at low momentum
transfers from chiral perturbation theory, and lattice QCD calculations of the nucleon
form factors. Since these subjects are more relevant to the understanding of the low
momentum transfer behavior of nucleon form factors, they were not discussed in this
thesis. The reader is referred to the review paper [18] for extensive discussions of
these and additional topics, and references to the relevant literature.
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Chapter 3

Description of the Experiment

Experiment E04-108 collected data from October 2007 to June 20081 in experi-
mental hall C at Jefferson Lab2, in Newport News, Virginia. Polarized electrons were
excited by circularly polarized laser light from a semiconductor photocathode and
accelerated to energies as high as 5.714 GeV by the superconducting radio-frequency
resonant cavities of the CEBAF accelerator. After acceleration, the electrons were
delivered to experimental Hall C, where they collided with a liquid hydrogen target.
Polarized scattered protons were detected in a magnetic spectrometer called the High
Momentum Spectrometer (HMS). A Focal Plane Polarimeter (FPP) consisting of
blocks of CH2 followed by tracking detectors measured the polarization of these pro-
tons. A large solid-angle electromagnetic calorimeter (BigCal) detected the scattered
electrons in coincidence with the scattered protons in order to suppress substantial
inelastic backgrounds otherwise present in the single-arm proton spectrum at high
Q2. In the sections that follow the experimental apparatus will be described in some
detail.

3.1 Kinematics of Experiments E04-108 and E04-

019

Table 3.1 shows the kinematics of experiments E04-108 and E04-019. The former
experiment has as its goal to extend the knowledge of Gp

E/G
p
M as measured in polar-

ization transfer experiments to the highest possible Q2 that can be reached at CEBAF
with the highest available beam energy. Experiment E04-019 has the goal of mea-
suring the ε-dependence at Q2 = 2.5 GeV 2 of Gp

E/G
p
M using the same apparatus and

method in order to search for signatures of two-photon exchange effects. Experiment
E04-108 is the subject of this thesis.

The choice of kinematics is motivated by several considerations which will be
discussed below. In all cases, the goal of measuring to the highest possible Q2 was
weighed against the increasing difficulty of the recoil polarization technique with

1E04-108 ran consecutively with experiment E04-019.
2Also known as the Thomas Jefferson National Accelerator Facility
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Q2, GeV2 ε Ebeam, GeV θp,
◦ pp, GeV Ee, GeV θe,

◦

2.5 0.154 1.873 14.495 2.0676 0.532 105.2
2.5 0.633 2.847 30.985 2.0676 1.51 44.9
2.5 0.789 3.680 36.10 2.0676 2.37 30.8
5.2 0.377 4.053 17.94 3.5887 1.27 60.3
6.8 0.507 5.714 19.10 4.4644 2.10 44.2
8.5 0.236 5.714 11.6 5.407 1.16 69.0

Table 3.1: Kinematics of experiments E04-108 and E04-019

increasing Q2 due to the falling elastic scattering cross section which reduces the
number of events that can be collected in a fixed amount of beam time, the decreasing
analyzing power of the p + CH2 → X reaction at large proton momenta, and the
increasing uncertainty associated with the calculation of the precession of the proton
spin in the magnets of the HMS.

3.2 The Continuous Electron Beam Accelerator

Facility

Before being named Jefferson Lab, the electron accelerator was originally named
CEBAF, an acronym for Continuous Electron Beam Accelerator Facility. It consists
of two parallel linear accelerators, each capable of approximately 600 MeV of accel-
eration. Each linac uses superconducting RF-resonant Niobium cavities cooled to
well below their transition temperatures by superfluid Helium at ≈ 2 K. The use of
superconducting RF cavities eliminates power losses to ohmic heating characteristic
of room temperature, normal-conducting cavities, allowing the accelerator to operate
at roughly 1/3 of the power consumption that would otherwise be required.

The CEBAF linacs are connected by nine recirculating arcs of magnets, with
five at the north end and four at the south end. With this “racetrack” design, the
electron beam can be accelerated in up to five passes through both linacs, for a
maximum energy of approximately 6 GeV before extraction and delivery to the three
experimental halls. Figure 3-1 shows a schematic layout of the CEBAF accelerator.

3.2.1 Polarized Electron Production

The production and acceleration of the electron beam starts with the polarized
electron source. Electrons are excited from a GaAs photocathode using circularly po-
larized laser light. A monolayer of Cs2O on the GaAs results in a surface with negative
electron affinity, shifting the vacuum level below the conduction band, facilitating the
release of photoelectrons excited across the semiconductor bandgap into the vacuum.
The polarization of the electrons takes place by optical pumping between the P3/2

valence-band level and the S1/2 conduction-band level in GaAs. In bulk GaAs, the
four spin substates of the P3/2 level are degenerate. For right(left)-circularly polarized
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Figure 3-1: Schematic of the CEBAF accelerator

photons, the ∆mj = +(−)1 transition into the conduction band is three times more
likely to occur from the degenerate mj = −(+)3

2
substate of the valence P3/2 level

to the −(+)1
2

conduction S1/2 substate than from the −(+)1
2

valence P3/2 substate
to the +(−)1

2
conduction S1/2 substate, owing simply to the Clebsch-Gordan angu-

lar momentum coupling coefficient between the initial and excited states, resulting
in a theoretical limit of 50% polarized electrons. However, the polarization can be
increased above this limit by lifting the degeneracy of the P3/2 states. If the material
properties of the cathode are altered in such a way that the degeneracy is broken,
then the theoretical limit becomes 100 % since all electrons are excited into the same
polarization state for a given photon polarization.

In practice, lifting of the degeneracy can be accomplished by applying a mechan-
ical strain to the GaAs. One way to provide the strain is by growing the GaAs
cathodes on a substrate of GaAsP, which has a different lattice constant. With a
single layer of strained GaAs, polarizations of 75% are routinely achieved. With so
called “superlattice” GaAs photocathodes, consisting of a series of alternating thin
(several nm) layers of GaAs and GaAsP, polarizations approaching 90% are routinely
achieved, with higher quantum efficiency (QE) than is typical of a single strained layer
of GaAs. Jefferson Lab’s polarized source uses a superlattice GaAs photocathode to
deliver 85% polarized electron beams with a QE near 1 %.

The laser light used to produce electrons from the cathode is provided by three
gain switched diode lasers, one for each experimental hall. Each laser is pulsed at a
frequency of 499 MHz, and the three lasers are phase shifted relative to each other
by 120◦. Each laser pulse produces a single bunch of electrons, and the combined
train of electron bunches has a frequency of 1497 MHz, equal to the fundamental
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resonant frequency of the RF accelerating cavities in the linacs. In each sequence of
three electron bunches, one bunch is destined for each experimental hall. Circular
polarization of the laser light is achieved by use of a Pockels Cell, which consists of a
birefringent crystal whose birefringence depends linearly on the applied electric field.
By varying the electric field applied to the crystal, the polarization components of the
light can be phase-shifted relative to each other, allowing control of the orientation
of the polarization vector of the laser light passing through it. For this and most
other polarized beam experiments at Jefferson Lab to date, the Pockels Cell was used
to reverse the polarization of the laser light between left and right circular polar-
ization at a frequency of 30 Hz. Taking data in both positive and negative helicity
states enables the cancellation of helicity-independent instrumental asymmetries in
the proton polarimeter so that an unambiguous measurement of the physical polar-
ization transfer components can be obtained which is independent of the instrumental
asymmetry. The rapid reversal of the beam polarization guarantees equal numbers of
events in each polarization state by canceling out slow fluctuations in beam current
and target density which affect the luminosity. Additionally, insertable and rotat-
able half-wave plates are available which may be used by experiments to passively
reverse the polarization of the laser light. These tools are particularly important for
the program of parity violation experiments at Jefferson Lab which aim to measure
asymmetries of a few ppm or smaller. Such experiments are quite sensitive to any
small helicity-dependent differences in beam properties, and periodically inserting
and retracting the half-wave plate can help to cancel or at least correct for such ef-
fects by taking data in both states. This experiment, being largely insensitive to such
small differences, did not request any changes to the state of either half-wave plate.
A more detailed overview of polarized electron beam technology with references to
the scientific literature on the subject is available in [104].

3.2.2 Acceleration and Beam Delivery to Hall C

The photoemitted electrons are launched into the injector by a 100 kV DC electron
gun. The photocathode and the electron gun are housed in an ultra-high-vacuum
enclosure (10−11 to 10−12 Torr). Such a high vacuum is crucial to prolonging the
lifetime of the photocathode, as ionized atoms from the residual gas in the source
enclosure accelerate backward and collide with the cathode, degrading its quantum
efficiency. The injector itself accelerates electrons by up to 67 MeV in preparation
for entry into the north linac. All of the superconducting RF cavities in the CEBAF
accelerator are housed within cryomodules. Each cryomodule consists of eight RF
cavities. Each linac contains 20 cryomodules. The injector consists of 21

4
cryomodules

(18 cavities). A cryomodule is a large cryostat which additionally contains all the
necessary support structure for the accelerating cavities, including but not limited to

• An outer vacuum vessel

• Thermal radiation shielding

• Magnetic shielding
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• A welded helium vessel enclosing each cavity pair to keep the cavities at 2
Kelvin.

• Superinsulation blankets

• Waveguides to supply RF power to the cavities

• Mechanical “tuners” apply strains which slightly stretch or compress the cavities
to optimize their resonant properties and performance.

• Feedthroughs and instrumentation

Each cavity is separately powered by a 5 kW maximum power RF klystron operated at
1497 MHz. Figure 3-2 shows one of the four cavity pairs that make up a cryomodule.
By the time the electron beam reaches the main linac, it is sufficiently relativistic to

Figure 3-2: A pair of the standard five-cell Niobium accelerating cavities used in
CEBAF.

stay in phase with the RF field on up to five passes through both linacs, literally riding
the crest of an electromagnetic wave to higher energy while moving at a constant speed
near the speed of light. At any given time, up to five electron beams of different
energies are essentially sitting on top of each other in the linac. At the end of each
linac, a series of dipole magnets separates the beam electrons into their component
momenta and steers them into one of the recirculating arcs. The arcs consist of
conventional room-temperature magnets, with dipoles for steering and quadrupoles
for focusing. Each successive arc has a larger field integral in order to steer higher
momentum electrons along a path with the same radius of curvature. At the exit
of each recirculating arc is an identical series of magnets with opposite polarity to
recombine the electrons from the five arc beamlines back into a common beam pipe
for another pass through the linac.

There are five arcs connecting the end of the north linac to the beginning of the
south linac, and four arcs connecting the end of the south linac to the beginning of the
north linac, for a maximum of five passes through both linacs. The beam destined for
any given hall can be extracted from the main racetrack after any number of passes
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between one and five by RF separator magnets, which also operate at 499 MHz and
can be phased so that the beams for Halls A, B, and C are separately extracted
after the desired number of passes. After extraction from the main beamline at the
appropriate pass, the beams enter the beam switch yard, where, depending on their
RF phase, they are steered into the beamline leading to the appropriate experimental
hall. This design allows all three experimental halls to run simultaneously with great
flexibility in beam properties including polarization, energy, and current, with some
constraints described below.

The main constraint on simultaneously delivering different beam energies to three
experimental halls is that the energy of each linac is fixed, so that while any given hall
can choose a desired number of passes, the energy is restricted to multiples of the linac
energy which is common to all three halls. For intensity, the available beam current is
unrestricted except that the total current delivered to all three halls simultaneously
is limited to approximately 180 µA. The polarization that can be delivered to three
halls simultaneously is limited for a given combination of energies by the precession of
the electron spin in the recirculating arc beam lines and the transport lines from the
accelerator to the experimental halls. The precession is proportional to the electron’s
relativistic γ-factor (γ = Ee/me), its (small) anomalous magnetic moment, and the
total bend angle of its trajectory in each pass through the arc and hall transport beam
lines. The orientation of the beam polarization is rotated by a Wien filter before
injection into the accelerator to optimize the delivery of longitudinal polarization to
the experimental halls demanding polarized beam. The complicated dependence of
the final polarization orientation in each hall on the Wien filter setting, the number
of passes through the accelerator, and the energy per pass actually constrains the
combination of energies at which polarized beam can be simultaneously delivered to
multiple halls to certain “magic” combinations. During part of experiment E04-108,
Hall A also needed polarized beam, so a compromise was made in the Wien filter
setting to optimize polarization to Halls A and C in which the final longitudinal
polarization in Hall C was 95% of the full beam polarization at the injector. This
compromise resulted in a small increase in the statistical uncertainty on the form
factor ratio. Even though the final result for the form factor ratio is independent of
precise knowledge of the beam polarization, the statistical error depends on the beam
polarization roughly as h−2.

In addition to reduced energy costs, the great advantage of superconducting RF
technology is that it enables continuous wave (CW) operation of the accelerator at
much higher currents than would be possible using normal-conducting cavities. Ex-
periments that use CEBAF almost always run with CW, 100% duty factor electron
beam, for which average current is equal to peak current. The benefit of a 100% duty
factor electron beam is that, for a given average luminosity, “clean” events in the
experimental detectors are relatively more likely than for a pulsed beam with a low
duty factor and a higher peak luminosity, which increases the probability of multiple
collisions per beam bunch, multiple particles in the detectors, and increased difficulty
in correctly reconstructing individual scattering events. The ability to consistently
deliver CW electron beams with high energy, intensity and polarization make CE-
BAF arguably the leading electron scattering facility in the world for nuclear and
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particle physics experiments. More information about the CEBAF accelerator along
with references can be found in [105].

3.2.3 Hall C Beamline Components/Diagnostics

Careful, constant monitoring and tight control of the properties of the electron
beam entering Hall C are needed to carry out experiments successfully and safely.
The beam current and position are non-intrusively monitored by several redundant
devices which enter into feedback circuits used to control, respectively, the beam’s
intensity and its orbit through the many magnetic elements of both linacs, the recir-
culating arcs, and the Hall C beamline. In a cross section experiment, an accurate
calibration of the current-monitoring devices is needed in order to know the absolute
luminosity of the experiment. For a polarization experiment in which an asymmetry
is to be measured which does not depend on the absolute luminosity, precise knowl-
edge of the beam current at all times is less important than maximizing the total
number of scattering events recorded, which in practice means running at the highest
possible luminosity for which clean reconstruction of events in the detectors is still
possible. The beam position measurement devices are used by the accelerator oper-
ators to tune up the various beam-line elements for stable delivery of beam with the
desired properties. In contrast to the beam current and position, there are several im-
portant beam properties that must be monitored periodically that involve disruptive
measurements for which data taking for the experiment must be interrupted. Beam
properties falling into this category include energy, polarization, and the spot size of
the beam.

Beam Position Measurement

The beam position is monitored continuously by devices aptly named Beam Po-
sition Monitors (BPMs). Each beam position monitor consists of a resonant cavity
with a fundamental frequency equal to that of the accelerator and the Hall C beam.
This cavity contains four antennae, rotated by 45 degrees relative to the vertical and
horizontal axes in order to minimize synchrotron radiation damage. The difference-
sum ratio of the amplitudes of the signals picked up by antennae on opposite sides
of the beam is proportional to the distance between the beam and the midpoint of
the two antennae. The center of gravity of the four antenna signals measures relative
changes in the offset of the beam from its ideal trajectory. The BPMs are used as
feedback in steering the beam. The three BPMs closest to the target are monitored
closely by the experiments to ensure stability of the beam position on target.

The BPM signals are read out by sampling ADCs which perform an integration
over a 20 µs gate. These ADCs are read out at 60 Hz, and the first 25 data points are
averaged and presented once per second by EPICS (Experimental Physics Industrial
Control System), the system used by the accelerator and end stations for slow control
and monitoring of accelerator and experiment parameters. The same signals are also
sent to the Hall C data acquisition electronics and read out by CODA (CEBAF Online
Data Acquisition), the standard data acquisition software used by Jefferson Lab, for
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every event. The BPM information for a particular event is not to be understood as
the exact beam position on target for that event, as the signals are not synchronized
with the event data itself and the actual position on target is changing rapidly due
to the fast raster system which will be described below. In practice, an average beam
position is calculated using a rolling average of BPM information over a specified
number of previous events, the appropriate choice of which depends on the experiment
data rate, and this average beam position is further corrected for each event using
the fast raster signals. Since the average beam position on target is usually quite
stable over the course of a single CODA run, it is sometimes more practical to simply
ignore the event-by-event BPM information and fix the average beam position as a
parameter of the analysis, and to use the raster signals to measure the change in
beam position relative to the “fixed” average position. Once the BPMs are properly
calibrated, the BPM signals measure the beam position with an overall accuracy of
approximately ±1.0 mm, and relative changes in beam position are measured with a
precision of ≈ 0.2 mm. More detailed information on the Hall C BPMs is available
in [106].

A more precise and accurate determination of the beam position and profile is
obtained using the superharp system. Each superharp consists of a set of two vertical
wires and one horizontal wire strung on a moveable frame. These wires can be
scanned across a low current beam to measure its profile and absolute position. The
signals induced on the wires as they are scanned across the beam are digitized by an
ADC and correlated with the wire positions as recorded by an encoder equipped with
absolute position readout electronics. Since a harp scan interferes destructively with
the electron beam, data taking must be interrupted to perform the measurement.
The position accuracy of a single superharp beam profile measurement is better than
20 µm [107]. In addition to measuring the beam profile and providing a reference
coordinate against which the BPMs can be calibrated, the superharp system is used
as part of the beam energy measurement in the Hall C arc as discussed below.

Beam Current Measurement

There are three devices used to measure the beam current in Hall C. The first
two devices, used to monitor the beam current in real time, are cylindrical cavities
designed to resonate in the transverse magnetic mode TM010 at the same frequency
as the accelerator RF, and are called BCM1 and BCM2 respectively. The advantage
of choosing the TM010 mode is that the output power is relatively insensitive to the
beam position inside the cavity when the beam is close to the cavity’s longitudinal
axis. When the beam passes through these cavities, this mode is excited and antennae
placed inside the cavities are used to convert the RF power of the excited resonance,
which is proportional to the square of the beam current, to an analog voltage signal.
The electronics used for this conversion are different for BCM1 and BCM2, resulting
in slightly different performance characteristics, but for both BCMs, the output volt-
ages are processed by a preamplifier/level-shifter followed by a voltage to frequency
converter, before finally being sent to a scaler which is read out every two seconds by
EPICS.
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The output power of a resonant cavity depends most strongly on the difference
between its resonant frequency and the frequency of the excitation. Since the cavity’s
resonant frequency is determined mainly by its size and shape, and since the cavity
can expand and contract in response to changes in temperature, the gain of the BCM
cavities is quite sensitive to temperature. For this reason, the BCM cavities are kept
thermally insulated at a constant temperature of 43.3 ◦C. More details on the BCM
cavities and their operation can be found in [108, 109].

The third device used to measure the beam current is called an Unser monitor,
which is a parametric current transformer[109, 110]. The feature of the Unser monitor
which makes it useful for beam current measurements is that it has an extremely
stable gain and can thus be used as an absolute standard against which to calibrate
the BCM cavities, which can experience slow gain drifts over time. On the other
hand, the Unser suffers from an unstable zero offset which can drift significantly over
short time scales, making it unsuitable for current monitoring in real time. To use
the Unser monitor to calibrate the BCMs, alternating runs are taken with no beam
in the cavities and with beam of various currents, in order to establish the zero offset
and the gain, respectively. For a cross section measurement, careful calibration of
the BCMs must be performed periodically in order to minimize the uncertainty on
the total charge collected by the experiment. For this experiment, however, since the
result did not depend on the total charge delivered to the experiment, no dedicated
BCM calibration was performed. Only one rough calibration was performed to verify
the integrity of the BCM signals near the beginning of the run.

Beam Energy Measurement

To measure the energy of the electron beam in Hall C, the dipole magnets of
the Hall C arc transport line are used as a spectrometer. There are eight identical
dipoles in the arc3. Pairs of superharps at the entrance and exit of the arc precisely
measure the beam position and angles before and after the arc, and an additional
pair of superharps at the midpoint of the arc contributes a third measurement of the
trajectory and determines its curvature. In order to measure the beam momentum,
all elements of the beamline except the dipoles are turned off, and the current in the
magnets is varied to steer the beam onto the central trajectory of the arc beamline.
For the central trajectory, the total deflection angle of the beam in the arc is 34.3◦.
The momentum is determined from the required current settings, using the precise
knowledge of the field integral of the arc dipoles as a function of current:

pbeam =
e

θarc

∫
Bdl (3.1)

The accuracy of this method of measuring the beam energy is determined by the
accuracy of the positions measured by the superharps and by the knowledge of the
field integral in the arc magnets as a function of current. One of the arc dipoles

3Additionally, there are twelve quadrupoles, eight sextupoles and eight pairs of beam corrector
magnets for transport.
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has been precisely field-mapped as a function of current, and is used to calibrate the
remaining dipoles, which are assumed to have identical field maps to the reference
dipole. The precision on the beam momentum determined by this technique is δp

p
≈

5× 10−4. More details on the technique can be found in [111]. For this experiment,
the reaction under study is elastic electron-proton scattering, in which both outgoing
particles are detected in coincidence. By detecting both particles, the kinematics of
the reaction are fully determined, and can be used as a measurement of the beam
energy. However, the accuracy of using elastic ep scattering to measure the beam
energy is limited by the accuracy with which the proton and electron kinematics are
reconstructed, and is sensitive to unknown or poorly known offsets in the experimental
setup. Since the arc measurement provides precise knowledge of the beam energy,
one such measurement was performed for each different beam energy sent to the
experiment4, and the measured energy was used to help calibrate the various unknown
small offsets in the experiment.

Date Q2, GeV2 Number of passes Earc,MeV
11/19/2007 5.2 5 4052.34 ± 1.38
11/28/2007 2.5 3 1873.02 ± 1.09
12/11/2007 2.5 4 2847.16 ± 1.19
1/6/2008 2.5 4 3680.23 ± 1.31
1/23/2008 2.5 2 1868.13 ± 1.09
4/6/2008 8.5 5 5717.32 ± 1.64

Table 3.2: Arc beam energy measurements taken during experiments E04-108 and
E04-019

Table 3.2 shows the arc energy measurements performed during the two experi-
ments. In addition to the dedicated arc energy measurements, the beam momentum
was monitored continuously through EPICS. The BPM and arc magnet setting infor-
mation used in the feedback system which stabilizes the beam energy and position is
also used to monitor relative fluctuations in beam energy with similar relative preci-
sion to the arc measurement. However, in absolute terms, the continuously-monitored
EPICS beam energy is less accurate than the arc energy, because the beam position
determined by the BPMs is less accurate than that determined by the superharps.
The same beam energy and pass configuration was used for the two highest Q2 kine-
matics at 8.5 and 6.8 GeV2. A shift in the beam energy from 5.717 GeV to 5.712 GeV
was detected in the EPICS beam energy monitoring three days after the arc measure-
ment was performed. This shift was determined to be real, although no additional arc
measurements were taken. For most of the data taken at the highest beam energy,
the lower value of 5.712 GeV is used in the analysis. Once again, since the elastic
electron-proton scattering reaction under study serves as an independent check of the
beam energy, and since the actual result of the experiment is quite insensitive to small

4No dedicated arc measurement was performed for data taking during a period in December 2007
during which the nominal beam energy was 3.548 GeV as monitored by EPICS.

96



changes in beam energy at the 10−3 level typical of the observed fluctuations, further
arc measurements were deemed unnecessary. It is worth remarking that the beam
energy spread is typically less than 5× 10−5, i.e., an order of magnitude smaller than
the uncertainty in its absolute determination, and is monitored non-invasively during
accelerator operations through the use of synchrotron light interferometry[112].

Beam Polarization Measurement

To measure the beam polarization in Hall C, the pure QED process of double
polarized Möller scattering is used. The cross section for the reaction ~e+~e→ e+ e is
precisely calculable in QED, and is given in the center-of-mass (CM) frame by[113]

dσ

dΩ
=
dσ0

dΩ

[
1 + P

‖
t P
‖
b Azz(θ)

]
(3.2)

where dσ0

dΩ
is the unpolarized cross section for the same process, P

‖
b and P

‖
t are,

respectively, the polarizations of the “beam” and “target” electrons parallel to the
center-of-mass momentum of the incident electron, and Azz(θ) is called the analyzing
power of the reaction and depends on the CM scattering angle θ as follows:

Azz(θ) = − sin2 θ
8− sin2 θ

(4− sin2 θ)2
(3.3)

From (3.3), it is clear that the analyzing power is maximized for electrons scattered
by 90◦ in the center of mass frame. In order to exploit Möller scattering to measure
the electron beam polarization, a source of polarized target electrons with known
polarization is required. In addition, scattered electrons must be detected. In the Hall
C Möller polarimeter, the electron beam is scattered on a pure iron foil, magnetized
to saturation by a 4 Tesla field produced by a superconducting split-coil solenoid.
This approach allows accurate knowledge of the polarization of the electrons in the
iron. Pairs of electrons scattered at or near 90◦ in the center-of-mass are detected
in coincidence in order to eliminate backgrounds from other processes, such as Mott
scattering from the iron nuclei. A system of two quadrupole magnets deflects the
scattered electrons to larger angles and provides for analysis of their energy. A system
of moveable collimators allows selection of a narrow range of scattering angles around
90◦ (CM).

The scattered electrons that pass through the system of quadrupole fields and
collimators are detected by lead-glass total absorption shower counters. There are two
such counters, one for each scattered electron, each equipped with a photomultiplier
tube to collect the Cerenkov light emitted by the electrons and positrons in the
shower of the primary electron. For the actual beam polarization measurement, what
is measured is the asymmetry in the coincidence counting rate between the two beam
helicity states. For this purpose, the analog signals of the two PMTs are amplified,
clipped, and converted to 5 and 10 ns wide logic pulses by fast discriminators. The
detector package also includes scintillator hodoscopes placed in front of the shower
counters, which provide information on the position of the detected electrons. The
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hodoscopes are not used during the actual beam polarization measurement, but they
serve to check the alignment of the various system components during the setup of
the measurement. This polarimeter can measure the beam polarization with <1%
statistical uncertainty in a short period of time and ≈0.5% systematic uncertainty.
However, since the measurement interferes destructively with the beam, it cannot be
used to monitor the polarization continuously and data taking must be periodically
interrupted to perform Möller measurements.

Figure 3-3: Schematic of Hall C Möller Polarimeter

Figure 3-3 shows a schematic layout of the Hall C polarimeter, including the
collimator system, the two quadrupoles and the detector package. More details on
the Hall C polarimeter and the technique of Möller polarimetry can be found in [113].
In this experiment, since both of the polarization components to be measured are
proportional to the beam polarization, one need not know the beam polarization
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to extract the form factor ratio Gp
E/G

p
M . However, the polarization was periodically

measured to insure that it was high enough to achieve a reasonable statistical precision
on the final result, and, as will be discussed in 3.5, knowledge of the beam polarization
allows a calibration of the analyzing power of the proton polarimeter. Knowledge of
the beam polarization is also required to extract the transverse and longitudinal
transferred polarization components separately.

Table 3.3 shows the results of all beam polarization measurements performed
during the E04-108 and E04-019 experiments. The actual polarization of the beam
at the injector is not the same as the polarization delivered to the experimental halls,
because of the precession of the electron spin in the recirculating arcs of the CEBAF
accelerator and the Hall C arc owing to its small anomalous magnetic moment. This
precession is a complicated function of the number of passes through the accelerator,
the linac energy, and the Wien filter setting. The Wien filter, which consists of crossed
DC electric and magnetic fields with adjustable strength and orientation, is used to
rotate the electron spin at the injector to an initial orientation which is optimized
for the delivery of maximum longitudinal polarization to one or more experimental
halls after precession in the magnetic beam transport elements. During the E04-
019 experiment, the beam polarization was measured more frequently than during
the production of the high-Q2 data of the E04-108 experiment. Since it is a high-
precision experiment looking for very small effects of TPEX, frequent monitoring of
the beam polarization was needed to insure that it was optimal, and to measure the
separated longitudinal and transverse polarization components, which are needed to
extract the two-photon exchange amplitude discussed in chapter 2. Although the
nominal beam energy was the same throughout the high-Q2 data taking of April-
June 2008, there were a number of subtle changes in the accelerator configuration
dictated by the demands of running Halls A and C with polarized beam at 1 and 5
passes, respectively. There were several changes of the Wien angle setting and even a
slight change in the energy balance between the two linacs, resulting in slight changes
in the polarization received by the experiment. The typical polarization of about
80% during this period, which is lower than the maximum of about 85-86%, was a
compromise that allowed Hall A to run a polarized beam experiment simultaneously.

3.3 Experimental Targets

The target system used for this experiment consists of several different solid targets
and a three-loop cryogenic target system for liquid hydrogen. The solid targets consist
of thin foils of Carbon and/or Aluminum used for spectrometer optics calibrations
and to measure the contribution of the walls of the cryotarget cell to the experiment
background. All of the targets are mounted on a ladder for motion and positioning in
the path of the electron beam. The target ladder is enclosed in an evacuated scattering
chamber. The scattering chamber is essentially an aluminum cylinder with 2” thick
walls and an internal diameter of 41”. On each side of the scattering chamber are thin
aluminum windows through which scattered particles can escape. Table 3.4 shows
the dimensions of the windows on each side of the beam. In addition to the exit
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Date Q2, GeV2 Ebeam, GeV Wien Angle, ◦ Beam polarization, %
11/9/2007 5.2 4.052 37.5 -79.68 ± 0.35
11/16/2007 5.2 4.052 37.5 79.06 ± 0.31
11/28/2007 2.5 1.873 12.4 -85.14 ± 0.33
11/30/2007 2.5 1.873 12.4 -85.98 ± 0.34
12/3/2007 2.5 1.873 12.4 -86.38 ± 0.30
12/5/2007 2.5 1.873 12.4 -85.65 ± 0.32
12/11/2007 2.5 2.847 86.0 -83.22 ± 0.27
12/12/2007 2.5 2.847 86.0 -82.04 ± 0.30
12/12/2007 2.5 2.847 86.0 -84.12 ± 0.26
12/14/2007 2.5 2.847 86.0 -84.09 ± 0.33
12/16/2007 2.5 2.847 86.0 -84.03 ± 0.31
12/16/2007 2.5 2.847 86.0 -84.82 ± 0.26
12/18/2007 2.5 3.548 6.2 85.83 ± 0.29
1/6/2008 2.5 3.680 14.8 -85.41 ± 0.29
1/9/2008 2.5 3.680 14.8 -85.71 ± 0.31
1/11/2008 2.5 3.680 14.8 -84.20 ± 0.26
1/18/2008 2.5 1.868 64.0 -86.16 ± 0.28
1/21/2008 2.5 1.868 64.0 -85.69 ± 0.26
1/23/2008 2.5 1.868 64.0 -84.85 ± 0.27
1/23/2008 2.5 1.868 64.0 -85.92 ± 0.32
4/6/2008 8.5 5.717 -40.2 80.10 ± 0.32
4/14/2008 8.5 5.712 -40.2 78.64 ± 0.32
4/21/2008 8.5 5.712 -40.2 81.26 ± 0.43
4/28/2008 8.5 5.712 -40.2 80.35 ± 0.35
5/5/2008 8.5 5.712 -57.2 85.04 ± 0.51
5/5/2008 8.5 5.712 -47.0 80.87 ± 0.33
5/12/2008 8.5 5.712 -13.5 79.27 ± 0.42
5/12/2008 8.5 5.712 -23.7 82.13 ± 0.52
5/12/2008 8.5 5.712 -3.7 71.85 ± 0.50
5/12/2008 8.5 5.712 -33.7 83.44 ± 0.52
5/19/2008 8.5 5.712 -13.5 80.14 ± 0.45
5/27/2008 8.5 5.712 -13.5 80.37 ± 0.80
6/8/2008 6.8 5.712 -13.5 77.29 ± 0.69

Table 3.3: Möller measurements of the beam polarization during experiments E04-108
and E04-019.
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θmin,
◦ θmax,

◦ height, in. nominal thickness, in.
HMS (proton) 5.5 103 8 0.016

SOS/BigCal (electron) 24 101 15 0.020

Table 3.4: Dimensions of scattering chamber exit windows.

windows, the scattering chamber also has beam entrance and exit ports, electrical
feedthroughs for instrumentation, ports for vacuum pumps, and plumbing for the
cryogenic target system which circulates liquid hydrogen. The beam entrance port is
connected directly to the evacuated accelerator beamline so that the beam does not
interact with any material before the target.

3.3.1 Cryotargets

The cryotarget system consists of a number of target cells connected to a recirculat-
ing hydrogen loop. In this experiment, hydrogen was the only cryogen used. Hydrogen
liquid is forced to circulate through the loop by a fan operating at 60 Hz. The hy-
drogen is cooled to the desired operating temperature of 19 K by a heat exchanger
with Helium coolant supplied at a temperature of roughly 14 K from the End Station
Refrigerator (ESR). The coolant is returned at a temperature of approximately 19 K.
The flow of Helium in the heat exchanger is controlled by Joule-Thomson valves. The
cool hydrogen then flows through the target cell at 19 K, where it is heated by its
interaction with the electron beam. Thermometers at the exit of the heat exchanger,
and at the entrance and exit of the target cell, monitor the temperature of the cir-
culating hydrogen continuously, and a variable high-power heater is used to keep the
temperature of the hydrogen constant at 19 K through a PID feedback cicuit. The
high power heater, which is responsible for correcting macroscopic differences in the
heat load, is supplemented by low-power heaters which correct microscopic temper-
ature fluctuations due to small changes in beam current to keep the temperature
constant to within ±.01 K. When the beam is on, the heater power is reduced to
compensate for the increased heat load of the beam, and is increased when the beam
is off to replace the lost beam heating. The maximum power of the heater is approx-
imately 800 W, while the maximum beam heat load in this experiment was 500-600
W. Under normal operating conditions, the JT valve controlling the Helium coolant
flow is adjusted so that there is approximately 50-100 W of “reserve” heater power
when the beam is on, to prevent uncontrolled warming of the target in a situation in
which the beam heat load is greater than the cooling power of the heat exchanger.
When beam is off for a long time, however, the coolant flow is reduced to conserve
cooling and heater power.

The power dissipated in the cryotarget by the electron beam is given by

Pbeam = IbeamρL
dE

dx
(3.4)

where Ibeam is the beam current in µA, ρ is the density of liquid hydrogen at 19 K in
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g cm−3, L is the target thickness in cm, and dE/dx is the beam collisional energy loss
per unit target thickness in MeV cm2/g. At the highest electron beam energy used in
this experiment, 5.714 GeV, the ionization energy loss in hydrogen is approximately
4.9 MeV cm2/g. At the operating temperature of 19 K, the density of liquid hydrogen
is 0.0723 g/cm3. This leads to a beam heat load of approximately 567 W which must
be compensated by the high power heater when the beam is off.

Fast Raster The typical spot size of the electron beam in Hall C is well below
100 µm. Such a tightly focused beam, at intensities typical of these experiments,
can cause intense local heating of the hydrogen liquid which can cause undesirable
boiling and fluctuations in target density. Additionally, at high enough intensity, such
focused beams can easily melt the thin aluminum walls of the cryocell. To protect
against these deleterious effects, the beam spot is enlarged by a raster magnet system
to a transverse size of typically 2x2 mm2. These magnets are located approximately
25 meters upstream of the target. The fast raster system magnets, one for horizontal
deflection and one for vertical deflection, can be driven by a sinusoidal or triangular
waveform. For this experiment, the triangular waveform was used, as it leads to a
more nearly uniform transverse beam profile. It also has the advantage of allowing
a more accurate determination of the instantaneous beam position from the raster
signals which are read out by the data acquisition system for each event. The raster
magnets are driven at different frequencies in each direction to prevent the signals
from forming a closed Lissajous curve. More information on the Hall C fast raster
system can be found in [114]. Figure 3-4 shows an example of the fast raster profile
on target. The raster current signals are sent to an ADC and read out by CODA.
The beam deflections are calculated from the ADC signals as follows:

xrast =
αx
pbeam

(ADCx − PEDx)

yrast =
αy
pbeam

(ADCy − PEDy) (3.5)

(3.6)

where the α’s are calibration constants determined from harp scan data and the
pedestals are determined from the data. The ADC used to digitize the raster signals
is a LeCroy 1881M charge-integrating ADC module. As far as the gate width is con-
cerned, the raster signal is a constant DC level5. So the CODA readout is essentially a
snapshot in time of the beam deflection when the data acquisition was triggered. The
cable delay for the raster signals to reach the ADC modules is similar to the delays
of other signals coming from the hall, so the raster signals are in fact reasonably well
synchronized with the data. In any case, the oscillations of the raster magnets are
slow enough compared to the time scale of event formation and triggering of the data
acquisition system that the beam deflection calculated from the raster signals can be

5The raster frequency is 20 kHz, while the typical ADC gate width used during readout of an
event in this experiment is no more than a few hundred nanoseconds, so that during the integration
time the raster magnet undergoes less than 1% of an oscillation.
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regarded, to a very good approximation, as equal to the instantaneous beam deflec-
tion when the scattering event responsible for the trigger occured. Because the ADC
is integrating what amounts to a constant DC offset, the “pedestal” for the raster
signal is more properly regarded as the average integral of the raster signal over the
gate width. Knowledge of the beam position on target is important, particularly in
the vertical direction, since the vertical beam position affects the reconstruction of
the scattered proton’s momentum and the out-of-plane angle of its trajectory. This
effect will be discussed in more depth later.
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Figure 3-4: Beam raster pattern used on the cryotarget. The raster position is cal-
culated from the raster current ADC signals read out by CODA.

Several different configurations of the target cell were used during the experiments
E04-108 and E04-019. For the measurements at Q2 = 5.2 GeV 2, the target used was
a 15 cm LH2 cryocell. For all of the other production kinematics of both experiments,
a 20 cm cryocell was used. The 20 cm cell was offset by 3.84 cm downstream from the
origin along the beamline in order to allow electrons scattered by up to 120 degrees
to clear the scattering chamber exit window. Additionally, a 4 cm cell was made
available for various studies. Since the goal of these experiments was to measure
an asymmetry which is independent of the absolute luminosity, no detailed target
thickness or luminosity studies were necessary, so none were performed6. However,

6Several quick checks of luminosity were performed by comparing yields from a 4 cm LH2 target
and the main 20 cm loop at several values of beam current and raster size. However, these checks
were not performed for all kinematics, and only a rough BCM calibration was performed to check
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this meant that no absolute cross sections could be extracted as a byproduct of the
data of these experiments without assigning large uncertainties to the target density
and thickness.

Target position Entrance window Exit window Wall
thickness (mm) thickness (mm) thickness (mm)

4 cm LH2 loop 0.127± .005 0.151± .006 0.118± .008
15 cm LH2 loop 0.115± .001 0.126± .009 0.126± .009
20 cm LH2 loop 0.122± .005 0.163± .012 0.157± .017

Table 3.5: Thicknesses of cryotargets used in E04-108 and E04-019, in cm.

Table 3.5 shows the measured thicknesses of the cell walls and the entrance and
exit windows of the three different cryogenic loops used in experiments E04-019 and
E04-108. All cryocells were made of Al 7075-T6 aluminum alloy[115].

3.3.2 Dummy/Optics Targets

In addition to the production hydrogen targets, there were a number of solid targets
available for spectrometer optics calibrations. A single foil of BeO crystal, which
exhibits luminescence when irradiated by the electron beam, was used as a beam
viewer to verify the initial beam position on target. Single-foil Carbon targets of two
different thicknesses and a single-foil of Copper were available for various detector
checkouts and systematic studies. Several multi-foil targets were also provided. The
so-called dummy targets consisted of pairs of Aluminum foils aligned with the entrance
and exit windows of the cryocells. These targets were used both for optics calibrations
and to measure the contribution of the cell walls to the experiment background. The
20 cm dummy target has foils at z = 3.84 ± 10 cm, while the 15 cm dummy target
has foils at z = ±7.5 cm. The remaining multi-foil targets were used for spectrometer
optics calibrations:

• A three-foil Aluminum target with foils located at z = 0,±7.5 cm.

• A two-foil Carbon target with foils located at z = ±2 cm.

• A two-foil Aluminum target with foils located at z = ±3.8 cm.

Detailed information on the thickness, material and chemical purity of the solid tar-
gets can be found in [115].

3.4 The High Momentum Spectrometer

The primary apparatus for these experiments was a superconducting magnetic spec-
trometer called the High Momentum Spectrometer (hereafter referred to as HMS).

the validity of the BCM data.
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Its magnetic system consists of three quadrupole magnets which focus charged par-
ticle trajectories and a dipole magnet to momentum-analyze and deflect them into
the detector hut. A schematic view of the HMS is shown in figure 3-5. The HMS

Figure 3-5: Schematic of the HMS spectrometer.

detector stack is supported on a common carriage with the magnets so that it remains
stationary with respect to the optical axis. The concrete shield hut is supported on
a separate carriage. The entire structure rests on concentric rails and can be ro-
tated around the rigid central pivot of the experimental hall. In this experiment,
the smallest central angle of the spectrometer was 11.6 degrees, while the largest
was 40.5 degrees. The HMS is located on the right side of the beamline as viewed
from upstream of the target. The superconducting coils of the magnets are cooled
by liquid Helium at 4 K supplied by the ESR. Under normal conditions, including
this experiment, the HMS magnets are operated in a point-to-point tune, in which
the quadrupoles Q1 and Q3 are focusing in the dispersive direction while Q2 focuses
in the non-dispersive direction, resulting in point-to-point focusing in both directions
when the dipole is included. In this configuration, the HMS has a large acceptance
in momentum, in-plane and out-of-plane angles, and extended target. The magnetic
field in the dipole is regulated by an NMR probe, while the quadrupole fields are
regulated by current, but also have their fields monitored by Hall probes. The dipole
field is stable at the 10−5 level, while the typical quadrupole current stability is 10−4.
In order to minimize particle losses and resolution degradation due to multiple scat-
tering, and to provide thermal insulation, the entire magnetic length of the HMS is
evacuated, from well before the entrance of Q1 and the acceptance-defining collima-
tors to the detector hut just upstream of the first detectors and the location of the
optical focal plane of the spectrometer. The air gap between the scattering chamber
exit window and the HMS entrance window is only ≈ 15 cm.
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3.4.1 Magnets

Quadrupoles

The three quadrupole magnets are named Q1, Q2, and Q3 for the order in which
scattered particles from the target pass through them. Q2 and Q3 are identical,
while Q1 has somewhat smaller dimensions. All three magnets are of cold-Iron su-
perconducting design. Some of the relevant properties of the quadrupole magnets
are listed in table 3.6. When increasing the central momentum setting of the HMS,

Q1 Q2/Q3
Max. gradient, G cm−1 605 445

“Good Field” radius, cm 22 30
Max. pole tip field, T 1.5 1.56

Radius to pole, cm 25 35
Effective length, cm 189 210

Table 3.6: Basic properties of HMS quadrupole magnets.

the quadrupoles were typically ’cycled’ by ramping to roughly 200 A above their set
current and then ramping down to the setpoint. In this way, the set currents were al-
ways approached from the same side of the hysteresis loop of the magnets, enhancing
reproducibility of the resulting magnetic fields.

Dipole

The HMS dipole is a superconducting magnet with a 25 degree vertical bend for the
central ray. Its superconducting coils have a flat racetrack design with no negative
curvature. Its poles are flat, giving rise to a highly uniform magnetic field. The
width of the gap between the poles is 42 cm. The faces of the poles are inclined
at ±6◦ relative to the normal to the central ray. This inclination gives rise to an
“edge focusing” effect. Particles of a given momentum entering the dipole at a higher
vertical position see a smaller

∫
Bdl and thus undergo smaller deflection than particles

moving along the central ray. Similarly, particles entering the dipole at a lower vertical
position see a larger

∫
Bdl and undergo a larger deflection than the central ray. The

dipole’s bend radius is 12.06 m, giving an effective length of 5.26 m for the 25 degree
central bend. The momentum dispersion of the HMS is 3.71 cm/% [116], meaning
that a 1% deviation from the central momentum results in a physical displacement of
3.71 cm from the central ray at the focal plane. This relatively large dispersion gives
the HMS excellent momentum resolution.

Table 3.7 shows the quadrupole current and dipole field settings for the four
different HMS central momentum values used for the production kinematics of this
experiment. The setpoints for a given central momentum are proportional to the
momentum and are in a constant ratio Q1:Q2:Q3:D.
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HMS central momentum, GeV/c Q1, A Q2, A Q3, A Dipole, T
2.0676 269.3 214.1 104.3 0.568297
3.5887 467.5 371.7 180.8 0.986386
4.4644 581.7 462.5 224.8 1.22708
5.4070 704.7 562.8 272.2 1.48616

Table 3.7: Quadrupole current and dipole field settings for the standard HMS tune
at the different central momentum settings of this experiment.

3.4.2 Collimators

The HMS is equipped with a system of collimators used for two purposes. First, oc-
tagonal collimators of two different sizes are used to define the solid angle acceptance
of the HMS. For this experiment, the larger of the two solid-angle defining collimators
was used. The so-called pion collimator has an opening that measures 9.150 cm in
the horizontal direction and 23.292 cm in the vertical direction, as shown in figure
3-6. This collimator is made of densimet (90% machinable W + 10% CuNi) with a
density of 17 g/cm3, and is 6.35 cm thick. It is flared to match the angular accep-
tance of the HMS, i.e., its dimensions are 4% larger at its exit than at its entrance. Its
entrance is located at a distance of 166.00 cm from the origin. At this distance, the
octagonal collimator subtends a solid angle of 6.74 msr, and the angular acceptance
defined by the slit is roughly 70 mrad in the out-of-plane angle and 28 mrad in the
in-plane angle. It is worth remarking that for an extended target, a slightly larger
range of in-plane angles is accepted since particles coming from anywhere along the
target length can pass through the collimator. The collimator is designed to prevent
particle losses in the magnetic elements of the spectrometer over a large momentum
bite7.

The second collimator used for this experiment was the sieve slit, which consists of
the same material as the other collimators, but is only half as thick (3.175 cm). The
sieve slit, as its name suggests, contains a large number of small holes and is used to
study the optical properties of the HMS. To use the sieve slit collimator to calibrate
the spectrometer optics coefficients, the general procedure is to set the polarity of the
HMS magnets to detect electrons, and to measure scattered electrons from a series of
thin solid foil targets located at a known position along the beamline. The in-plane
and out-of-plane angles are geometrically determined by the ray from the thin target
foil to the small sieve slit hole. The holes of the sieve slit are 0.508 cm in diameter,
except for the central sieve slit hole, which has a smaller diameter of 0.254 cm and
is used to determine the HMS angular resolution. Unlike the aperture of the pion

7While the large collimator is designed to prevent particle losses over a large momentum bite for
a point target, and the small collimator is designed to prevent particle losses for an extended target,
the goal was to maximize elastic ep statistics, rather than to have a precise understanding of the
acceptance. So even with the extended 20 cm LH2 target, the larger collimator was chosen, which
meant that there could be increased particle losses at the extremes of the acceptance. However,
for most of the kinematics of E04-108, the elastic ep scattering events were concentrated in a fairly
narrow momentum bite within ≈ ±5% of central momentum.
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Figure 3-6: HMS collimator dimensions at the collimator entrance.

collimator, the sieve holes are not flared. At a distance of 166 cm from the target, the
hole radius corresponds to ±1.5 mrad angular acceptance per hole in each direction.
The hole spacing is 2.54 cm in the vertical direction and 1.524 cm in the horizontal
direction, which corresponds to an angular spacing of 15.3 mrad in the vertical direc-
tion and 9.18 mrad in the horizontal direction. Two of the sieve holes are blocked in
order to verify the up-down and left-right direction of the reconstructed angles. The
outermost rows of sieve holes are located at ±10.16 cm, corresponding to ±61.2 mrad
in the dispersive direction, while the outermost columns of sieve holes are located
at ±6.10 cm, corresponding to ± 36.7 mrad in the non-dispersive direction. There
are nine rows(columns) of holes in the dispersive(non-dispersive) direction. Note that
there are no sieve holes at the vertical extremes of the HMS acceptance (62 < |θ| < 70
mrad). This means that the optical reconstruction parameters obtained from fitting
sieve slit data give relatively poorer resolution when extrapolated into the extreme
regions of the acceptance not covered by the sieve slit. More details of the HMS
optical properties and reconstruction will be discussed later.

3.4.3 Performance Characteristics

The HMS was designed to have a maximum central momentum of 7.4 GeV/c with
moderate momentum, solid-angle and extended target acceptance, and moderate res-
olution in momentum, angles and vertex position. Table 3.8 summarizes the perfor-
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mance characteristics of the HMS in its standard configuration8.

Max. Central Momentum, GeV/c 7.4
Min. Central Momentum, GeV/c 0.5
Momentum Bite, (pmax − pmin)/p0 18%
Momentum Resolution δp/p 10−3

Solid angle acceptance, msr 6.74
In-plane angle resolution, mrad 0.8
Out-of-plane angle resolution, mrad 1.0
Useful target length, cm 10
Vertex resolution, mm 2

Table 3.8: Acceptance and resolution of the HMS in its standard configuration.

3.4.4 Detector Package

The HMS is equipped with a versatile set of detectors to detect and track charged
particles scattered from the target and reconstruct their momenta and trajectories.
In the standard configuration, the HMS is equipped with a pair of gas drift chambers
for tracking, four planes of scintillator hodoscopes for triggering and timing, gas and
aerogel Cerenkov detectors for particle identification, and a lead-glass calorimeter
which provides further energy and particle identity information. In these experiments,
some parts of the standard detector package had to be removed in order to install the
proton polarimeter. Figure 3-7 shows the basic layout of the HMS detector package.
Note that all the detectors in figure 3-7 are oriented perpendicular to the z axis, which
coincides with the central ray.

At this point it is appropriate to define the transport coordinate system used
in the analysis. This coordinate system is right-handed, orthogonal and Cartesian.
At the target, before entering the spectrometer, the z axis is horizontal and points
along the optical axis. The x axis points vertically downward, and the y axis is
perpendicular to the z axis in the horizontal plane such that the (x̂, ŷ, ẑ) axes form a
right-handed coordinate system. This coordinate system is fixed relative to the HMS
and it rotates with the spectrometer relative to the Hall C coordinate system, and
other fixed coordinate systems which will be discussed later. In the HMS detector
hut, the z axis is still parallel to the HMS central ray, which is inclined relative to
the horizontal by 25◦, corresponding to the vertical bend. The x axis in the detector
hut is parallel to the dispersive direction, with positive x pointing in the direction of
increasing momentum, i.e., downward. Like the z axis, the x axis is inclined by 25◦

8Because these experiments required a special detector and trigger configuration which involved
placing a scintillator before the HMS tracking detectors, the actual resolution of the HMS for these
experiments was somewhat worse than the values given in table 3.8, particularly for the reconstructed
angles, owing mainly to the multiple scattering introduced by this scintillator plane. The extra
trigger plane and its implications for the HMS angular resolution and the analysis of the data will
be discussed in depth later.
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Figure 3-7: HMS standard detector stack. DC1 and DC2 are drift chambers. S1X,
S1Y, S2X, and S2Y are scintillator hodoscopes. The gas Cerenkov, S2X and S2Y
were removed to install the Focal Plane Polarimeter. The exit window of the HMS
vacuum system is also shown (far left). The z-coordinate in this drawing is relative
to the midpoint between the two drift chambers. Particles coming from the target
move from left to right in this picture.

relative to the vertical. The y axis points in the non-dispersive direction and is again
oriented so that (x̂, ŷ, ẑ) is a right-handed, orthogonal coordinate system. Although
the xz plane is rotated by 25◦ in going from the target to the focal plane, the y axes
of the target and hut transport coordinate systems coincide.

Drift Chambers

The drift chambers are the most important part of the HMS detector system. They
are used to measure precisely the position and angles of charged particle trajectories
at the focal plane. Drift chambers are among the most widely used tracking detectors
in nuclear and particle physics. Their moderate cost and excellent resolution make
them suitable for a wide range of applications. Drift chambers are gas ionization
detectors which achieve high spatial resolution by operating with a combination of gas
mixture and electric field which results in saturation of the drift velocity of electrons
liberated by ionization. In the saturation region the electron drift velocity is roughly
independent of the applied electric field, which in any case will be nearly uniform
over the extent of the drift region in a well-designed chamber. By measuring the
elapsed time between the initial ionization of the gas by a passing charged particle
and the detection of the signal induced by the multiplicative avalanche in the strong
1/r electric field gradient in the vicinity of a thin sense wire, the distance between the
particle track and the wire can be obtained with accuracies approaching 100 µm or
less. More details on the basic physics underlying drift chamber design and operation
can be found in [117], chapter 6.

The HMS drift chambers consist of a series of planes of parallel wires in a gastight
enclosure sealed by thin aluminized Mylar windows. In each wire plane, anode or
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signal wires made of 25 µm-diameter gold-plated tungsten alternate with cathode
or field wires made of 150 µm-diameter gold-plated CuBe. The signal wires are
maintained at ground potential, while the field wires are maintained at a high negative
voltage. The spacing between signal wires is 1 cm. The detection planes of alternating
signal and field wires are surrounded by additional field or “guard” wires which shape
the electric field and define a “drift cell” around each sense wire. The basic drift cell in
the HMS chambers is rectangular and measures 1.0 cm(horizontal)×0.8 cm(vertical).
Each signal wire is surrounded by eight field wires which form a symmetric rectangular
cell. The high voltage applied to each field wire is proportional to the distance
from that field wire to the signal wire. This high voltage configuration produces
equipotential surfaces surrounding the signal wire that are very nearly circular over
most of the drift cell, which insures that the drift time measured by a signal wire
depends only on the distance of closest approach between the wire and the track that
caused the ionization. Three different high voltage settings are required for the eight
field wires surrounding a signal wire–one for the corners of the cell, one for the in-
plane field wires, and one for the field wires directly above and below the signal wire.
The high voltage for the HMS drift chambers, as well as for all the other detectors
in the HMS hut, is provided by CAEN power supplies located inside the hut. The
power supplies are remotely controlled and monitored by a VME CAEN-net interface
through EPICS.

Each drift chamber contains six parallel planes of wires arranged in the order X,
Y, U, V, Y’, X’ as traversed by incoming particles. The X/X’ wires are horizontal
and perpendicular to the dispersive direction. The Y/Y’ wires are vertical, parallel to
the dispersive direction, and perpendicular to the X/X’ wires. The U and V wires are
oriented at ±15◦ relative to the X/X’ wires as shown in figure 3-8. The wire planes
within each chamber are spaced 1.8 cm apart9. The two drift chambers are separated
by about 81.45 cm along the z axis (see figure 3-7). The large separation in z between
the two chambers provides a precise determination of the angles of charged particle
trajectories. The fact that the U and V wires are much closer to the X/X’ wires in
orientation than to the Y/Y’ wires means that the track position and slope are more
precisely determined in the dispersive direction than in the non-dispersive direction.
The active area of the drift chambers measures roughly 113 cm in the X (dispersive)
direction and 80 cm in the Y (non-dispersive) direction.

The gas used by the drift chambers is a 50%/50% argon-ethane mixture (by
weight), doped with 1% isopropyl alcohol by a 0◦ C bubbler which is used in the
flow monitoring system. The role of the argon gas is to provide the primary ioniza-
tion, while the ethane gas quenches the avalanche near the sense wire and enhances
the drift properties of the mixture. The small amount of alcohol prolongs the useful
life of the drift chambers, which are operated continuously at high particle rates, by
inhibiting the formation of polymers during the recombination of disocciated organic
molecules, which can accumulate on the anode and cathode wires and degrade the
chambers’ performance. During operation the chambers were continuously flushed

91.8 cm is the vertical distance between signal planes. There are also two additional planes of
field wires between signal planes
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Figure 3-8: Schematic illustration of HMS drift chamber design.

112



at rates on the order of a few hundred cm3/min at a pressure just slightly above
atmospheric pressure.

The signals induced on the wires are read out at the front end by Nanometrics
N-277-L and Lecroy 2735DC amplifier-discriminator (A/D) circuits and transmitted
along ECL twisted-pair ribbon cables to multi-hit Lecroy 1877 fastbus TDC modules
housed in a fastbus crate inside the HMS hut. Up to sixteen wires are connected to
each card. The A/D cards are supplied with DC low voltage to set the discriminator
threshold and to power the electronic circuits on the cards. For these experiments, the
threshold voltage applied to the A/D cards of the HMS drift chambers was -5.5 V10.
The data acquisition electronics for the drift chambers are located inside the HMS hut
for several reasons, mainly to avoid the introduction of lengthy cable delays and the
accompanying attenuation and distortion of signals. The TDC modules have a timing
resolution of 0.5 ns/count and a 16-bit count range, allowing for the measurement of
time intervals up to 32 µs.

For the combination of gas mixture and electric field used by the HMS drift
chambers, the electron drift velocity is approximately 50 µm/ns. With a cell size of
1.0 cm, the drift length is in the range 0 < ddrift < 0.5 cm, so that the size of the drift
timing window is approximately 100 ns. The TDC resolution of 0.5 ns corresponds
to a coordinate resolution of 25 µm, however, this is not the dominant contribution
to the spatial resolution. There are also intrinsic fluctuations in the arrival time of
the drifting electrons, which of course do not move at a constant speed, but at an
effective average velocity which is proportional to the electric field and the mean
collision time τ of electrons drifting in the chamber gas. There is also an intrinsic
uncertainty in the absolute positioning of the wires within the chambers and in the
absolute positioning of the chambers themselves relative to the HMS optical axis.
Finally, there is a contribution to the tracking resolution coming from the fact that
while charged particles are assumed to pass through the chambers undeflected and
their trajectories are assumed to be straight lines, in reality they undergo multiple
scattering in the chamber gas and the mylar windows, and there is even a non-
negligible probability of scattering from one or more wires in the course of crossing
all twelve wire planes.

The TDCs for the HMS drift chambers are operated in common stop mode. For
each wire, the signal from a hit wire starts the timer. When fast signals from the
HMS hodoscopes generated by a charged particle passing through the detector stack
trigger the main data acquisition system to read out an event, a stop signal is sent
to the HMS drift chamber TDCs. After cable propagation and electronic delays, the
stop signal arrives approximately 2 µs after the initial signal formation, comfortably
beyond the 100 ns drift timing window, such that the stop signal is always the last
signal to arrive, and arrives at a fixed time relative to the fast hodoscope signals. The
TDCs are programmed to read out all of the raw hits on all wires within a 4 µs timing
window, up to eight hits per wire per event. After reconstruction of the hodoscope

10The threshold applied to the cards, after accounting for the pre-amplifier electronics and the
1-2 V drop in going from the power supply in the counting house to the A/D cards in Hall C,
corresponds to an actual hit threshold of several mV applied to the unamplified raw signal on the
anode wire.
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signals in software, the time at which the particle passed through the detector stack
can be determined with a resolution of about 0.3 ns, providing for the determination
of the drift time with sub-nanosecond resolution. More detailed information about
the HMS drift chambers can be found in [118]. The reconstruction of charged particle
tracks in the HMS drift chambers will be discussed in detail later.

Hodoscopes

The HMS in its standard configuration is equipped with four planes of scintillator
bars which, by virtue of their fast response time, provide a fast trigger and precise
timing information. Scintillators are materials containing molecules which emit opti-
cal photons when excited by passing energetic charged particles. Each bar is made of
BC404 plastic scintillator, with UVT lucite light guides and Photonis XP2262 photo-
multiplier tubes attached at both ends. The light guide couples the flat rectangular
shape of the end of the scintillator bar to the circular photocathode of the PMT.
The light given off by the scintillation propagates via total internal reflection through
the bar and the light guides to the photocathodes of each PMT, where electrons are
released into the vacuum by the photoelectric effect and then amplified by the stages
of the PMT. The scintillators and light guides are wrapped in one layer of Aluminum
foil and one layer of black Tedlar for light-tightness. The foil wrapping reflects scintil-
lation light emitted at angles exceeding the critical angle for total internal reflection,
which would otherwise escape. In plastic scintillators such as those used in the HMS,
the scintillation process happens on a very fast time scale with a rise time of less than
1 ns and a decay time on the order of 2-3 ns. It is this fast response which gives the
HMS hodoscopes a timing resolution of about 300 ps after corrections for propaga-
tion time and pulse-height dependence (walk) of the arrival time of the discriminated
signal, which is discriminated relative to a fixed threshold. The PMTs are 2 inches in
diameter with 12 stages of dynodes, a gain of roughly 3×107, a 2 ns rise time, and a 3
ns (FWHM) pulse duration, which is fairly well matched to the response time of the
scintillation mechanism. The transit time from the cathode to the first dynode is 30
ns. The bialkali photocathodes are sensitive to wavelengths in a range from 290-650
nm and reach their peak sensitivity at a wavelength of 420 nm.

With four planes of scintillators with a large separation in z, the standard HMS
hodoscope configuration can also provide time of flight information which can be
used to determine the particle velocity. Combined with the particle momentum re-
constructed from the drift chamber tracks, this information could in principle be used
to determine the mass and hence the identity of detected particles. Identification of
particles by time-of-flight is, however, extremely limited at high momenta and parti-
cle velocities. The first scintillator plane is separated from the last scintillator plane
by 2.6 meters in z. For a charged particle of momentum p and mass m moving on a
trajectory with slopes dx/dz and dy/dz, the time of flight of a particle between two
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scintillator paddles with a separation ∆z is

t =
L

βc
=

∆z√
1 +

(
dx
dz

)2
+
(
dy
dz

)2

√
p2 +m2

p
(3.7)

At the highest central momentum of the experiment, 5.4 GeV/c, the time of flight from
the first scintillator plane to the last scintillator plane for a perpendicular electron
track is 8.7 ns. The flight times for pions and protons at this momentum are only 3
and 100 picoseconds longer, respectively, than the electron time of flight, so while the
time of flight measures the velocity with a relative precision of about 3% (this is to
be compared to the relative momentum resolution from the drift chamber tracking of
0.1%), the hodoscope timing resolution of 300 ps cannot distinguish between pions,
protons, and electrons, the most common particles in the spectrometer.

In the FPP configuration, only the first two planes of hodoscopes (S1X and S1Y)
remain (see figure 3-7), so their relative time-of-flight resolution is even worse and
their function is further limited to defining the trigger and measuring the start time
relative to which the drift times in the wire chambers are determined. The scintillator
bars are 1.0 cm thick, 8 cm wide, and 75 (120.5) cm long for the S1X (S1Y) paddles.
The light propagation speed in the paddles typically ranges from 13-17 cm/ns. The
measured time difference between the phototubes at opposite ends of a paddle serves
as a crude measurement of the longitudinal coordinate at which a charged particle
passed through the paddle. With a time resolution of 0.3 ns, the coordinate resolution
is roughly 5 cm, comparable to the half-width of the paddles. Since each paddle is only
8 cm wide, the transverse coordinate is already more accurately determined simply
by asking which paddle was hit than the longitudinal coordinate is determined by the
time difference.

There are 16 paddles in the S1X plane, oriented horizontally so that the transverse
dimension of the paddle measures the dispersive coordinate and the longitudinal di-
mension of the paddle measures the non-dispersive coordinate. The paddles are stag-
gered in z by 2.12 cm and interleaved so that they overlap in X by approximately 0.5
cm, guaranteeing full coverage of the active area of the hodoscope. Similarly, there are
ten paddles in the S1Y plane, oriented vertically so that their transverse dimension
measures the non-dispersive coordinate and their longitudinal dimension measures
the dispersive coordinate. Like the S1X paddles, the S1Y paddles are staggered in z
and overlap in Y by approximately 0.5 cm so that the active area is also fully covered
in Y. When a charged particle passes through the hodoscope plane, the intersection
of the S1X and S1Y paddle(s) that fired localizes the trajectory of the particle to
a square area of 8×8 cm2 corresponding to the transverse size of the paddles. This
localization can actually be somewhat helpful with track reconstruction in the drift
chambers at high rates, as combinations of hits that give tracks which do not point
at the scintillators that fired can be rejected in favor of tracks that do point at the
scintillators.

Because the third and fourth hodoscope planes were removed to make room for
the FPP, and because of the limited separation in z between the S1X and S1Y planes,
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the trigger formed from S1X and S1Y alone is not very restrictive of the angles of
tracks traversing the chambers. As discussed in section 3.7, for the higher Q2, lower
ε kinematics of the experiment, the trigger rate from S1X and S1Y alone, even in
coincidence with the electron arm (BigCal), was about an order of magnitude too
high for the capabilities of the data acquisition system. To address this rate problem,
an additional plane of trigger scintillators was installed upstream of the first drift
chamber in the HMS, in the space between the HMS vacuum exit window and DC1.
This plane, christened “S0”, consists of two paddles of 1 cm thick plastic scintillator
with transverse dimensions of 12 × 15 square inches. This trigger plane was designed
to restrict the HMS trigger to tracks that fire both S0 and S1 in coincidence, and
to narrow the active area of the detectors to the region where elastically scattered
protons are focused. The coincidence requirement between S0 and S1 decreases the
probability of triggers in S1 caused by low-energy ambient radiation, noise and other
uninteresting signals in favor of good events with real charged particle tracks coming
from the target through the HMS and going through both drift chambers. One of
the paddles, called “S0X2”, is centered on the optical axis of the HMS, and covers
approximately the region of the elastic peak. The second paddle, called “S0X1”, is
positioned at smaller X, or lower momentum, and is intended to cover the momentum
region of the elastic radiative tail and inelastic scattering.

The “S0” detector reduced the trigger rate to reasonable levels for all kinematics.
The S0 scintillator paddles were optically coupled to Photonis XP2020 PMTs via
wavelength-shifter bars as shown in figure 3-9, which shows a schematic illustration
of the S0 design and a photo of the fully-assembled S0 detector on the bench in
the Experimental Equipment Laboratory (EEL) building at Jefferson Lab shortly
before its installation in the HMS. The XP2020 is a fast PMT with a 2”-diameter
photocathode with very similar characteristics to the XP2262 tubes used in the S1
plane. The design of S0 results in highly efficient detection and triggering, however,
the geometry of its scintillator paddles and optical coupling to PMTs is such that
its timing resolution is significantly worse than S1, and although its signals are read
out by both ADCs and TDCs, the information was not used in the calculation of the
start time for the drift chambers. Furthermore, the S1 signals are delayed relative to
the S0 signals in the trigger electronics so that the S0-S1 coincidence trigger is always
formed by the arrival of the S1 signal, which has a faster time response.

The high voltages for the PMTs for both S1 and S0 were provided by the same
CAEN power supplies located in the HMS hut that were used to power the HMS and
FPP drift chambers. The hodoscope high voltages were also controlled and monitored
through the same interface. In order to obtain uniform signal, timing and efficiency
characteristics across all hodoscope PMTs, the hodoscopes were gain matched using
a 60Co γ-ray source. The PMT voltages were adjusted so that the position of the
Compton edge in the gamma-ray spectrum was constant and large enough to give a
high trigger efficiency for protons.

The signals from S1 and S0 were split by a BNC tee at the base of each PMT. One
copy of the signal was sent to the custom trigger electronics installed in the HMS hut
specifically for these experiments, which is discussed in section 3.7. The other copy
of the signal was sent to patch panels in the HMS hut along 30 feet of RG58 signal
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Figure 3-9: Schematic of the S0 detector design (left), and a photo of S0 assembled
in the EEL building at Jefferson Lab (right).

cable. From this patch panel, the signals were sent upstairs to the Hall C counting
house on approximately 450 feet of RG8 cable to another patch panel, through which
they were connected to yet another splitter. One copy of the signal was sent through
approximately 400 ns of cable delay before being sent to charge-integrating LeCroy
1881M Fastbus ADCs for pulse-height readout. The other copy was sent through
leading-edge discriminators to VME scalers for count rate monitoring and LeCroy
1872a Fastbus high-resolution TDC modules for timing readout. The 1872a is a 12-
bit TDC with a time resolution of approximately 25 ps/TDC channel and a full-scale
range of 100 ns.

In contrast to the drift chamber TDCs which are read out in common stop mode,
the hodoscope TDCs are operated in common-start mode. The start signal for the
TDCs is provided by the trigger supervisor when the decision is made to read out an
event. The combined pulse-height and time information from the PMTs at both ends
of each struck paddle is used to reconstruct the time at which the particle passed
through the hut. Because the timing of the logic pulses is determined by the point at
which the signal exceeds a fixed threshold, larger signals arrive earlier than smaller
signals, all else equal. By retaining pulse-height information, a walk correction can
be applied to the data which improves the time resolution. The calibration procedure
is described in section 4.1.2.

Introducing the S0 detector was not without its drawbacks. Placing a position-
insensitive detector upstream of the tracking detectors introduces non-negligible mul-
tiple scattering before the trajectory of the particle is measured, thus degrading the
overall resolution of the HMS. Because of the large dispersion of the HMS, the mo-
mentum is predominantly determined by the position of the detected track. Since
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multiple scattering mainly introduces small angular errors, the momentum resolution
is less adversely affected by multiple scattering in S0 than the angular resolution, for
which the effect of angular errors is magnified by the optical properties of the HMS.
In a gaussian approximation to the angular distribution of multiple scattering, the
width of the plane angle distribution is given to a good approximation by [9]

θ0 =
13.6 MeV

βcp
z

√
x

X0

[
1 + .038 ln(

x

X0

)

]
(3.8)

where z is the charge of the incident particle (in units of e) and x/X0 is the scatterer
thickness in units of radiation length. For 1 cm of plastic scintillator, this multiple
scattering angle is roughly 1.8 mrad/βcp in GeV. At a Q2 of 2.5 GeV2, the proton
momentum is about 2.1 GeV/c, so θ0 ≈ 1 mrad. At the highest central momentum
setting of 5.4 GeV/c, θ0 ≈ 0.34 mrad.

In addition to the error on the reconstructed angles at the focal plane, there is
an error in the reconstructed position at the focal plane due to the projection of the
angular error at S0 to the focal plane of the HMS. S0 is located 57 cm upstream
of the optical focal plane of the HMS, so the position error introduced is roughly
θ0 × 57 cm = .57 mm/mrad. One can get a rough idea of the error magnification
at the target by considering the effect due to the first-order HMS optics coefficients
only. At this point it is appropriate to introduce the notation used for the variables
which describe reconstructed tracks at the focal plane and at the target. The focal
plane trajectory is defined by its slopes in the x and y directions and its coordinates
at the focal plane, z = 0: xfp, yfp, x

′
fp ≡ (dx/dz)fp, and y′fp ≡ (dy/dz)fp. The proton

trajectory at the target is characterized by its coordinates and angles, and additionally
its deviation from the HMS central momentum: xtar, ytar, x

′
tar ≡ (dx/dz)tar, y

′
tar ≡

(dy/dz)tar, and δ ≡ (p− p0)/p0. The target coordinates xtar and ytar are measured in
the ztar = 0 plane, which is the vertical plane which intersects the origin and faces the
HMS head-on11. The first-order optics coefficients giving the primary contribution to
the resolution effect of multiple scattering in S0 are shown in equations (3.9).

〈x′tar| x′fp
〉

= −3.02

〈y′tar| y′fp
〉

= −2.17

〈δ| x′fp
〉

= .013%/mrad

〈δ| xfp〉 = .034%/mm (3.9)

Table 3.9 shows, for the different central momentum settings used in the experiment,
the multiple-scattering angle θ0 calculated from (3.8), and the resultant smearing
of the resolution in x′tar, y

′
tar, and δ. For all four central momentum settings, the

momentum resolution is least adversely affected. The worst-case momentum smearing
is about .02%, a factor of 5 smaller than the 0.1% nominal resolution. Therefore, the

11The z = 0 plane in spectrometer coordinates is rotated by an angle equal to the HMS central
angle ΘHMS relative to the fixed target coordinate system in which the z axis points downstream
along the beam direction.
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p0, GeV/c θ0, mrad ∆x′tar, mrad ∆y′tar, mrad δp/p, %
2.0676 0.965 2.9 2.1 0.023
3.5887 0.523 1.6 1.1 0.012
4.4644 0.416 1.3 0.9 0.0097
5.4070 0.341 1.0 0.7 0.0080

Table 3.9: The lowest order effect on the HMS angular and momentum resolution
due to multiple scattering in the S0 trigger scintillators.

effect of S0 on the momentum resolution can be regarded as negligible. On the other
hand, the effect of S0 on the angular resolution is quite drastic. In the worst case
situation at 2.07 GeV/c, the in-plane and out-of-plane angles are smeared by 2.1
and 3 mrad respectively, which is roughly a factor of three worse than the nominal
resolution. Even at the highest momentum, the S0 smearing of the angular resolution
is approximately equal to the nominal resolution, making the total angular resolution
about a factor of

√
2 worse. The angular resolution of the HMS affects the calculation

of the proton spin precession in the HMS magnets, because the reconstructed angles
are an input to the calculation. However, multiple scattering in S0 only affects the
angular resolution and does not introduce systematic error in the reconstructed angles.

3.5 The Focal Plane Polarimeter

In order to measure the recoil proton polarization, a new proton polarimeter was
designed, built and installed in the HMS which exploits the spin-orbit coupling in
the scattering of protons by hydrogen and carbon nuclei. Given an incident beam of
polarized protons, the spin-orbit force causes an azimuthal asymmetry in the angular
distribution of scattered protons. The orbital angular momentum operator is given
by L = r × p, where r is the spatial coordinate of the incident proton and p is
the incident proton momentum. As far as L is concerned, r is simply the impact
parameter of the collision. The spin-orbit coupling is of the form L · S, where S is
the proton polarization vector. Since L · p = 0 by definition, the spin orbit force is
zero for longitudinal polarization of the incident proton.

Since measuring this component is a non-negotiable requirement of the experi-
ment, it appears at first glance as if using nuclear scattering for polarimetry will
not work. However, the proton’s large anomalous magnetic moment causes its spin
to undergo significant precession relative to its momentum in the HMS magnets, so
that the longitudinal polarization at the target can be rotated into transverse and/or
normal polarization at the focal plane12 depending on its momentum and trajectory.
Although the precession of the proton spin is necessary to perform this experiment
in the manner described in this thesis, it must be calculated accurately in order to

12Indeed, if the proton anomalous magnetic moment were zero (up to small QED corrections), we
would not be attempting to measure its internal structure because it would be a “point” particle
like the electron.
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extract the polarization transfer observables Pt and Pl from the measured polariza-
tions at the focal plane, and it turns out that the uncertainty in this calculation is the
dominant source of systematic uncertainty in the final result. The spin-orbit term in
the potential can be written as VLS = ULS(r)L · S. The deflecting force arising from
this potential is FLS = −∇VLS.

FLS = −∇ (ULS(r)(r× p) · S)

= −r̂ dULS(r)

dr
L · S− ULS(r)∇ ((r× p) · S)

L · S = (r× p) · S = εijkripjSk = r · (p× S)

∇i((r× p) · S) = ∂i(εjklrkplSj)

= δikεjklplSj = (p× S)i

⇒ ∇(L · S) = p× S

FLS = −r̂ dULS(r)

dr
r · (p× S)− ULS(r)p× S (3.10)

From the point of view of polarimetry, one is less interested in the detailed character
of the deflecting force than in how it gives rise to an azimuthal asymmetry. Equation
(3.10) makes this clear. There are two terms in the potential gradient. The first
term, with a magnitude equal to the product of the radial derivative of ULS and the
spin-orbit coupling L ·S, is proportional to the inner product of the impact parameter
r with p × S. Momentarily ignoring the quantum-mechanical operator nature of r,
p, and S and thinking in classical terms, the deflection force arising from the first
term in (3.10), while always directed radially, has a magnitude proportional to the
cosine of the angle between the impact parameter and p×S, so that deflection occurs
preferentially along the direction parallel (or anti-parallel, depending on the sign of
dULS(r)

dr
) to p× S. The second term, which involves the gradient of L, only reinforces

this behavior as it is always directed along p× S.
Consider the scattering of a proton of momentum p by an analyzer nucleus at

polar and azimuthal angles ϑ and ϕ. Define a coordinate system in which the
z axis lies along the incident proton trajectory. Define the x and y axes in the
usual way so that xyz forms a right-handed Cartesian coordinate system, and de-
fine the azimuthal scattering angle ϕ as the angle measured from the positive x
axis toward the positive y axis. The relation of this local coordinate system to
the transport coordinate system used in the analysis is discussed in section 4.1.5.
In these coordinates, the incident and scattered proton trajectories are given by
p = (0, 0, p) and p′ = (p′ sinϑ cosϕ, p′ sinϑ sinϕ, p′ cosϑ). Since the proton is prefer-
entially deflected along −p× S = (pSy,−pSx, 0)13, one can define an angle ϕ0 given
by tanϕ0 = −Sx

Sy
, such that the probability of scattering at an angle ϕ is propor-

13There is an overall sign uncertainty in the deflection direction depending on whether the spin-
orbit attraction is attractive (ULS < 0) or repulsive (ULS > 0). This sign ambiguity is unimportant
for the extraction of GpE/G

p
M since the overall sign cancels in the ratio. Even without a detailed

knowledge of the form of the spin-orbit interaction, one can nonetheless determine the sign of the
deflection, since the polarization direction of the scattered proton is known from the ratio of form
factors and the sign of the beam polarization obtained from Möller measurements.
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tional to cos(ϕ − ϕ0) = cosϕ cosϕ0 + sinϕ sinϕ0 ∝ Sy cosϕ − Sx sinϕ. The angular
distribution of scattered protons can be written in the following general form:

f(p, ϑ, ϕ) =
ε(p, ϑ)

2π
(1 + Ay(p, ϑ)Sy cosϕ− Ay(p, ϑ)Sx sinϕ) (3.11)

The quantity ε(p, ϑ) is called the efficiency of the polarimeter and contains the de-
tailed momentum and polar-angle dependence of the nuclear scattering cross section.
The quantity Ay(p, ϑ), called the analyzing power of the reaction, describes the pro-
portionality between the polarization of the incident proton and the size of the az-
imuthal asymmetry. The analyzing power also depends on the proton momentum and
polar scattering angle and is determined by the detailed structure of the spin-orbit
interaction and its contribution to the total scattering cross section relative to other
components of the nuclear force. For a given incident momentum p, in order that f
be a proper probability distribution, it must satisfy the normalization condition∫

fdΩ = 1 =

∫ π

0

(∫ 2π

0

f(p, ϑ, ϕ)dϕ

)
sinϑdϑ

⇒
∫ π

0

ε(p, ϑ) sinϑdϑ = 1 (3.12)

The asymmetry terms vanish in the integration over ϕ since
∫ 2π

0
sinϕdϕ =

∫ 2π

0
cosϕdϕ =

0. To summarize, equation (3.11) shows how the proton polarization components at
the focal plane can be measured by measuring the angular distribution of protons
scattered by nuclei in some thickness of analyzer material and illustrates the general
principle of using nuclear scattering for proton polarimetry14.

3.5.1 CH2 Analyzer

Several requirements and practical constraints guided the design of a polarimeter
for the HMS. Proton polarization measurements can be rather time consuming since
the product of polarimeter efficiency and analyzing power which enters the overall
figure of merit can be quite small, requiring large numbers of incident protons to
obtain the polarization with a reasonable statistical uncertainty. The major design
decisions include the choice of analyzer material and thickness, the size of the active
area of both the analyzer and the detector, and the type of detector required to
obtain the needed angular resolution. The choice of analyzer material is basically
driven by the maximum analyzing power that can be obtained while keeping the
construction and operating costs reasonable. The choice of analyzer thickness is
driven by optimization of the polarimeter efficiency, the fraction of incident protons
that undergo “useful” scattering. Increasing the analyzer thickness increases the
number of scattered protons, but also increases the probability of multiple scattering,

14The same method also works for neutron polarimetry, as the nuclear force is charge-independent;
however, since neutrons are generally harder to detect and track than protons, neutron polarimetry
is considerably more difficult from a practical point of view.
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absorption and other undesired reactions so that eventually the figure of merit no
longer increases with increasing thickness and may actually decrease at very large
thickness.

The material chosen as an analyzer for the HMS FPP is CH2 (polyethylene).
The choice reflects a compromise between choosing nuclei with high analyzing power
and designing a polarimeter that can be built and operated safely and at a reason-
able cost. While liquid hydrogen would represent the ideal in terms of analyzing
power[119], the cost and non-trivial safety issues involved in installing and operating
a large tank of LH2 and the required cryogenic system in the HMS ruled out this
option. A calibration measurement was carried out in 2005 at the Joint Institute for
Nuclear Research (JINR) in Dubna, Russia to measure the analyzing power of the
inclusive reaction ~p+CH2 → one charged particle +X at proton momenta up to 5.3
GeV/c[120], demonstrating sufficient analyzing power to carry out experiment E04-
108 in the amount of beam time approved. Among the findings of [120] was that the
analyzing power of CH2 in the region of proton momenta of interest for experiments
E04-108 and E04-019 is well described as a function of the incident proton momentum
and the transverse momentum defined as pt ≡ p sinϑ (with p corrected for energy
loss in the analyzer up to the interaction point) by the following parametrization:

Ay(pt, 〈pp〉) =

∑4
i=1 dip

i
t

〈pp〉
(3.13)

with the same coefficients di describing the angular distribution regardless of incident
momentum, and the dependence on the (acceptance-averaged) incident momentum
simply given by 〈p〉−1. [120] also found that increasing the thickness of CH2 above the
nuclear collision length and increasing the angular acceptance in pt beyond about 0.7
GeV/c do not significantly increase the figure of merit of the polarimeter. The data
also showed that the analyzing power of CH2 is about 12% higher than the analyzing
power of Carbon, making it preferable to Carbon as an analyzer material. Some
of the relevant properties of polyethylene are shown in table 3.10[9]: For the HMS

Density 0.890 g cm−3

Nuclear collision length 56.1 g/cm2

dE/dx (minimum ionization) 2.079 MeV cm2/g

Table 3.10: Relevant properties of CH2.

FPP, a double-polarimeter design was adopted in which two 60-cm(53.4 g/cm2)-thick
blocks of CH2 were used as analyzers, and tracking detectors (drift chambers, see
below) were placed after each block to measure the angular distribution of scattered
protons. The thickness of each block is approximately 95% of a nuclear collision
length. There was no need to use thicker analyzers since further increases in analyzer
thickness do not further improve the integral efficiency and hence the figure of merit
of the FPP as discussed above. The double polarimeter, on the other hand, improves
the efficiency where a single polarimeter with twice the thickness of analyzer cannot
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by essentially taking two snapshots of the angular distribution, one after half the
analyzer thickness and again after the full analyzer thickness. Using the information
from the first polarimeter, the angular distribution in the second polarimeter can be
separated into events which scatter only in the second analyzer but not in the first,
and events which scatter in both analyzers.

The analyzer blocks are made of several thick sheets of material held together and
surrounded by an aluminum frame. The blocks are split vertically at their midpoint,
as is the frame, in order to allow retraction of the analyzer material from the active
area of the detectors. This allowed for dedicated “straight-through” data taking runs
with no analyzer material in front of the detectors in order to help calibrate the FPP
drift chambers and, most importantly, to fine-tune the alignment of the chambers in
software. The edges of the retractable halves of the analyzer blocks were not flat,
but instead designed with an overlapping step, which prevented leakage through the
seam between the two halves when the doors were closed. The insertion/retraction
of the FPP was accomplished via a low-tech manual crank mechanism, which meant
that opening/closing the doors of the FPP required entry into Hall C and the HMS
hut. The weight of the analyzer blocks was such that a separate support structure
was built to hold the analyzer blocks independently of the detector support frame.
This insured that the detectors could not move when inserting/retracting the analyzer
doors.

Figure 3-10 illustrates the basic design and dimensions of the FPP. The desired

Figure 3-10: Schematic of HMS FPP design.
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size of the FPP is basically dictated by the desired range of scattering angles and the
size of the envelope of elastically scattered protons focused into the HMS hut. The
HMS’s point-to-point focusing properties and restricted angular acceptance tend to
concentrate elastically scattered protons into a narrow range of angles at the focal
plane. On the other hand, the HMS’s large momentum dispersion and extended target
acceptance tend to spread out the position envelope. The central momentum of the
HMS was chosen to correspond to the central angle of the HMS for elastic scattering
at each given beam energy. This means that the image of the elastic peak was at the
center of the acceptance. The size of the elastic envelope changes with the central
angle of the HMS owing to its fixed angular acceptance and the kinematic correlation
between the proton’s scattering angle and its momentum. From (1.23), the formula
for the proton’s momentum in terms of its scattering angle follows from energy and
momentum conservation:

E ′2e sin2 θe = p2
p sin2 θp

E ′e cos θe + pp cos θp = Ee

E ′e = Ee +Mp −
√
p2
p +M2

p

Rearranging the above gives:

E ′2e − p2
p sin2 θp = E ′2e cos2 θe

= (Ee − pp cos θp)
2

E2
e + p2

p − 2Eepp cos θp =
(
Ee +Mp −

√
p2
p +M2

p

)2

(Ee +Mp)
√
p2
p +M2

p = Mp(Ee +Mp) + Eepp cos θp

(Ee +Mp)
2p2
p = E2

ep
2
p cos2 θp + 2MpEe(Ee +Mp)pp cos θp

2MpEe(Ee +Mp)pp cos θp = p2
p

(
M2

p + 2MpEe + E2
e sin2 θp

)
pp =

2MpEe(Ee +Mp) cos θp
M2

p + 2MpEe + E2
e sin2 θp

(3.14)

Given the in-plane angular acceptance of the HMS of ≈ ±30 mrad = ±1.7◦, the mo-
mentum acceptance for elastic scattering events can be predicted from (3.14), which
shows that larger beam energies and larger scattering angles tend to increase the
momentum acceptance for elastic events while smaller beam energies and smaller
scattering angles tend to reduce the momentum acceptance. Table 3.11 shows the
typical variation of the momentum and xfp acceptance, calculated from (3.14) and the
nominal 3.71 cm/% momentum dispersion, for the various kinematics of the experi-
ments. The smallest momentum acceptance is just ±2%, while the largest momentum
acceptance is about ±5.5%, corresponding to image sizes at the focal plane of 15 cm
and 41 cm, respectively. In order to have a full pt acceptance of 0.7 GeV/c, the
required angular acceptance is given by sinϑmax = 0.7 (GeV/c)/p0. At the lowest
central momentum setting of 2.07 GeV/c, this corresponds to an angle ϑmax = 20◦.
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p0, GeV/c θ0, ◦ Ebeam, GeV/c (pmax − pmin)/p0, % xfpmax − x
fp
min, cm

2.0676 14.5 1.868 3.9 14.5
2.0676 31.0 2.847 9.2 34.0
2.0676 36.1 3.680 11.0 40.8
3.5887 17.9 4.052 8.0 29.7
4.4644 19.1 5.711 10.5 39.0
5.4070 11.6 5.712 7.5 27.8

Table 3.11: Approximate momentum and position acceptances at the focal plane for
elastically scattered protons corresponding to the HMS angular acceptance.

The FPP detector acceptance therefore had to be big enough to contain particles
scattered by up to 20 degrees in any direction, up to 60 cm upstream of the drift
chambers, over the full range of angles and positions of incident protons. In practice
this meant building the drift chambers and analyzers as large as practically possible.
The analyzer blocks are 145 cm long in the dispersive (x) direction and 111 cm long
in the non-dispersive (y) direction. The drift chambers were designed slightly larger
than the analyzers at 164 cm in x and 132 cm in y.

3.5.2 Drift Chambers

The detection apparatus for the FPP consists of four drift chambers, with two
independent chambers positioned after each analyzer to measure the track(s) of the
scattered particle(s). Drift chambers have sufficiently high spatial/angular resolution
for all the kinematics of these experiments. The angular resolution of the polarimeter
becomes more important at high proton momenta, because the angular distribution
of the analyzing power becomes concentrated at smaller angles. The basic resolution
requirement is that the angular resolution be smaller than the width of the multiple-
Coulomb-scattering peak, so that events from the Coulomb peak, which have no
analyzing power, will not be spread out by the angular resolution to larger angles,
where real nuclear scattering events with useful analyzing power reside. The angular
resolution of the FPP drift chambers is approximately 1-2 milliradians as discussed
in section 4.1.5. The full width of the Coulomb peak for the 5.4 GeV/c central
momentum setting turns out to be roughly 0.6 degrees or 10 milliradians, so there is
no significant broadening of the Coulomb peak due to the angular resolution of the
FPP.

Each drift chamber contains three planes of signal wires made of 30 µm-diameter
gold-plated Tungsten strung at a tension of 70 g. The spacing between signal wires
in each plane is 2 cm. Between the signal wires are alternating field wires of 100
µm-diameter Beryllium+Bronze alloy strung at a tension of 150 g. Surrounding
the detection layers of alternating signal and field wires are planes of cathode wires
spaced 0.3 cm apart at 0.8 cm above and below the detection layers, forming a drift
cell measuring 2.0 cm (horizontal) × 1.6 cm (vertical). The FPP drift cell has the
same proportions as the HMS drift cell, but is twice as large. The wires in the cathode
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planes are made of the same material as the in-layer field wires, but are thinner at 80
µm in diameter and strung at a lower tension of 120 g. Because of the small spacing
of the field wires in the cathode planes compared to the in-layer spacing of alternating
signal and field wires, the electric field created by these wires behaves almost like that
of a plane at constant potential, with only small spatial oscillations of the electric
field coming from the fact that these planes consist of a finite number of wires with
finite spacing all held at the same potential.

The signal wire planes have three different wire orientations as shown in figure
3-11. The wires in the first plane (in order of increasing z) make an angle of +45◦

relative to the x axis and thus measure the coordinate along the−45◦-line; i.e., the line
y = −x. The wires in the second plane are perpendicular to the x axis and measure
the x coordinate. The wires in the third plane make an angle of −45◦ relative to the x
axis and measure the coordinate along the line y = x. All four chambers are identical
and have planes stacked in the same order so that the stacking order −45◦, 0◦, and
+45◦ (in terms of the measured coordinate, not the wire orientation) is repeated for
both chambers within each pair. Finally, 30 µm thick aluminized mylar windows
covering the entire active area form the gas enclosure for each drift chamber. Each
pair of chambers is held in place rigidly by spacer blocks in order that the relative
positioning of the two chambers within a pair is fixed and reproducible. The drift
chambers are attached to the spacer blocks by a series of bolts penetrating through
the whole chamber. The pair is then attached to the detector support frame by tracks
machined onto the spacer blocks.

The FPP drift chambers were connected to the same gas mixing system used by
the HMS drift chambers and were supplied with the same gas mixture of 50%/50%
argon/ethane by weight. They were also operated at a similar gas pressure and flow
rate. Because the same gas system was used, the FPP drift chambers exhibited drift
properties very similar to the HMS drift chambers. Since the FPP drift chambers have
a ±1 cm drift cell, as opposed to the ±0.5 cm cell size of the HMS drift chambers, the
drift time window was about twice as large in the FPP chambers; i.e., ≈200 ns. The
high voltage power for the FPP drift chambers was provided by the standard CAEN
power supplies used for the hodoscopes and the HMS drift chambers. The chambers
were designed so that separate high voltages could be applied to the in-layer field
wires and the cathode-plane wires; however, during the experiment, the same high
voltage of approximately -2400 V was applied to both sets of wires. The signal wires
were maintained at ground potential.

The FPP signals were read out by amplifier/discriminator cards connected to
the individual wires. Each A/D card used by the FPP connected to eight signal
wires. The low voltage levels needed to power the amplifier circuits and set the
discriminator threshold were provided by custom Acopian power supply units. The
threshold voltage applied to the cards was -3.0 V during most of the experiment. The
plateau curve of hit rate as a function of the applied high voltage was determined
using this threshold value as shown in figure 3-12. When the hit rate saturates as
a function of high voltage for a given threshold, the maximal firing efficiency of the
wires is reached. The amplified, discriminated signal outputs in the form of ECL logic
levels were transmitted on twisted-pair ribbon cable to the digitizing electronics for
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Figure 3-11: Wire layout for FPP drift chambers. Contrary to the note in the picture,
the coordinate axes shown do not coincide with the HMS transport coordinates, unless
we imagine that we are hanging upside-down from the ceiling and looking upstream
along the negative z axis. This contradicts the note “z into plane” in the figure. The
proper layer order is still +45◦(red), 0◦(blue), -45◦(green) along the +z axis.
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Figure 3-12: Plateau curve for the FPP drift chambers. Maximum efficiency is reached
when the hit rate saturates as a function of the applied high voltage.

readout. Guard rails were installed around the sides of the chambers to protect the
A/D cards and to guide the ribbon cables.

Two different types of electronics were used to read out the FPP drift chambers
during the experiments. During the early phase of the experiment, from October 2007
to February 2008, VME-based F1 TDC modules were used. Two VME crates were
needed to hold enough modules to read out all the wires in all four FPP chambers.
During the second phase of the experiment, from April to early June 2008, an addi-
tional Fastbus crate was installed in the HMS hut and the FPP signals were instead
read out using LeCroy 1877 TDCs, the same kind used by the HMS drift chambers.
The reason the data acquisition was switched from VME to Fastbus had to do with
the high crash frequency of the VME crates during the production run of the low-ε
kinematics of E04-019, with the HMS positioned at an angle of 14.5◦. In that posi-
tion, the VME crates suffered frequent crashes which interrupted the data acquisition
and somewhat negatively impacted the quality of the data. Although the reason for
the crashes was never fully understood, their frequency was strongly correlated with
the HMS being positioned at forward angles, placing the detector hut close to the
beam dump. Even though the HMS detectors are very well protected from excessive
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radiation levels by the concrete shield hut, the radiation levels in the hut were higher
at forward angles. It is not clear whether the crashes were induced by radiation or
by the high hit rates prevalent at forward angles. In either case, the Fastbus crate
used to read out the HMS drift chambers suffered from no such crashes. Therefore, in
preparation for taking data with the HMS at an even smaller angle of 11.6 degrees15,
the data acquisition for the FPP drift chambers was switched over to Fastbus. As
expected, the frequency of crashes of the FPP data acquisition system was much
lower using the Fastbus TDCs than the VME TDCs; however, no direct comparison
was made of the crash rate of the FPP data acquisition with Fastbus and VME under
identical experimental conditions, so no rigorous conclusions could be drawn pertain-
ing to the relative merits of the two technologies in the high-luminosity/rate/radiation
environment present in Hall C during these experiments.

The VME F1 TDCs are not like standard TDCs which start counting from zero
at the arrival of a start signal until the arrival of the STOP signal at a later time.
Instead, the F1 TDCs are free-running, meaning that they simply start counting when
the data acquisition is enabled and keep counting, recording the count value every
time a signal arrives and rolling over when the full-scale count range is reached. To
determine the time of each hit relative to the time at which the particle passed through
the drift chambers required in addition that the HMS trigger signal be recorded by
the F1 TDCs as well. Otherwise, it would not have been possible to determine the
relative timing of the hits, as the recorded times were absolute times with an unknown
zero offset. The relative timing of the hits could only be determined with respect to
other signals recorded by the same crate, since all the TDC modules in the same
crate were synchronized with respect to a single clock. The FPP data acquisition
system was configured so that the trigger signal always arrived later than the hit
signal, making the correction of the relative hit time for rollover of the TDC count
straightforward. The determination of the drift time using the F1 TDC information
is discussed in appendix C.

For the data taken using Fastbus TDCs, the method for determining the drift
time was the same as for the HMS drift chambers. Common stop mode was used,
with the same 4 µs time window/8 hit maximum for readout. The count resolution
was still 0.5 ns. The F1 TDCs also have a 16-bit count range, but with a smaller
count resolution of approximately 125 ps, meaning that the rollover of the TDC count
occurs roughly every 8 µs. In the FPP setup, as with the HMS, the trigger signal
arrives no more than 2 µs later than the hit signals, avoiding the possibility of the
TDC count rolling over to zero more than once between the arrival of the hit signals
and the arrival of the trigger signal.

In summary, the Focal Plane Polarimeter for the HMS was designed to measure the
polarization of protons with momenta from 2.0 up to 5.4 GeV/c and beyond. CH2 was
chosen as the analyzer material. Measurements of the analyzing power of the reaction
p+CH2 → X at Dubna[120] showed that the overall figure of merit of the polarimeter
does not increase when the thickness of analyzer is increased beyond the nuclear
collision length of CH2. With this result in mind, the HMS FPP was designed as a

15Although at a higher beam energy of 5.71 GeV
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Figure 3-13: Design drawing of the entire HMS detector package including drift cham-
bers and hodoscopes, the S0 trigger plane, and the FPP.

double polarimeter with two analyzers, each approximately 1 λT thick and followed by
pairs of drift chambers to measure the angular distribution of scattered protons. The
analyzers and the drift chambers were designed to be large enough to have an angular
acceptance with full 2π azimuthal coverage for transverse momenta pT = p sinϑ up
to 0.7 GeV/c, beyond which the polarimeter figure of merit essentially saturates. The
double polarimeter configuration, by taking snapshots of the angular distribution after
half the total thickness of analyzer and after the full thickness, allows a significant
improvement in polarimeter efficiency which could not otherwise have been achieved
by, e.g., doubling the analyzer thickness in a single polarimeter setup. Figure 3-13
shows a design drawing of the entire HMS detector package including the FPP with
its independent support structure. The details of reconstructing particle tracks and
angular distributions in the FPP are discussed in section 4.1.5.

3.6 BigCal Electromagnetic Calorimeter

At high energies and momentum transfers, a number of inelastic reaction chan-
nels can overlap with elastic electron-proton scattering within the acceptance and
resolution of the HMS. In order to avoid or minimize complications and uncertain-
ties involved in extracting the polarization of a sample of events with significant
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background contamination, it is highly desirable to detect the scattered electron in
coincidence with the scattered proton in order to suppress inelastic backgrounds to
as low a level as possible. One possible solution would have been to use the existing
SOS spectrometer in Hall C to detect electrons. However, this would have meant
an unacceptable loss of elastic ep statistics at high Q2, because the Jacobian of the
reaction, defined as the ratio of the electron and proton solid angles at the chosen
kinematics, grows large at high energies and large electron scattering angles16. This
means that to cover the full range of scattered electron angles corresponding to the
solid-angle acceptance of the HMS at a given kinematics requires significantly larger
solid-angle coverage than the fixed angular acceptance of the SOS can provide. The
Jacobian in elastic ep scattering is defined as follows:

J ≡
∣∣∣∣dΩe

dΩp

∣∣∣∣
dΩe = sin θedθedφe

dΩp = sin θpdθpdφp

J =

∣∣∣∣sin θesin θp

dθe
dθp

dφe
dφp

∣∣∣∣
dφe = dφp

sin θe
sin θp

=
pp
E ′e

⇒ J =
pp
E ′e

dθe
dθp

(3.15)

It is already apparent from the factor pp/E
′
e that the Jacobian of the reaction increases

rapidly with Q2, as the proton momentum increases and the scattered electron en-
ergy decreases. The derivative of the scattered electron angle with respect to the
scattered proton angle turns out to be a more complicated expression. Using implicit
differentiation, the expression for dθe/dθp becomes

E ′e sin θe = pp sin θp(
sin θe

dE ′e
dθe

+ E ′e cos θe

)
dθe =

(
sin θp

dpp
dθp

+ pp cos θp

)
dθp

dθe
dθp

=
sin θp

dpp
dθp

+ pp cos θp

sin θe
dE′e
dθe

+ E ′e cos θe
(3.16)

16or, equivalently, low values of ε
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The derivative of the scattered electron energy with respect to its scattering angle,
dE ′e/dθe, is given by

dE ′e
dθe

=
d

dθe

(
Ee

1 + Ee
Mp

(1− cos θe)

)

= − E2
e

Mp

(
1 + Ee

Mp
(1− cos θe)

)2 sin θe

= −E
′2
e

Mp

sin θe (3.17)

The derivative of the proton momentum with respect to the proton scattering angle,
dpp/dθp, is given by

dpp
dθp

=
d

dθp

(
2MpEe(Ee +Mp) cos θp
M2

p + 2MpEe + E2
e sin2 θp

)

= −pp tan θp − pp

(
2E2

e sin θp cos θp
M2

p + 2MpEe + E2
e sin2 θp

)
= −pp tan θp − p2

p sin θp
Ee

Mp(Ee +Mp)
(3.18)

Substitution of the expressions for the derivatives dE ′e/dθe and dpp/dθp into (3.16)
gives

dθe
dθp

=
pp
E ′e

[
cos θp − tan θp sin θp − sin2 θp

ppEe
Mp(Ee+Mp)

cos θe − E′e
Mp

sin2 θe

]
(3.19)

⇒ J =
p2
p

E ′2e

∣∣∣∣∣cos θp − tan θp sin θp − sin2 θp
ppEe

Mp(Ee+Mp)

cos θe − E′e
Mp

sin2 θe

∣∣∣∣∣ (3.20)

Equation (3.20) shows how the Jacobian of the reaction grows with Q2, with an overall
factor p2

p/E
′2
e multiplying a complicated expression involving θp, θe, the proton mass,

the beam energy Ee, and the scattered electron energy E ′e. Table 3.12 shows the
result of (3.20) evaluated at the central kinematic variables for each setting. It must
be noted that J as defined by (3.20) is essentially the derivative of the electron solid
angle with respect to the proton solid angle, and it represents the infinitesimal change
in the electron angle induced by a given infinitesimal change in the proton angle. For
the kinematics with large J in particular, J varies substantially over the range of
scattering angles encompassed by the solid angle J∆Ωp so that it is not strictly true
that ∆Ωe = J∆Ωp for finite ∆Ωp/e. Nonetheless, the values in table 3.12 show that
a large acceptance electron detector is needed for a coincidence experiment. For all
but the smallest-θe kinematics, the Jacobian is at least 2, and at the highest Q2

kinematics, nearly 150 msr of solid-angle coverage is needed for the electron arm.
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Ee, GeV/c pp, GeV/c θp,
◦ E ′e, GeV/c θe,

◦ J ∆Ωe, msr
1.87 2.0676 14.5 0.53 105.2 15.7 106
2.85 2.0676 31.0 1.51 44.9 2.20 14.8
3.68 2.0676 36.1 2.37 30.8 0.925 6.23
4.05 3.5887 17.9 1.27 60.3 8.36 56.3
5.71 4.4644 19.1 2.10 44.2 4.77 32.1
5.71 5.4070 11.6 1.16 69.0 22.0 148

Table 3.12: The Jacobian, defined as J ≡ dΩe
dΩp

, evaluated from (3.20), at the central

values of all the relevant kinematic variables for experiments E04-108 and E04-019.
∆Ωe ≡ J∆Ωp is the required electron solid angle coverage corresponding to the 6.74
msr acceptance of the HMS for the scattered proton.

In addition to the acceptance matching requirement discussed above, the design
goal for the electron detector was to have resolution comparable to or exceeding
the resolution of the HMS in either the electron scattering angles, the electron en-
ergy/momentum, or both. Since the elastic scattering reaction is overdetermined
kinematically, it was not necessary for the electron detector to measure both the
scattering angles and the energy with high precision. Instead, having high resolu-
tion of one quantity or the other was sufficient to achieve a clean separation between
elastic and inelastic events.

The type of electron detector chosen was a lead-glass electromagnetic calorime-
ter. The properties of lead-glass shown in table 3.13 lend themselves naturally to
calorimetry. It has a high density, a high index of refraction, and a relatively small
radiation length. It is also highly transparent, making it an efficient collector of pho-

n 1.6522
ρ, g/cm3 3.86
X0, cm 2.74
RM , cm 4.70
Ec, MeV 15

Table 3.13: Properties of TF1-0 lead glass relevant to electromagnetic calorimetry.

tons emitted by showering particles. The calorimeter, called BigCal, was assembled
from 1,744 type TF1-0 lead-glass bars. The glass for BigCal came from two sources.
First, 1,024 blocks of dimension 3.8×3.8×45.0 cm3 were contributed by the Institute
for High Energy Physics (IHEP) in Protvino, Russia. These blocks were stacked in
a 32×32 square array on the bottom of the calorimeter, with the 3.8×3.8 cm2 ends
facing the target. The remaining blocks came from a calorimeter that had been used
to study real Compton scattering (RCS) on the proton in Hall A at JLab, but origi-
nally came from the Yerevan Physics Institute in Armenia. These blocks were made
of the same kind of lead-glass, but had slightly different dimensions at 4.0×4.0×40
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cm3. These “RCS” bars were stacked in a 30 (horizontal) × 24(vertical) array on
top of the Protvino bars, again with the small-area (4×4 cm2) ends facing the target.
The fully assembled calorimeter was segmented in 56 rows and 32(30) columns for
rows 1-32(33-56) as shown in figure 3-14.

Figure 3-14: The 1,744 lead-glass blocks of BigCal. The different colors indicate the
groupings of channels for the trigger, each marked by a black or blue square. The
groups of 64 overlap by one row vertically, increasing the trigger efficiency. There are
38 total groups.

The area of the calorimeter facing the target is roughly 122 × 218 cm2. This is
to be compared with the horizontal and vertical angular acceptances of the HMS of
approximately ±40 mrad(horizontal)17 ×±70 mrad(vertical). The solid-angle cov-
erage of BigCal is approximately ∆Ωe = Acal/r

2
cal, where Acal is the area of the

calorimeter facing the target and rcal is the distance from the target (the origin), to
the surface of BigCal. The placement of BigCal in Hall C was determined by the

17Although the collimator-defined angular acceptance is only ±30 mrad for a point target,
a greater range of angles is accepted for an extended target, for which particles scattered up-
stream(downstream) of the origin can pass through the collimator at smaller(larger) angles than
particles scattered from the origin.
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acceptance matching requirement shown in table 3.12. The distances required by
acceptance matching are compared to the actual distances used in the experiment in
table 3.14. A number of physical obstacles in Hall C restricted the possible locations

θe,
◦ J rcal(J), cm ractualcal , cm

105.2 15.7 500.0 493.2
44.9 2.2 1336 1200
30.8 .925 2060 1108
60.3 8.36 685.3 605.0
44.2 4.77 907.2 608.2
69.0 22.0 422.4 430.4

Table 3.14: Distance from the origin to the surface of BigCal required by acceptance
matching, compared with the actual distance used in the experiment. Obstacles and
space constraints in Hall C limited the possible angles and distances at which BigCal
could be placed.

of BigCal. Among those obstacles were the rails for the SOS carriage, an elevated
concrete platform covering a fraction of the floor of Hall C, and a variety of infras-
tructure and equipment located throughout Hall C. The ability to place BigCal at
large distances from the target was also restricted by the finite length of signal and
high voltage cables used to power and instrument the detector, combined with the
location of the data acquisition electronics and high-voltage power supplies. Addi-
tional constraints include the actual physical size of Hall C, the size of the support
platform for BigCal and its front-end electronics, and the maximum radius at which
the overhead crane in Hall C can safely lift and lower an object the size and weight of
BigCal. Fortunately, it is mostly harmless to place BigCal closer to the target than
the acceptance-matching distance. It is only when BigCal is placed further from the
target than the acceptance-matching distance that a fraction of elastically scattered
electrons fail to hit the calorimeter and go undetected.

The thickness of the lead-glass blocks in BigCal is approximately 15 radiation
lengths. This is enough material to fully stop electrons with energies up to 10 GeV.
Therefore, all elastically scattered electrons in this experiment deposit their full energy
in BigCal. An energetic electron striking the calorimeter initiates an electromagnetic
cascade, a process wherein the primary electron produces Bremsstrahlung photons as
it loses energy by radiation, photons which in turn produce e+e− pairs, which in turn
radiate more photons, and so on until the initial electron, and all secondary particles
produced in the cascade, lose enough energy to fall below the critical energy, after
which they lose energy predominantly through ionization and are eventually absorbed.
The primary electron and the secondary pair-produced electrons and positrons move
at close to the speed of light, and faster than c/n, where n is the index of refrac-
tion of lead-glass. They therefore emit Cerenkov radiation at optical wavelengths,
and it is this Cerenkov light which is collected and transduced into electrical signals.
Electromagnetic showers generate large numbers of optical photons. The signal mea-
sured by a given PMT is proportional to the number of photoelectrons emitted by the
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cathode, which is the convolution of the wavelength spectrum of emitted Cerenkov
photons with the spectral sensitivity of the cathode, and for lead-glass instrumented
with PMTs with conventional bialkali photocathodes, typical yields are about 1,000
photoelectrons per GeV of shower energy.

The individual lead-glass bars are optically isolated from each other by an alu-
minized mylar wrapping, insuring that the light radiated in each bar is contained
within that bar. At the end of each bar is a Russian FEU84-12 stage “venetian
blind” photomultiplier tube, optically coupled to the glass through a 5 mm-thick
Si-pad “cookie”. The PMTs and attached cookies are held in 2” thick moveable alu-
minum cross bars, with each cross bar holding 4 rows of PMTs. In the lower half
of BigCal, each cross bar holds 128 PMTs, while in the upper half, each cross bar
holds 120 PMTs. The base of each PMT is attached to the crossbar via threaded
rods screwed into the cross bar, pressing the PMTs and the cookies firmly against the
glass. Each of the 56 rows of PMTs has a patch board which connects the externally
supplied high voltage power to the voltage divider circuits on the PMT bases, and also
connects the signal output of the PMT base to cables which transmit the signals to
the front-end electronics. The glass, PMTs, cross bars, and patch panels are all con-
tained within a black box. The signal and high voltage cables that connect the patch
panels to the outside world enter/exit the black box through labyrinth openings.

On the front of the calorimeter is a .5-inch thick aluminum holding plate with 1,744
.25-inch-diameter holes drilled in front of each block to allow viewing of the glass and
to provide an opening for light produced by the source for the gain monitoring system
to reach the blocks. The light source consisted of a .5”-thick lucite plate installed
in front of the aluminum holding plate, illuminated from the sides by a single LED
through a fiber-optic splitter, with outputs coupled to the lucite through connectors
plugged into small holes distributed uniformly up and down the sides of the plate. The
lucite is supported by an aluminum frame which includes a .25”-thick wall in front
of the lucite. Finally, at the very front of the detector is a series of four removable
1”-thick aluminum absorber plates. These plates were used to shield BigCal from low-
energy photons in order to mitigate radiation damage to the lead-glass in the high-
radiation environment present in Hall C. While the absorber is effective at reducing
radiation damage, it degrades the energy resolution of the detector significantly. On
the other hand, it has an almost negligible impact on the position resolution. The
full 4-inch absorber thickness was used for all kinematics of the experiment except for
the ε = .15, θe = 105◦ setting, where only one of the four plates was used. In these
kinematics, the central scattered electron energy is only about 530 MeV. At large
scattering angles, radiation levels are lower, so radiation damage is not as serious a
problem for the operation of the calorimeter, allowing a thinner absorber to be used.
At such a low electron energy, the full absorber thickness would have unacceptably
degraded the energy resolution, and, by reducing the overall signal size and resolution,
would have forced the use of a lower trigger threshold, which would have reduced the
efficiency and increased the trigger rate from non-elastic reactions.

The analog signals from the PMTs begin a long journey that ends at LeCroy
1881M Fastbus charge-integrating ADCs. First, the signals are sent to specialized
NIM summing modules. Each module has two groups of eight inputs, and four out-
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puts, each equal to the analog sum of the eight inputs amplified by a factor of 4.2.
One of the four outputs is inverted. Each summing module also has sixteen outputs
in the back which are 4.2X-amplified copies of the 16 individual input signals. These
outputs are connected by 34-conductor flat cables to patch panels which connect to
100-meter long signal cables which transmit the signals to the electronics platform,
where they are patched to twisted pair ribbon cable which finally connects the analog
signals to the ADCs for readout. The signals are grouped so that each sum of eight
signals corresponds to a group of eight blocks in the same row (see figure 3-14). There
are four such groups per row. In the Protvino (lower) half, each row has 32 blocks
so the grouping is quite natural. The groups are referred to as xxA(1-8), xxB(9-16),
xxC(17-24), and xxD(25-32), where xx is the row number. In the RCS (upper) half of
the calorimeter, since there are only 30 blocks per row, two groups in each row have
only seven blocks. The grouping in the RCS blocks is xxA(1-8), xxB(9-15), xxC(16-
23), and xxD(24-30), where xx is again the row number which runs from 33-56. The
sums of eight are referred to as the “first-level” sums for reasons related to the BigCal
trigger. One of the outputs of each first-level summing module connects to discrim-
inators which output a logic pulse when the analog input exceeds a fixed threshold.
The discriminator output is sent on 50-meter signal cable to the electronics platform
for timing readout using LeCroy 1877 model Fastbus TDCs and rate monitoring us-
ing VME scalers. The other output of each first-level sum goes to another identical
summing unit, where it is combined in groups of eight with other first-level sums to
form “second-level” sums of 64 channels, which are used in the trigger system, which
will be discussed in detail in section 3.7.

The width of the ADC gate over which the BigCal signals were integrated ranged
from 150 ns at the kinematics with the lowest scattered electron energy to 250 ns
at the kinematics with the highest scattered electron energy. This wide integration
gate made the suppression of noise and the proper termination of signals particularly
important as all the electronic noise in the system was integrated over the full gate
width, widening the ADC pedestal and degrading the resolution for small signals in
particular.

The high voltage power for the BigCal PMTs was provided by LeCroy and CAEN
high voltage crates. Six LeCroy crates were located on the electronics platform with
the two FastBus crates used to read out BigCal. These crates provided 1,024 individ-
ual channels of high voltage and were used to power the PMTs coupled to the bottom
(Protvino) blocks. These power supplies were controlled and monitored using custom
slow-control software specially designed for this kind of crate. The remaining 720
channels of BigCal were powered by CAEN high voltage supplies located upstairs in
the “G0 cage” on the second floor of the counting house. The CAEN power supplies
were remotely controlled and monitored using the same CAEN-net interface as those
in the HMS hut.

The choice of a lead-glass electromagnetic calorimeter for the electron detector
reflects a choice in favor of high coordinate and angular resolution at the expense of
moderate to poor energy resolution–certainly much worse than a magnetic spectrom-
eter. The energy resolution of an electromagnetic calorimeter can be expressed as
σE/E = a/

√
E ⊕ b ⊕ c/E[9]. The term a characterizes the intrinsic statistical fluc-
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tuations in electromagnetic shower development, and is usually taken to be 5% for a
lead-glass calorimeter with 100% sampling fraction. The sampling fraction for BigCal
is actually less than 100% since roughly one radiation length of inactive material (the
aluminum absorber) was placed in front of BigCal, making a proportionally worse.
The constant term b includes calibration uncertainties, the effects of radiation dam-
age (significant for BigCal), and detector non-uniformities. The c term contains the
effect of summing electronic noise over all the channels included in the shower. The
Moliere radius of lead-glass, which characterizes the transverse size of electromagnetic
showers, is 4.7 cm, which is to be compared with the ≈4 cm transverse size of the
blocks. Approximately 90% of the shower is contained within one RM , and ≈99% of
the shower is contained within 3.5 Moliere radii. This means that electron showers
are typically spread out in 3×3 to 5×5-block clusters. By calculating the center of
gravity of the cluster of signals in a shower, its coordinate can be reconstructed with
a resolution significantly better than the canonical L/

√
12 ≈ 1.1(1.15) cm resolution

provided by the granularity of the 3.8(4.0) cm blocks18. The ideal coordinate reso-
lution of BigCal, which was obtained from a Monte Carlo simulation[121] including
the effect of the absorber but neglecting the effects of radiation damage, ranges from
about 7.5 mm at the lowest scattered electron energy of 530 MeV to about 3.5 mm
at the highest electron energy of 2.37 GeV.

Because the target is extended, the BigCal coordinate measurement does not on
its own measure the electron scattering angle. To measure the scattering angle, one
must also know the position of the interaction vertex, which is reconstructed by the
HMS. The HMS reconstructs ytar with ≈2 mm resolution. The desired quantity is
the position of the interaction vertex along the beamline, zvertex ≈ ytar/ sin ΘHMS,
where ΘHMS is the central angle of the HMS. The electron angle resolution can be
estimated by considering scattering in the horizontal plane only. Assume BigCal
is located at an angle Θcal at a distance Rcal from the origin, and define xcal as
the horizontal coordinate along the surface of BigCal. Additionally define a “Hall”
coordinate system in which the zHall axis points downstream along the beamline, and
the xHall axis is horizontal and points toward BigCal. Furthermore, assume that the
positive xcal axis points toward large angles. Then, the “Hall” coordinates of the
electron corresponding to the surface coordinate measured at BigCal are given by

xHall = xcal cos Θcal +Rcal sin Θcal

zHall = −xcal sin Θcal +Rcal cos Θcal (3.21)

The electron scattering angle is defined by the ray from the reconstructed interaction

18To see how the L/
√

12 “resolution” appears, assume that the block size L is large enough that
the entire shower is contained in one block. Alternatively, assume that the shower coordinate is
assigned to the center of the block with the largest signal. Assume a uniform distribution of shower
coordinates within a block. Then the R.M.S. error in the reconstructed coordinate is

√
〈∆2

x〉 =√
1/L

∫ L/2
−L/2 dxx

2 = L/
√

12

138



vertex to the measured coordinates at BigCal ∆r ≡ rcal − rvertex:

cos θe =
zHall − zvertex√

x2
Hall + (zHall − zvertex)2

≡ ∆z

L
≈ ∆z

Rcal

(3.22)

(sin θedθe)
2 =

(
∂ cos θe
∂xcal

)2

dx2
cal +

(
∂ cos θe
∂zvertex

)2

dz2
vertex (3.23)

To determine the dominant contribution to the angular resolution of BigCal, the
electron flight path length L in the denominator can be approximated by Rcal. Then
equation (3.23) becomes

sin2 θedθ
2
e =

1

R2
cal

(
sin2 Θcaldx

2
cal + dz2

vertex

)
(3.24)

For the central electron angle θe = Θcal and the electron angle resolution becomes:

dθe =
1

Rcal

√
dx2

cal +
dy2

tar

sin2 Θcal sin
2 ΘHMS

(3.25)

Equation (3.25) shows that there is an angle-independent contribution to the electron
angle resolution dxcal/Rcal coming from the shower coordinate resolution, and an ad-
ditional angle-dependent contribution coming from the resolution of the interaction
vertex reconstructed by the HMS. Table 3.15 shows the variation of dθe for all the
kinematics. The coordinate resolution of BigCal was studied in depth using a Monte

E ′e, GeV Θcal,
◦ ΘHMS, ◦ Rcal, cm dxcal, cm dθe, mrad

0.53 105.2 14.5 493.2 0.74 2.25
1.51 44.9 31.0 1200.0 0.44 0.59
2.37 30.8 36.1 1108.0 0.35 0.68
1.27 60.3 17.9 605.0 0.48 1.47
2.10 44.2 19.1 608.2 0.37 1.57
1.16 69.0 11.6 430.4 0.50 2.73

Table 3.15: Kinematical dependence of electron scattering angle resolution. The
coordinate resolution of BigCal is estimated by dxcal ≈ 0.54 cm/

√
E ′e, with E ′e in

GeV, motivated by the results of a detailed GEANT Monte Carlo simulation of the
BigCal detector response to electromagnetic showers. The HMS ytarget resolution
is (conservatively) estimated at 2 mm. Multiple scattering of the electron in the
air between BigCal and the target is neglected. Multiple scattering will make the
resolution dθe worse, especially at large Rcal.

Carlo simulation of BigCal developed at Protvino[121]. The simulation is based on
the GEANT3 software libraries and was used to examine the development of electro-
magnetic showers in the lead-glass of BigCal in depth. It includes measurements of
the wavelength dependence of the index of refraction and the absorption coefficent
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of the glass, and also includes the reflective Mylar wrapping of the lead-glass bars,
the photocathodes of the PMTs, and all materials in front of the glass. For each
simulated shower, the code traces every Cerenkov photon to the cathode of the PMT,
where it causes photoemission of an electron with a probability governed by the quan-
tum efficiency of the cathode. For table 3.15, the coordinate resolution with the full
absorber in place was estimated as dxcal = 5.4 mm/

√
E ′e, with E ′e in GeV, based

on the results of the simulation. The electron angle resolution ranges from 0.6 mrad
to 2.7 mrad. Multiple scattering of the electron in the air between the target and
BigCal is neglected in these estimates. It is non-negligible compared to the quoted
resolution for the large-Rcal kinematics in particular. Additionally, radiation damage
to the glass accumulated over the course of the experiment worsened the coordinate
resolution only slightly even as it dramatically degraded the energy resolution.

The energy resolution of BigCal was substantially worse than the nominal 5%/
√
E

for two reasons. First, the absorber in front of BigCal, which is approximately 1
X0 thick, reduced the sampling fraction, the ratio of active absorber (lead-glass) to
the total amount of material (lead-glass + absorber). Second, significant radiation
damage to the glass accumulated over the course of the experiment made the constant
term in σE/E much larger than the typical 1%. Although the glass was partially
“cured” using UV annealing during the two-month accelerator maintenance shutdown
in February-March 2008, it did not regain full transparency in the limited amount
of curing time and the energy resolution suffered accordingly during the April-June
2008 run period.

The main result of the above discussion is that the coordinate resolution of BigCal
translates into excellent angular resolution, comparable to that of the HMS. When
the Jacobian of the reaction is taken into account, the angular resolution of BigCal
actually turns out to be far better than needed for most of the kinematics (those
with large J), and perfectly adequate for the small-J kinematics, for which inelastic
backgrounds are much lower in any case. In other words, when the electron angles
measured by BigCal are compared to those expected from elastic kinematics of the
detected proton, the resolution of the difference is dominated by the HMS resolution
when the Jacobian is large.

In summary, the kinematics of elastic ep scattering at high Q2 result in a large
Jacobian, dΩe/dΩp. In order to perform a coincidence experiment, a large-acceptance
electron detector is required to match the electron acceptance to the proton accep-
tance defined by the HMS collimator. Since the two-body reaction kinematics are
overdetermined, simultaneously precise measurements of the electron energy and an-
gles were unnecessary. The lead-glass electromagnetic calorimeter BigCal provided
the needed acceptance with moderate-to-poor energy resolution but sufficient angular
resolution that the cleanliness of the separation between elastic and inelastic events
was limited only by the resolution of the HMS itself
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3.7 Trigger and Data Acquisition

The design of the data acquisition system for the experiment was primarily driven
by the electronics requirements of BigCal. All 1,744 PMT signals were read out by
ADCs. Each LeCroy 1881M ADC module has 64 channels, so 28 modules totaling
1,792 channels were used, leaving 48 spare channels. This number of modules required
two Fastbus crates. Additionally, the first-level sum of 8 signals were discriminated
and sent to TDCs for timing readout. This required 224 channels of TDCs. Each
LeCroy 1877 module had 96 channels, so three modules were needed. Finally, the
“second-level” analog sums of 64 were sent to ADCs and also discriminated and sent
to TDCs for readout, requiring 38 additional channels of ADCs and TDCs. This
required one more 1881M ADC module, but no more TDC modules since 64 channels
in the third 1877 module were unused. Both fastbus crates were located in Hall C on
a platform with multiple electronics racks. The main data acquisition electronics and
other important equipment were also installed on this platform, as will be discussed
below. The platform was located on the opposite side of the beam from BigCal,
where more space was available. In order to shield the sensitive electronics from the
high radiation levels present when the electron beam is in Hall C, a large concrete
bunker was built around the electronics platform. The bunker completely surrounded
the sides of the electronics platform facing the beam dump and the target, except
for small openings serving as feedthroughs for cables, and a wall was built on the far
side of the platform in order to support the roof of the bunker. A large opening was
left in the side of the bunker furthest from the beam dump to allow personnel access
and improve ventilation. Cables with insufficient length to wind all the way around
to the large opening, including the 50 meter cables carrying the timing signals from
BigCal and the shorter fast cables carrying the trigger signals from BigCal and the
HMS, were fed through the small openings on the front (facing the target) and side
(facing the beam dump) walls.

3.7.1 HMS Proton Trigger

Signals from the HMS hodoscopes were used to form a single-arm proton trigger us-
ing a number of NIM modules in the HMS hut. The standard HMS trigger electronics
are located upstairs in the counting house. Since only two planes of hodoscopes and
S0 were involved in the HMS trigger, and since other standard HMS detectors had
been removed, the trigger requirements for this experiment were quite different from
those of the standard HMS configuration, and would have required substantial modi-
fications of the intricate maze of connections in the Hall C counting house electronics
room, with enormous potential for mistakes and unintended consequences. However,
this was not the primary motivation for building a custom trigger setup–the main
reason was timing. Had the main coincidence trigger been located in the counting
house, it would not have been possible to send a gate back down to the BigCal ADCs
in Hall C in time for the arrival of the BigCal signals. More complicated solutions
would have been required for the readout of BigCal. This was the main determinant
of the decision to form the coincidence trigger and locate the trigger supervisor in
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the electronics bunker in Hall C. No such timing restrictions faced any of the other
detectors. The HMS and FPP drift chambers and the discriminated first and second-
level sum signals from BigCal were read out by TDCs in common-stop mode, and
the hodoscope signals for both ADCs and common-start TDCs had enough fixed and
adjustable delay on the way to the readout electronics in the Hall C counting house
that they could be timed in without any trouble.

The HMS trigger was formed by requiring a coincidence between “S0” and “S1”.
Each of the two paddles of S0 has two PMTs. The “S0” trigger required both PMTs
on either paddle of S0 to fire. A separate trigger type was defined for each paddle
of S0. This allowed them to be prescaled separately in the data acquisition system.
Having two independent HMS triggers was particularly useful for the Q2 = 8.5 GeV2

kinematics and the Q2 = 2.5 GeV2 kinematics at ε = .15, both of which involved
forward angles of the HMS and high singles rates, especially on the paddle covering
the lower-x/δ region where inelastic reactions dominate. For these data points, the
entire distribution of elastic events was contained within the higher-x/δ paddle so
that the trigger rate contributed by the low-x paddle could be prescaled as needed
with a negligible loss of elastic events. The “S0” trigger logic is shown in figure 3-15.
The “S1” trigger was formed by requiring both PMTs in at least one paddle from

AND

S0X1
Trig.

AND

Trig.
S0X2

S0X1

S0X2 Discrim.

30 ns

Figure 3-15: S0 trigger logic diagram. The discriminator output pulses for both S0
and S1 signals are 30 ns wide, defining the coincidence time tolerance for the HMS
trigger as illustrated above.

S1X and at least one paddle from S1Y to fire, as shown in figure 3-16. The two HMS
triggers were defined by coincidences between S1 and the respective paddles of S0:

• HMS1 ≡ S1 AND SOX1

142



• HMS2 ≡ S1 AND S0X2

This logic is illustrated in figure 3-18. Extra delay was added to the signals from the
+ end of S1X (−y end) so that the S1X+ paddles always determined the timing of
the event.

Discrim.

AND

AND

OR

OR

AND

S1 Trig.

S1X+

S1X−

S1Y−

S1Y+

Figure 3-16: S1 trigger logic diagram.

The HMS trigger electronics used fixed-threshold discriminators with a threshold
of 40 mV and a 30 ns output pulse width. The output pulse width determines the
coincidence time tolerance in the trigger between the two ends of each paddle, between
S1X and S1Y, and between the S0 and S1 triggers. The ±30 ns tolerance was wide
enough to allow for all possible differences in light propagation time, walk, and cable
and electronic delays within the hodoscope system and trigger electronics.

3.7.2 BigCal Electron Trigger

The trigger for BigCal was formed from the “second-level” sums of 64 shown in
figure 3-14. Each summing module at the first level has three useful outputs, one
of which is sent to a discriminator to produce the 224 timing signals. The overlap
scheme in the trigger was implemented by using both of the spare outputs for each
first-level sum in the overlap rows 4, 7, 10, 13, . . . . Using identical summing modules,
the first-level sums were combined into second-level sums containing up to 64 channels
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each. The number of summed signals was thus reduced to 38 at the second level. The
calorimeter is split into two halves horizontally and 19 overlapping sections vertically.
Each group contains four rows and sixteen (or fifteen in the RCS section) columns,
except for the last group in each column, each of which only has two rows. The
last row of each group is always the first row of the next group, so the channels in
these special rows get summed twice, once each in two different groups. The extra
identical outputs of the NIM summing modules were quite useful for this purpose.
There is no overlap in the horizontal direction. The groups are named according to
the scheme xxAB/CD, where xx is the row number of the first row included in the
group, and AB/CD refers to the labels of the first-level horizontal groups included
in each second-level group. For example, group 10AB includes columns 1-16 (groups
A and B in each row) in rows 10-13, and group 37CD includes columns 16-30 in
rows 37-40. The vertical overlap allows a higher trigger threshold with no loss of
efficiency compared to a non-overlapping design. This is easy to understand by simply
considering, in the case of no overlap, an electron that impacts the surface of BigCal
at the boundary between two trigger groups. Roughly half the shower energy is
deposited in each group. This establishes a hard upper limit on the trigger threshold
of half the incident energy since any higher threshold would result in efficiency losses
at the boundaries of groups. Overlapping groups solve this problem by sharing the
rows at the boundaries between groups. The trigger threshold can then be increased
above half the incident energy without efficiency loss, except at the vertical boundary
between the left and right halves. Increasing the threshold closer to the full incident
energy will of course eventually result in a loss of efficiency even with overlap, but
the benefit of the overlap scheme is obvious.

Each of the 38 second level sum outputs was sent to one of four sixteen-channel
discriminator units, each with a unique remotely programmable threshold (one thresh-
old per-unit, not per-channel), allowing a different threshold to be applied to each of
the four quadrants of BigCal. In practice, either the same threshold was applied to
all four quadrants, or the left and right halves were operated with slightly different
thresholds reflecting the variation of the electron energy with its angle/position at
the calorimeter. The discriminator outputs, one for each second-level sum, were then
sent to logical fan-in/fan-out units, which had the effect of applying a global OR logic
gate to all 38 trigger sums; i.e., if any trigger sum exceeded the threshold, a trigger
was generated. All of the summing modules for the first and second-level sums and
the trigger were located on the BigCal support platform behind the black box. The
output pulses of the discriminators for the second-level sums, the logic FiFo units,
and the final OR of the four quadrants to generate the trigger signal to send to the
electronics platform were all 50 ns wide. This pulse width defined the time tolerance
for the coincidence trigger between BigCal and the HMS.

3.7.3 Coincidence Trigger

Both the HMS and BigCal triggers were sent to the bunker on special fast ( 4
ns/m) signal cables which were needed to form a coincidence trigger and send a gate
signal to the BigCal ADCs in time for the arrival of the signals from the PMTs. Two
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Figure 3-17: Raw TDC spectrum (left) of HMS2 (top) and BigCal (bottom) trigger
signals. Correlation between HMS2 and BigCal trigger times (right). The TDCs
measuring the trigger times were operated in common STOP mode, so larger times
correspond to earlier signals.

coincidence triggers were defined, one for each of the two HMS trigger types. The
relative timing of the HMS and BigCal trigger signals was always adjusted so that
the BigCal trigger arrived first, and the HMS signal arrived later, defining the timing
of each event.

This timing scheme is illustrated in figure 3-17. The two histograms on the left
show the raw TDC spectrum of the trigger signals from the HMS2 trigger and the
BigCal trigger for coincidence events. The trigger signals were digitized in LeCroy
1877 TDCs in the same fastbus crate with the BigCal timing signals. These TDCs
have a count resolution of 0.5 ns, so two TDC counts correspond to 1 ns in the raw
TDC spectrum. The important feature to notice is that the vast majority of the
HMS trigger signals occur at a fixed time, meaning that the HMS trigger sets the
timing of the event, including the timing of all the ADC gate and TDC start/stop
signals. The constant level of TDC counts at times up to 50 ns earlier than the self-
timing peak corresponds to accidental coincidences. Looking at the BigCal trigger
TDC spectrum, one sees a lower number of self-timing events. The BigCal self-
timing events correspond to accidental coincidences in which an HMS trigger arrives
first, and then an uncorrelated BigCal trigger arrives later, giving a false coincidence
between the two within the allowed amount of overlap (±50 ns). At earlier times, the
true coincidence peak appears in the BigCal trigger TDC spectrum. The correlation
between the HMS and BigCal triggers is shown in the lego plot on the right. Here the
relationship is more obvious. The HMS trigger time is plotted on the y axis vs. the
BigCal trigger time on the x axis. Most of the events reside at a fixed HMS trigger
time with the BigCal trigger time arriving up to 50 ns earlier (Again, since the TDC
is operated in common STOP, larger times correspond to earlier times in this plot.).
The peak in the BigCal time spectrum along the x axis at a constant HMS time is the
true coincidence peak. The small level of events at constant x, i.e., constant BigCal
time, with the HMS time up to 50 ns earlier, corresponds to accidental coincidence
triggers in which the BigCal trigger sets the timing of the event.
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In total, five different trigger types were defined for production data taking19, in-
cluding three single-arm triggers (HMS1, HMS2, and BigCal), and two coincidence
triggers (HMS1+BigCal and HMS2+BigCal) as shown in figure 3-18. During produc-
tion data taking, the two coincidence triggers were the most important. The BigCal
single-arm trigger was always heavily prescaled because its raw rate was so high it
would have overwhelmed the data acquisition system. The two HMS single arm trig-
gers were usually prescaled down to a rate of 1-10 Hz. The “COIN2” trigger, coming
from the paddle of S0 at the center of the HMS acceptance where elastically scattered
protons are focused, was always read out with a prescale factor of 1, meaning all such
triggers resulted in reading an event to disk, except when another trigger arrived dur-
ing the time required to read out the event. The readout time is determined by the
size of the event, the number of channels read out, the number of hits, the conversion
time for all the digitizing electronics, and the time needed to write the data to disk
over the network. A copy of each trigger signal was also sent to VME scalers to mon-
itor the raw trigger rates and the computer deadtime. The “COIN1” trigger, which
comes from the paddle of S0 covering the inelastic and elastic radiative tail region
of the HMS acceptance, was prescaled differently for different kinematics. For the
kinematics at larger ε, all COIN1 triggers were accepted, since the elastic envelope
was spread out over both paddles of S0 (see table 3.11). On the other hand, for the
lowest-ε kinematics, where nearly all elastic events were contained within the second
paddle of S0, the COIN1 triggers were prescaled down to a low rate to reduce the
computer deadtime and the number of inelastic events recorded to disk.

3.7.4 Helicity Signals

Among the most important signals for experiments using polarized electron beams
are the signals indicating the polarization state of the beam. These signals are sent
from the Machine Control Center (MCC), which, as suggested by its name, is where
the operations of the accelerator are controlled, to the Hall C counting house on fiber-
optic cables. The helicity signals are converted to NIM logic levels by a fiber translator
unit, from which they are then sent to the data acquisition electronics in several
redundant ways. For this experiment, the beam helicity was directly reported and
sent with a repeating +-+- structure, changing sign every 1/30th s. Direct reporting
means that the sign of the helicity signal corresponds directly to the sign of the beam
polarization.

The helicity information is contained in three different signals. First, there is a
logic level called h+, indicating a positive helicity state. Its absence signals a negative
helicity state. Second, there is the so-called “MPS” signal, which is a logic pulse of
500 µs duration, which indicates the “blank-off” period during which the helicity
state is changing. During the time it takes to reverse the beam polarization, the state

19The five trigger types mentioned here do not include two additional trigger types used for BigCal.
First, a cosmic ray trigger based on the coincidence between scintillators placed above and below
BigCal was used to collect muon tracks in BigCal for an initial calibration. Second, a light source
trigger was defined to read out events with signals in all 1,744 blocks from the light produced by
the gain monitoring system.
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Figure 3-18: Coincidence trigger logic diagram showing the five types of triggers used
by the experiment. Each of the five trigger types could be prescaled independently.

of the beam is undefined and the actual beam polarization is unstable. The settling
time after each reversal is basically governed by the time required for the Pockels
cell voltage to stabilize at the new setting. The MPS signal is used to indicate this
uncertain polarization state, and events arriving during this window are discarded.
The duration of the MPS window is actually quite conservative and is in fact longer
than the time required for the polarization to stabilize after reversal. It also eliminates
any jitter/bouncing present during the change of state of the logic level. Since the
polarization changes 30 times per second, the MPS window results in a loss of 1.5%
of events. The third signal, the so-called “quartet” signal, is a logic pulse arriving
at 1/4 the frequency of the polarization reversal signals. Although the quartet signal
was put into the data stream via one of the latched inputs of the trigger supervisor,
the information was neither needed nor used since this experiment opted for direct
helicity reporting.

The helicity signals taken from the fiber translator were put into the data stream
in two places. First, separate h+ and h− logic signals were defined. The h+ sig-
nal was defined as the logical AND of h+ and the absence (NOT) of MPS. The h−
signal was defined as the logical AND of NOT h+ and NOT MPS. These NIM logic
levels were then sent to NIM/ECL level translators on the way to ADCs for readout.
Since the signals were DC logic levels, their presence in the ADC readout is signaled
by saturation of the ADC count. The integration of a large DC level by the ADC
always resulted in reading out the full count range. In the absence of a signal, only
the pedestal is read out. In the offline data analysis, the presence of h+(-) AND the
absence of h-(+) was required in order to assign a beam helicity state of h+(-). Oth-
erwise, a helicity of zero was assigned, indicating an unstable/changing polarization
state during readout of the event.

The h+, MPS, and quartet signals were also sent to the electronics platform in
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Hall C. Using NIM modules located on the platform, redundant h+ and h− signals
were formed with the same definition as the counting house signals. These signals
were read out using two of the latched inputs of the trigger supervisor. In the offline
analysis, as in the case of the ADC signals, the combination of h+(-) AND NOT h-(+)
was required in order to form h+(-); otherwise, a zero value was assigned. Putting
the helicity information in the data stream in two different places in redundant ways
guaranteed that the beam polarization state was known with high confidence. In
the final analysis, agreement between the trigger supervisor helicity and the ADC
helicity was not required, since a small percentage of all data runs had unreliable ADC
information. Except for the runs with bad ADC information, the trigger supervisor
and the ADC agreed on the beam helicity state for roughly 99.9% of events.
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Figure 3-19: Correlation between the trigger supervisor helicity signal and the count-
ing house ADC helicity signal for CODA run 69842. For this run, the two signals
agree for roughly 99.99% of events. The average beam current for this run was ap-
proximately 67 µA.

The mechanism for disagreement between the two signals is the slight difference
between the times at which they are recorded. The helicity state at the trigger
supervisor is latched at the instant an event trigger is formed. This signal is delayed
by the length of cable required to send it from the counting house to Hall C, which
is on the order of several hundred ns. The trigger supervisor records what the state
of the fiber-translator helicity signal was at a time ∆t before the event readout was
triggered. On the other hand, the counting house helicity signal is undelayed except
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for short cable and electronic delays between the fiber translator and the ADC. But
it is read out only when the gate arrives from the trigger supervisor, which is ≈ ∆t
after the event readout is triggered. Therefore, the trigger supervisor and the ADC
measure the beam helicity state at two different times separated by ≈ 2∆t on the
order of one microsecond. This time difference is still quite small compared to the
30 Hz reversal rate and the 500 µs blank-off period, but there is still a non-negligible
chance of disagreement between the two signals, particularly given the possibility
of noise giving an incorrect readout in the ADC. Figure 3-19 shows the correlation
between the trigger supervisor and ADC helicity signals, plotted on a logarithmic
color scale. The color scale shows the overwhelming agreement between the signals,
with more than 99.99% of events lying on the diagonal. The fraction of events with
“zero” helicity is 1.5% as expected. Because the MPS window is 500 µs, and the
time difference between the TS and ADC helicity signals is of order 1 µs, it should
be physically impossible for one signal to give a positive helicity and the other signal
to give a negative helicity. In this example, there are no events in which such a
combination of signals occurs. In some runs, however, a small number of events
appeared in the (1,-1) and (-1,1) helicity bins. Such events indicate a problem with
one of the signals, and were most likely caused by noise in the ADC signals.

In the final analysis, the trigger supervisor helicity was used regardless of the ADC
information, which mainly served as an independent on-line check of the validity of
the signals. To the extent that the fiber-translator helicity signal represents the true
beam polarization state at the instant of the reaction responsible for triggering an
event readout, the comparable delays involved in sending the helicity information to
Hall C and in sending the trigger signals from the detectors to the electronics platform
puts the trigger supervisor helicity signals closer in time to the real event than the
ADC signals. However, in the overwhelming majority of events, the polarization state
does not change during the entire time from scattering in the target, to the formation
of raw signals in the detectors, to the trigger arriving at the trigger supervisor, to the
arrival of the gate at the counting house ADCs, meaning that the beam helicity state
is totally unambiguously determined in very nearly 100% of events. Events arriving
during the MPS window are assigned a polarization state of zero and are eventually
discarded in the offline analysis.

3.7.5 Pedestal (Pulser) Trigger

At the beginning of each data run, 1000 events from random triggers generated by
a pulser are recorded in order to measure the centroids and widths of the pedestals
of every ADC channel in the experiment. This is accomplished through the “enable
1”(EN1) and “GO” output bits of the trigger supervisor which control the state of the
run. The GO signal enables the inputs of the trigger supervisor when a run is started.
The EN1 signal is used to disable all triggers except the pedestal trigger until 1000
pedestal events are acquired. This behavior is enforced by wiring the external trigger
electronics so that the pulser trigger is ANDed with the combination GO AND NOT
EN1 and all other triggers are ANDed with the combination GO AND EN1. Once
the first 1000 events are acquired, the trigger supervisor is programmed to turn on
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the EN1 bit which blocks pedestal triggers and enables all other triggers.

Another difference between the pedestal events and physics events is that whereas
physics events are read out with sparsification, pedestal events are read out without
sparsification. Sparsification means that the only ADC channels read out are those
with ADC count values above a threshold which is programmed into the readout
controllers (ROCS) in each Fastbus or VME crate. Additionally, it means that only
those TDC channels in which a stop signal is present are read out. This reduces the
event size and readout time and hence the computer deadtime. During the pedestal
events, on the other hand, sparsification is turned off, meaning every ADC channel
is read out, which allows measurement of the pedestal positions and widths in every
channel.

After the acquisition of the pedestal events, sparsification is turned on and the
thresholds loaded into the ROCs are used to speed up the data acquisition for physics
events. The ADC information from the pedestal events can then be analyzed to
monitor the pedestal positions and widths. The desired readout threshold for the
ADCs is typically calculated to be 2.5 pedestal widths above the pedestal position.
The actual readout thresholds programmed into the ADCs by CODA are put into the
data stream in special “GO info” events at the start of each run. These thresholds are
then compared for every run to the desired threshold calculated from the analysis of
the pedestal events and a warning message is printed if the desired threshold differs
from the actual threshold by more than two σ. Separate text files containing the
desired thresholds, one for each Fastbus crate with ADCs, are generated for each run.
This file is in the proper format so that it can be optionally loaded into CODA at the
start of the next run simply by replacing the threshold file read in by CODA with the
new threshold file. Changes in the pedestal position, width, and desired threshold
occur with changes in the timing of trigger and gate signals relative to the arrival
time of the analog signals to be digitized, changes in detector high voltage, changes
in the gate width, and changes in the experiment kinematics which result in different
particle rates and/or signal sizes.

The pedestal events are an excellent feature of the Hall C data acquisition setup,
since they allow the automatic calculation of new pedestal positions, which are then
subtracted from the data to get the true signal size, and new pedestal widths, which
can be used to calculate software thresholds that can optionally be used for additional
suppression of the pedestal in the data analysis. The software threshold option is
particularly useful for the relatively harmless situation in which the readout threshold
is set too low. The ability to compare the readout threshold to the desired threshold
for every run also protects against the quite harmful situation in which the readout
threshold is set too high, resulting in a loss/artificial suppression of data.

3.7.6 Data Acquisition

Electronics: Trigger Supervisor and Readout Controllers

The primary element of the data acquisition system is the Trigger Supervisor (TS).
Detailed descriptions of the JLab trigger supervisor system can be found in [122, 123].
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In this section a brief description of its functionality pertaining to this experiment is
provided. The TS is used to control the state of the data run and the readout of all
the various branches of the data acquisition system when a run is in progress. It is
also used to control the pre-scaling of the various trigger types. The pre-scale factors
are programmed into the TS by CODA whenever a run is started, and are used to
reduce the number of triggers of a given type accepted. For example, a prescale factor
of 10 means that only one out of every 10 triggers is accepted.

The TS is located on the electronics platform in the bunker in Hall C in a VME
crate along with a number of scaler modules used to monitor the hit rates for the
first and second-level sums in BigCal, the various triggers, and the beam current
monitoring devices. It is daisy-chained to the various branches of the data acquisition
system through branch cables. There are three main branches. The first branch,
located on the electronics platform, includes the two FastBus crates used to read
out BigCal. The second branch, located in the Hall C counting house, includes one
FastBus crate and one VME crate. The FastBus crate contains ADCs and TDCs
which are used to read out the HMS hodoscope and calorimeter signals, and the
BPM and raster signals. The VME crate contains scalers which monitor the hit rate
on the HMS hodoscopes. The third branch, located in the HMS hut, includes the
crates used to read out the HMS and FPP drift chambers. As discussed above, this
branch of the DAQ system used two VME crates with F1 TDCs during the first
phase of the experiment, and a single Fastbus crate during the second phase of the
experiment for the FPP drift chambers. The HMS drift chambers were always read
out by a single Fastbus crate.

Each individual crate is controlled by a single-board CPU called a readout con-
troller or ROC for short. The ROCs are connected to the Hall C network via either
ethernet or fiber-link. Each crate’s ROC collects the data from all ADC, TDC and/or
scaler modules in its crate into “banks” in memory and attaches header information
such as the identifiying information of the ROC and the bank length in data words,
followed by the individual data words. Each ROC’s data bank becomes a fragment of
a physics event that is eventually assembled together with all the other ROC banks
into a complete physics event by CODA as discussed below. The trigger supervisor
itself is also a ROC and has its own data bank which enters the data stream. The
trigger supervisor ROC bank contains the status of its 12 input bits, including 8
pre-scalable trigger inputs and 4 additional latched inputs which were used for the
helicity signals in this experiment. When special scaler read events are triggered, the
data from the scaler modules located in the same VME crate is also read into the TS
ROC bank. The trigger supervisor communicates with the ROCs and controls their
readout functions via twisted-pair ribbon cables (the branch cables). It can support
up to 32 ROCs on four branches (up to 8 ROCs on each branch). Each branch has
an 8-deep FIFO buffer memory.

When the trigger supervisor is in a state of readiness to accept new triggers and
receives a signal on one of its trigger inputs, it generates a signal called a level 1
(L1) accept, which is fanned out to various locations to form gate, start, and stop
signals for the various ADCs and TDCs. On the electronics platform, it goes to a
gate generator which creates the gate for the BigCal ADCs. It is also used to stop
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the TDCs in the second BigCal fastbus crate, which include timing signals for the
first and second-level sums of BigCal and the HMS1, HMS2, and BigCal triggers. It
is also sent to the upstairs counting house, where it is used to start the TDCs for the
HMS hodoscope signals and to gate the hodoscope and calorimeter ADCs. Finally, it
is sent to the HMS hut where it is used to stop the TDCs for the HMS and FPP drift
chambers. Whenever each crate receives a gate/start/stop signal, an event is created
in the memory buffers of the modules. Each crate’s ROC, controlled by the trigger
supervisor, serves as the interface between the individual digitizing modules and the
outside world.

Upon accepting a trigger which passes the prescale circuits and generating a level
1 accept, the trigger supervisor locks up and enters a latched state. A 4-bit readout
code, permitting up to 16 independent readout functions, is calculated from the 12-bit
trigger latch pattern in a user-programmable fashion. This readout code is sent along
4 data lines on the branch cable. If none of the branch buffers is full, the TS drops the
L1 accept signal and is ready to accept new triggers. If, on the other hand, any of the
branch buffers is full, the TS holds its state until space is available in all buffers. Upon
loading the readout code into the branch buffer a “strobe” signal is sent to all the
ROCs on each branch telling the ROCs to read out their event fragments according
to the readout code. Once the ROCs are finished processing their data, they send
an acknowledgement (“ack”) signal back to the trigger supervisor. Each ROC has its
own dedicated “ack” line on the branch cable. When the trigger supervisor receives
the “ack” signal from all ROCs on the branch, the readout code data lines are reset,
the buffer counter is decremented, and the strobe signal is dropped. Each ROC drops
its “ack” signal upon detecting the absence of the strobe signal.

In order to accommodate front-end modules with no buffering capability, the trig-
ger supervisor supports an unbuffered data acquisition mode, in which all branch
buffers are programmed to have a buffer depth of one. In this mode, no new trig-
gers can be accepted until all the ROCs have finished processing their event data.
Although all of the ADC and TDC modules used in this experiment were capable of
buffering, the unbuffered data acquisition mode was used during the vast majority
of the production data collection. When running in buffered mode, careful synchro-
nization between all the ROCs and the trigger supervisor is necessary to prevent
catastrophic data loss in a situation in which the individual event fragments from
the ROCs do not correspond to the same physical trigger. The main benefit of using
buffered mode DAQ is the reduction in computer deadtime obtained by allowing the
triggering of new events before the acquisition of previous events is completed. How-
ever, the rates on the main coincidence trigger were low enough across all kinematics
that the computer deadtime was acceptable even in the unbuffered mode, which is
both simpler to implement and less fraught with potential hazard. Given the size and
complexity of the non-standard data acquisition requirements of this experiment, the
unbuffered mode was safer and easier to use. But it is worth noting that the choice
of unbuffered mode was not merely one of convenience. At one point during the run,
memory issues in the F1 TDC modules in one of the VME crates used to read out the
FPP chambers caused them to fail to decrement their event counters after readout.
Detailed investigations showed that even though the modules in fact had only one
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event per trigger, they erroneously showed extra events. This issue prevented buffered
mode data acquisition for as long as it persisted.

Computer Deadtime and the S0 Trigger

The DAQ or computer deadtime is the fraction of time the data acquisition system
cannot accept new triggers because the data acquisition computer is busy reading
out the previous event. It is a function of the rate of triggered events and the time
required to read out an event. The readout time is determined by several factors,
including the data conversion time in the digitizing modules, the time required by the
ROCs to read the data from the modules into their memory, and the time required
for the ROCs to send the data out over the network. The latter requirement, which
depends on the available network bandwidth and the volume of data being sent out,
is by far the most time consuming. The data conversion time for 1881M ADCs is on
the order of several tens of µs, while the time required to send the data for all hit
channels out over the network is on the order of several hundreds of microseconds.
The total event processing time, which takes several hundred microseconds, sets an
absolute upper limit on the data acquisition rate, whether running in buffered or
unbuffered mode, which was typically 3-5 kHz for the configuration of this experiment.
The computer deadtime was monitored during the experiment by comparing the
number of (prescaled) incident triggers to the number of triggers read out. Both
numbers are counted by scalers. The readout time can be inferred from the computer
deadtime and the event rate. It depends on the average event size, which can be
greatly reduced through sparsification, the bandwidth of the Hall C network, and the
available memory, processing, and read/write speed of the computer on which the
data acquisition software processes are hosted.

Table 3.16 shows a sampling of the trigger rates and computer deadtimes observed
across the various kinematics of the experiment when running at or near the full beam
current. During the data taking of the two highest-ε kinematics, a problem with
the discriminator for the S0 trigger reduced the rate and efficiency of that trigger.
Additionally, there were problems with the signals coming from S0 itself. Though
these problems were later fixed, the decision was made at the time to take data with
an HMS trigger which bypassed S0 and used only the S1 trigger logic shown in figure
3-16 for the HMS single arm trigger. Since the trigger rates in BigCal (see table
3.16) were lower for these kinematics, which involved large distances to BigCal, high
electron energies and high trigger thresholds, the accidental coincidence rate between
the S1-only trigger and BigCal was manageable.

One immediately notices upon close examination of table 3.16, that the HMS
single-arm trigger rates were much higher with an S1-only trigger. At an angle of
35.4 degrees, the S1-only trigger rate was 240 Hz/µA, and at 31 degrees, that rate
increased to almost 500 Hz/µA. S1-only trigger data were only taken at three different
HMS angle settings, which include those listed in table 3.16, and the data taken with
an HMS central angle of 36.1 degrees, for which the S1-only HMS trigger rate was 220
Hz/µA. All three of these HMS angle settings had the same central momentum setting
of 2.0676 GeV/c. Since the singles rate in the HMS depends on the beam energy,
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Q2(GeV 2)/ε/Ibeam HMS1/ps1 HMS2/ps2 BigCal/ps3
5.2/.377/74.2 33.6/99999 11.3/99999 7044.8/99999
2.5/.154/80.5 1303.0/99999 67.8/99999 10638.4/99999
2.5/.633/100.0 Disabled 467.7/99999 1775.3/99999
2.5/.789/84.0 Disabled 240.0/99999 2990.3/99999
6.8/.507/73.3 7.6/2000 4.7/2000 32640.4/99999
8.5/.236/83.1 407.7/1000 17.7/500 39319.4/99999

Q2(GeV 2)/ε/Ibeam COIN1/ps4 COIN2/ps5 DAQ Deadtime
5.2/.377/74.2 7.2/10 1.9/1 15.9%
2.5/.154/80.5 168.9/100 20.4/1 21.9%
2.5/.633/100.0 Disabled 21.7/1 25.5%
2.5/.789/84.0 Disabled 19.9/1 18.9%
6.8/.507/73.3 2.5/1 1.6/1 7.8%
8.5/.236/83.1 158.0/2000 7.3/1 11.9%

Table 3.16: Typical trigger rates/prescale factors and computer deadtimes observed
during the experiment at different kinematics. Each table entry corresponds to one
data run. Rates are given in Hz/µA. The examples in which the HMS1 and COIN1
triggers are marked as “disabled” refer to an alternate trigger configuration which
was used for kinematics for which the S1-only trigger rate was low enough that the
S0 trigger was unnecessary. Though S0 remained in the detector stack for these runs,
only one HMS trigger (HMS2) was defined which used the S1 trigger logic described
above. The COIN2 trigger was defined as S1 AND BigCal for these kinematics.

HMS central momentum, and HMS central angle, one cannot directly extrapolate
from those three data points to predict what the S1-only trigger rate would have been
for all the other kinematics. But an educated guess can be made using the S1 scaler
data. Although there were scalers in the data stream for each of the individual paddles
of S1X and S1Y for logical combinations of the paddles related to the standard HMS
trigger, there was no dedicated scaler channel counting the frequency of the logical
combination of S1 signals used in the trigger for this experiment, with the exception
of the runs when the trigger was defined by S1 only.

Despite the lack of a dedicated S1 trigger scaler for the kinematics where the S0
AND S1 trigger was used, the S1-only trigger rate could be estimated from the S1
scalers by noting the fact that for the three different kinematic settings where the
S1-only trigger was used, the “hS1” scaler rate was observed to be proportional to
the S1 trigger rate, to a very good approximation. The hS1 signal is an exclusive OR
of the “S1X” and “S1Y” signals in the upstairs counting house, which are not quite
the same as the S1X and S1Y signals in the custom hut trigger. The difference is
that while the hut signal requires hits on PMTs on both ends of the same paddle,
the counting house signal requires at least one hit on both sides, but removes the
requirement that the two hits come from the same paddle, in the interest of reducing
the amount of electronics needed.
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Q2/ε hS1 est. S1 trig. BigCal Accidental(est.), Hz @ 80 µA
5.2/.377 3278 207 7045 907
2.5/.154 12335 778 10643 5064
6.7/.507 4678 295 32640 5416
8.5/.236a 10044 634 53231 17534
8.5/.236b 6372 402 39319 8663

Table 3.17: Estimated accidental coincidence rate between BigCal and the HMS had
an S1-only trigger been used, for the kinematics which used S0 in the trigger. All
rates are given in Hz/µA except the accidental rate which is given in Hz at 80 µA,
which was the typical beam current during the experiment. The two different runs
shown at 8.5 GeV2 were taken with (a) all sixteen paddles of S1X turned on, near
the beginning of data taking, and (b) with eight paddles of S1X turned off in order to
reduce the rate. The four paddles closest to each end of the acceptance were turned
off since the middle eight paddles were sufficient to cover the full elastic envelope.
The reduction in the BigCal rate from (a) to (b) comes mainly from the effects of
radiation damage and slight adjustments in the trigger threshold.

The accidental coincidence rate between two signals, produced randomly at aver-
age rates N1 and N2, within a coincidence time window ∆t, is governed by Poisson
statistics. Given the presence of the first signal, the probability that a random hit from
the second signal arrives within±∆t/2 is given by P (2|1) =

∑∞
n=1(N2∆t)ne−N2∆t/n! =

e−N2∆t(eN2∆t − 1) = 1 − e−N2∆t. Similarly, given the presence of signal 2, the prob-
ability of a random hit from signal 1 during ∆t is P (1|2) = 1 − e−N1∆t. To get the
random coincidence rate, since the probabilities P (1)P (2|1) and P (2)P (1|2) describe
non-mutually-exclusive events, the probability for random coincidences must be writ-
ten as P (1∩2) = P (1)P (2|1)+P (2)P (1|2)−P (1)P (2) = N1∆t(1−e−N2∆t)+N2∆t(1−
e−N1∆t)−N1N2(∆t)2. Thus, in terms of rates, dNrandom/dt = N1(1−e−N2∆t)+N2(1−
e−N1∆t)−N1N2∆t. For N1∆t, N2∆t� 1, this becomes 1−e−N1,2∆t ≈ N1,2∆t, so that
the random coincidence rate reduces to dNrandom/dt ≈ N1N2∆t.

Table 3.17 shows why the S0 trigger scintillator was absolutely necessary for these
experiments. The “hS1” column shows the actual scaler rate, in Hz/µA, of the
“hS1” exclusive OR signal observed during the experiment. The second “S1 trig.”
column shows the expected S1-only trigger rate, assuming that said rate is directly
proportional to the hS1 rate. The BigCal column shows the actual BigCal scaler rate
observed in the experiment, in Hz/µA. The final column shows the expected accidental
coincidence rate between the S1-only and BigCal triggers, using the full expression for
the rate rather than the approximation N1N2∆t, since the BigCal rate is large enough
that at 80 µA, the condition N∆t � 1 is not satisfied, and the difference between
the full expression and the approximate expression is non-negligible. These estimates
show that the introduction of S0 was absolutely necessary, since the rate of random
coincidences alone with an S1 trigger would have met or exceeded the maximum data
acquisition rate in Hall C even under an optimistic assumption of 5 kHz maximum
event rate. Reading out random coincidences with a computer deadtime near 100%
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would have meant a loss of most if not all elastic ep statistics. Hence, a tighter trigger
was required, not optional.

To conclude the digression into the trigger challenges facing this experiment, it is
worth remarking that several alternatives to placing new scintillators upstream of the
tracking chambers existed. One alternative was to place the scintillators between the
two drift chambers, near the focal point of the spectrometer. This option would have
had the benefit of reducing the optical magnification of the angular errors introduced
by multiple scattering, but at the expense of reducing the lever arm for the trigger
and possibly reducing the track reconstruction efficiency and accuracy, to the extent
that significant multiple scattering in between the two drift chambers would make a
straight-line approximation to the track less accurate20. Nevertheless, this alternative
would have resulted in better resolution of the trajectory angles at the target, but
may not have provided the needed rate reduction.

A second alternative would have been to include the HMS shower counter in the
trigger with no additional scintillators. The advantage of this approach is that the best
possible tracking resolution would have been preserved. The obvious drawback is that
a calorimeter trigger would have been quite inefficent, for two reasons. First, since
the signals in the lead-glass calorimeter are based on the collection of Cerenkov light,
and since protons are relatively heavy, the calorimeter signals for protons would have
been small, with large statistical fluctuations, leading to either relatively inefficient
triggering or thresholds too low to provide the needed rate reduction. Second, many
protons that undergo useful scattering in the first polarimeter would not hit the
calorimeter and therefore be lost. A calorimeter trigger probably would have resulted
in an unacceptable loss of efficiency given the design of the FPP and the proton
momenta and scattering angles involved in this experiment. On the other hand, such
a trigger might become useful and acceptable at higher energies, since the angular
distribution of the efficiency and analyzing power for scattering in CH2 becomes
concentrated at increasingly forward angles, and since the proton signal in lead-glass
would increase at higher momenta. Indeed, given the increasing importance of the
angular and momentum resolution at high energies to maintaining the systematic
uncertainty in the precession calculation and the inelastic background contamination
at acceptable levels, a hadronic-calorimeter based trigger may very well become the
best available option in future recoil polarization experiments.

CODA Software

CEBAF Online Data Acquisition (CODA) is a system of software libraries used
to program and provide real time control of the data acquisition system[124]. The
CODA libraries handle all parameters of the run, including prescale factors, ADC
thresholds, the number of pedestal triggers required before accepting physics events,
which ROCs and which modules from the crates they control are to be read out and
in what fashion, the buffering depth, the programmable parameters of all the various
ADC and TDC modules, and so on. . . CODA also provides a graphical user interface

20Also, neither drift chamber reconstructs the trajectory angles with sufficient precision on its
own to reconstruct the multiple scattering angles in the scintillator between the two chambers.
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called RunControl for starting and ending data runs and easily transitioning between
different data acquisition configurations. Among the most important programs in the
CODA libraries is the event builder (EB), which runs on the host computer and, when
a run is in progress, assembles the incoming event fragments (ROC banks) from the
different branches of the DAQ system into full physics events in a standard format,
attaching important header information. Once the event is built, it is placed in a
buffer where it can then be accessed by other processes or written to disk. In this
experiment, the events were written straight to disk, and the data were monitored
for quality and analyzed by a separate code, the Hall C ENGINE.

There are four broad classes of events defined in the Hall C CODA setup. Status
events, inserted into the data stream at the beginning and end of run, contain basic
parameters of the run, including prescale factors, the ADC thresholds that were
programmed into the modules, and some slow control variables monitored through
EPICs. Physics events correspond to experiment triggers, and include all of the
detector and beamline21 information recorded by ADCs and TDCs when a physics
trigger causes these modules to be read out. Scaler read events, forced into the
data stream by CODA once every two seconds, cause all the scaler modules to be
read out. These include the BigCal, trigger, and beam current scalers in the VME
crate containing the trigger supervisor in the bunker in Hall C, and the hodoscope
scalers in the VME crate in the Hall C counting house. Finally, EPICS events,
inserted by CODA every thirty seconds, are used to record slow control information,
such as spectrometer magnet settings, beam, target, and accelerator parameters, and
other important information.

Figure 3-20 summarizes the layout of the special data acquisition configuration
for this experiment. The data acquisition computer cdaql6 hosts the CODA run
control and event builder processes, and writes the data directly to disk for efficient
acquisition and short term storage. Because of the high volume of incoming data
from the experiment, the hard disk on cdaql6 periodically became full. A cron job
running on cdaql6 automatically copied the oldest data files on disk to the tape silos
of the JLab Mass Storage System (MSS), then deleted them from the disk, only after
verifying their successful transfer to tape, to keep enough free space for the incoming
data at all times. The typical event size was roughly 2 KB per event. With typical
event rates on the order of 1 kHz, the data rate from the experiment was roughly 2
MB/s, a total data throughput which was comfortably within the capabilities of the
modern network and disk hardware in hall C.

21The BPM and raster magnet signals are recorded for every physics event by ADCs in the fastbus
crate in the counting house.
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Figure 3-20: Schematic layout of Gp
E Hall C DAQ configuration. Each crate of digi-

tizing modules is controlled by a ROC, which communicates with the TS via branch
cables. The TS accepts a trigger if and only if it is no longer busy reading out the
previous event. When a trigger is accepted, a L1 accept signal goes out to external
circuitry to generate ADC gates and TDC start and/or stop signals. Then, the TS
signals the ROCs to read out their data via the branch cables, holding a busy state
until all ROCs signal they are finished processing their data, at which point the TS
is ready to accept new triggers. The event fragments from each ROC go out over the
Hall C network to the Event Builder running on the host computer, which assembles
the fragments into a complete physics event and passes it to other processes which
write the data to disk. Eventually, the data is copied to tape for long-term storage.
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Chapter 4

Data Analysis

The analysis of the data consisted of three major tasks. The first task was the
reconstruction of individual scattering events. After decoding the raw data from
the HMS and BigCal, the trajectories and momenta of the scattered particles were
reconstructed, as well as the position of the interaction vertex along the length of
the target. The scattering angles of the proton in the CH2 analyzer of the FPP were
also reconstructed. The second task was the separation of elastic and inelastic events,
which involved studying kinematic correlations, including the correlation between the
detected proton’s momentum and its scattering angle, and the correlation between
the electron scattering angle and the proton momentum. The third task was the
extraction of the polarization transfer components Pt and Pl from the observed angu-
lar distribution in the FPP, which involved first measuring the asymmetry and then
calculating the proton spin precession in the HMS magnets for each event.

4.1 Event Reconstruction

In the following section, the decoding of the raw data, the calibration of the various
detectors, and the reconstruction of relevant kinematic variables and FPP scattering
angles for each event is discussed.

4.1.1 Event Decoding

A CODA event in the raw data file consists of an array of 32-bit integer data
words. Each event starts with a header which includes information such as the size of
the event and the event type. The CODA event type is a function of the trigger
latch pattern. Special event types were defined for status events, EPICS events
and scaler read events. There were also four relevant physics event types. Table
4.1 shows the event type assigned to the various trigger types by CODA. Both HMS
triggers were assigned an event type of 1, while both coincidence triggers were assigned
an event type of 6. The BigCal singles trigger was assigned to event type 5 and
the pedestal events were assigned to event type 4. The ENGINE is the standard
analysis code for Hall C, which handles the decoding of the raw event information
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Trigger Type TS input(s) CODA event type
HMS1 single 1 1
HMS2 single 2 1
BigCal single 3 5

COIN1 trigger 4 6
COIN2 trigger 5 6
Pedestal trigger 8 4

Table 4.1: Trigger types and CODA event types.

and the reconstruction of events. The code behaves differently depending on the event
type. The first task performed by the engine is the parsing of a master configuration
file containing basic information about the run such as the path to the raw data
file, parameters which enable or disable the analysis of different event types, and
pointers to database files containing histogram definitions, test/cut definitions, and
miscellaneous parameters of the analysis such as detector calibration constants and
the HMS transport coefficients used to reconstruct the proton momentum, angles,
and vertex position from the track reconstructed by the drift chambers.

The configuration file for the ENGINE also defines the so-called “detector map”
file. This file contains the correspondence between fastbus or VME channel addresses
and physical detector locations. The ENGINE parses the map file looking for key-
words defining specific parameters needed by the decoding routines. Whenever the
combination keyword=value is found, the quantity referred to by keyword assumes
the value value until the next time a line is found which specifies a new value for
keyword. The following keywords are defined:

ROC Specifies ROC number for all following entries until the next “ROC=” line is
found. Each ROC corresponds to one crate of digitizing electronics.

slot Specifies the current slot within the crate referred to by ROC. Each slot contains
one digitizing module.

Nsubadd Specifies the number of channels or subaddresses per module.

MASK Specifies the hex mask needed to extract the actual signal (digitized time
or amplitude) from the data word. This mask depends on the type of module
under consideration and how it is programmed.

BSUB Specifies the least-significant bit of the “channel” or subaddress field within
the data word.

detector Specifies the “detector ID” to which the channels are to be assigned. Each
detector in the experiment was assigned a hard-coded ID parameter within the
ENGINE.

All other lines in the map file consist of three or four integers separated by com-
mas. These lines are interpreted as the channel, “plane”, “wire” and “type” of an
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individual detector signal. The channel refers to the subaddress of that signal within
the digitizing module. The “plane”, “wire”, and “type” definitions refer to physical
detector locations, allowing a software mapping of detector channels in up to three
dimensions, with the restriction that the “type” variable is only allowed to vary from
0 to 3, and the number of “types” per detector ID is only allowed to be 1, 2, or 4. For
example, for the HMS drift chambers, “plane” and “wire” refer to actual wires within
actual planes, with only one signal type which defaults to zero. In BigCal, “plane”
refers to row number and “wire” refers to the column number of individual lead-glass
bars. Only one signal “type” was allowed for BigCal as well. The HMS hodoscopes
employed the “type” variable in such a way that types 0, 1, 2, and 3 referred to the
ADC signal of the PMTs on the “+”(type 0) and “-”(type 1) ends, and the TDC
signals for the PMTs on the “+”(type 2) and “-”(type 3) ends, respectively. The
“plane” number for the HMS hodoscopes ran from 1 to 4 and referred to S1X(1),
S1Y(2), S2X(3) and S2Y(4), while the “wire” number referred to each individual
scintillator bar within a plane, which ran from 1 to 16 for the x planes and 1 to 10
for the y planes. Preparing a correct detector map file was the main requirement for
the decoding of events. The subroutines in the ENGINE then used the information
in this file to place the decoded data into the appropriate “hit” arrays for processing
by the detector reconstruction subroutines.

4.1.2 Hodoscope Timing Analysis

The discussion of event reconstruction begins with the calibration of the HMS
hodoscopes. For this experiment, the main purpose of the hodoscopes was to measure
the time at which a particle passed through the detector stack in order to set the
zero time for the drift chambers of both the HMS and the FPP. The amplitude of
the signal from each PMT was digitized by integrating ADCs. The timing of the
signal was measured by high-resolution common-start TDCs as described above. To
reconstruct the timing of the event from the raw ADC and TDC information, a
number of corrections are applied. First, the raw TDC value is converted to time in
nanoseconds with an assumed conversion factor of 25.9 picoseconds per TDC count.
This value for the time scale of the TDC was based on calibration measurements
using a time interval generator checked against the accelerator RF performed during
the initial commissioning of the HMS[125]. This conversion factor represents the
average of all the individually calibrated modules, with channel-to-channel variations
within a single module possible at the percent level and variations between modules
of up to 6%. Since these variations were small compared to the time resolution of
the scintillators themselves, using the average conversion factor was sufficient. The
“raw” time is given by traw = 25.9 ps× TDC.

The next correction to the scintillator time was to subtract an overall zero off-
set, determined for each channel, to account for variations in cable delay between
channels. The goal was to determine the time of each scintillator hit relative to an
arbitrary reference time, which in turn defines the start time for the drift chamber
tracking. The absolute signal propagation time from the PMTs to the TDCs was
irrelevant, except in making sure the signal arrived within the gate sent from the
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Figure 4-1: Profile histogram of traw as a function of the pulse height measured by
the ADC for the PMT at the + end of S1X paddle 8, with fitted walk correction
shown.

trigger supervisor. Therefore, in the calibration procedure which determines all the
calibration parameters for all PMTs simultaneously, one of the PMTs is arbitrarily
chosen to have an offset of zero, and the offsets for all the other PMTs are calibrated
relative to this reference PMT.

Since the PMT signals are discriminated against a fixed threshold, significant time
walk or pulse-height dependence of the signal timing is possible. The time measured
by the TDC is the time at which the leading edge of the signal exceeds the fixed
threshold. Since the pulse has a characteristic shape with a finite rise time, larger
signals will exceed the threshold earlier than smaller signals. Thus, a correction to
the time for the pulse height is made of the form

tcorr,walk = traw −
w√
ADC

(4.1)

where the constant w is determined for each individual PMT in the calibration pro-
cedure. Figure 4-1 shows an example of the pulse-height dependence of traw.

The next correction to the timing signals was to correct for the light propagation
time in the scintillator bar. Each PMT was assigned a “speed” parameter related to
the effective average light propagation speed in the scintillator. Given a light velocity
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Figure 4-2: Time difference between + and - ends of the same paddle due to propa-
gation delay, as a function of the propagation path length from the particle impact
point to the + PMT, for paddle S1X8 (left) and S1Y5 (right). The data in this plot
had not yet been corrected for the zero offset between the two signals.

veff , bar length L, and a particle passing through the bar at a distance d from the
midpoint of the bar, with positive d pointing toward the + end, the expected time
difference between the two PMT signals is given by

t+ − t− =

(
L

2veff
− d

veff

)
−
(

L

2veff
+

d

veff

)
(4.2)

= − 2d

veff
(4.3)

⇒ d =
1

2
veff (t− − t+) (4.4)

Thus, the zero-offset-subtracted, walk-corrected time difference between the + and -
PMTs measures the longitudinal coordinate at which the particle passed through the
paddle. Once this approximate coordinate is known, the propagation time for each
PMT is subtracted to calculate an average corrected time for the scintillator.

t+,corr = t+ −
1

veff,+

(
L

2
− d
)

(4.5)

t−,corr = t− −
1

veff,−

(
L

2
+ d

)
(4.6)

tavg.,corr =
1

2
(t+,corr + t−,corr) (4.7)

Figure 4-2 shows the time difference between the + PMT and the - PMT due to light
propagation delay for paddle S1X8 (left), and paddle S1Y5 (right), as a function of
the distance to the + PMT from the intersection point of the particle track with
the paddle, determined by projecting the reconstructed drift chamber track to the
paddle. Even though the light propagation speed should be the same for PMTs
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at opposite ends of the same paddle, slight differences in the effective propagation
speed are possible due to e.g. slightly different light-guide characteristics. Therefore,
each PMT is assigned its own veff which is not required to be the same as the veff
of the tube at the opposite end of the same paddle and is varied independently in
the calibration procedure. In practice the differences between veff,+ and veff,− for a
given paddle are quite small, and paddle-to-paddle veff variations are no more than
20%. Finally, in order to determine the start time for the drift chamber tracking,
the corrected times are projected back to the HMS focal plane (z = 0). In the first
stage of the code, since the drift chamber track is not yet known, the trajectory
slopes x′ and y′ are unknown. However, deviations from x′ = y′ = 0 for true tracks
are always small, so it is a reasonable first approximation to assume x′ = y′ = 0.
Since the particle momentum is also not yet known, particles are assumed to have
the central momentum of the spectrometer. The mass of the desired particle is an
input parameter of the code. In this case, the proton mass was used. The focal plane
time corresponding to the corrected scintillator time is given by

tfp = tcorr.,avg. −
z

β(p0)c
(4.8)

where z is the position of the scintillator element relative to the focal plane z = 0
and β(p0)c is the velocity of a proton with momentum equal to the HMS central
momentum.

In order to obtain the best set of parameters, the standard HMS time-of-flight
calibration code written by Peter Bosted was used. This code fits all three parame-
ters (zero offset, walk correction coefficient, and effective propagation speed) for all
PMTs simultaneously. It uses the HMS drift chamber tracks rather than the +/-
time difference to more precisely measure the impact coordinate of the particle, and
uses the reconstructed spectrometer momentum and the measured trajectory angles
to determine, respectively, the proton’s velocity and the length of its flight path be-
tween the various elements, in order to calculate the time-of-flight correction to each
scintillator time. Using all of this information and the raw ADC and TDC informa-
tion, the code solves a system of linear equations in the parameters which minimizes
the sum of squared corrected-time differences between PMT hits on the same track:

χ2 =
Nevent∑
i=1

N
(i)
hit−1∑
j=1

N
(i)
hit∑

k=j+1

t(i)raw,j − zj
β(pi)c

− t0,j −
d

(i)
prop,j

veff,j
− wj√

ADC
(i)
j

−
t(i)raw,k − zk

β(pi)c
− t0,k −

d
(i)
prop,k

veff,k
− wk√

ADC
(i)
k

2

(4.9)

The calibration code runs separately from the ENGINE, and requires a special input
file prepared by the ENGINE, requiring typically one thousand to ten thousand events
per PMT to be calibrated. The number of parameters is three per PMT (t0, 1/veff ,
and wj) for a total of 156 parameters. After running the calibration code, obtaining
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Figure 4-3: Difference between corrected time and the average corrected time of all
other hits on a track. This quantity measures the hodoscope timing resolution, with
all corrections applied, after calibration.

the best fit parameters, and re-analyzing the data, the final timing resolution of the
HMS hodoscopes, averaged over all PMTs in S1X and S1Y, is approximately 250
picoseconds. The time resolution achieved is shown in figure 4-3, which shows a
histogram of the difference between the corrected focal-plane time of each hit and the
average corrected focal-plane time of all the other hits on the track, not including the
hit in question. Excluding the hit under consideration from the average time means
that it does not contribute to the determination of the average time, which would
make the resolution appear better than it really is.

The timing window for hodoscope hits is 100 ns wide. Even within this relatively
short window, it is possible for extra hits not related to the trigger to leak in. Recalling
the discussion of trigger rates in the previous chapter, the S1 exclusive-OR rate during
the experiment was on the order of several hundred kHz and sometimes approaching
1 MHz. In the worst case of 1 MHz, there is a roughly 10% probability for an extra
PMT hit to arrive during the timing window. In order to choose the right hits, then,
a filtering algorithm was written into the hodoscope timing analysis. This algorithm
creates a histogram with 200 time bins between 0 and 100 ns, with bins starting at
tmin = 0, 0.5, 1.0, 1.5, ... ns. A time tolerance parameter adjustable by the user sets
the bin width. Then, in each bin, the code counts the number of hits with corrected
times satisfying tmin < tcor < tmin + δ, where δ is the tolerance parameter. Note
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that the time tolerance parameter is typically set to be significantly greater than
0.5 ns, so that the time bins have significant overlap. Then, the time bin with the
greatest number of hits is chosen, and all hits with corrected times outside this bin are
thrown out. This procedure helps to select the hits from the PMTs that caused the
trigger and filter out random hits that accidentally arrived during the 100-ns window.
For this experiment, given the 250 ps timing resolution, a conservative tolerance of
5 ns was used to filter out bad hits. This filtering algorithm reduces the effective
timing window for the hodoscope PMT signals by a factor of 20, greatly reducing the
probability of using unwanted background hits.

A final remark on the hodoscope timing is to mention that the S0 ADC and TDC
signals were not used in the start time determination, since the timing resolution of
these signals was almost an order of magnitude worse than the S1 timing resolution.
However, it was still useful to have them in the data stream to measure the efficiency
of the S0 PMTs when they were not part of the trigger.

4.1.3 HMS Drift Chamber Track Reconstruction

The next step in the HMS reconstruction is to reconstruct the proton trajectory
in the HMS drift chambers. The track reconstruction proceeds by first converting
the raw TDC information for all wires with a hit into rough drift time information.
The drift chambers are read out by TDCs with 0.5 ns count resolution operating in
common stop mode, in a 2 µs window with up to eight hits per wire per event allowed.
In the raw TDC spectrum, a low-level background of random hits populates the full
time window. A significant fraction of these hits are thrown out by a loose cut on the
raw TDC value surrounding the good hits from the track which caused the trigger,
which form a prominent peak in the spectrum roughly 100 ns wide. An initial drift
time value is assigned to the remaining hits as follows:

tdrift = −traw − tstart + t0 (4.10)

In equation (4.10), −traw = −0.5 ns×TDCraw is the measured hit time, with a minus
sign attached because of the common stop. tstart is the “start time” reconstructed
from the hodoscopes, equal to the average corrected focal plane time of all the PMTs
in the 5 ns time-tolerance bin with the most PMT hits. t0 is an overall time offset
used to align the drift time spectrum so that the good hits lie roughly in the window
between 0 and 100 ns. For this experiment, a separate t0 offset was calculated for
every wire, and updated periodically for configuration and kinematics changes which
resulted in slight timing changes.

After applying the loose TDC cut, the process of pattern recognition begins.
First, the total number of hits per chamber passing the TDC cut must lie between
user-adjustable lower and upper limits for pattern recognition to proceed. For this
experiment, since accurate track reconstruction was more important than tracking
efficiency, the minimum number of hits per chamber was set to five. The maximum
number of hits was set to 35, to prevent pattern recognition from proceeding for
events with a small probability of success requiring the consideration of geometrically
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increasing numbers of hit combinations. Within each chamber, the tracking algo-
rithm considers all possible pairs of “non-parallel” wires with hits, and records the
intersection points of their wire positions in the xy plane, without considering their
drift distance information. Pairs of wires whose orientation angles differ by less than
17.5 degrees are not considered. This means that the U and V wires in the HMS
drift chambers are not paired with the X wires, but are paired with each other. Since
most tracks move nearly perpendicular to the wire planes, and since the separation
in z between planes within a chamber is small, it is adequate for pattern-recognition
purposes to imagine that all six planes in each wire chamber are located at the same
z, and consider the intersection points between wires as points in a two-dimensional
plane. After recording all pairs of hits on non-parallel wires, the code compares each
pair of hits to all other pairs of hits in that chamber, comparing the squared distance
between the two intersection points to a prescribed maximum separation.

r2 = (x1 − x2)2 + (y1 − y2)2 < r2
max (4.11)

In the analysis, r2
max = 2 cm2 was used. Every combination of pairs of hits passing this

squared-distance criterion is added to an array of valid combinations or “combos”.
The first time a combination of two unique pairs of non-intersecting wires is found
whose intersection points are close enough together to satisfy the squared-distance
criterion, a “space point” is formed which includes all unique hits in the combo;
i.e., all four hits in the two pairs, unless any wires are shared between the two pairs.
Space point coordinates x and y are defined as the average position of the intersection
points of the two pairs that make up the combo. After the first space point is formed,
all additional combos are compared to all previously existing space points. If the
squared distance between the coordinates of the combo under consideration and the
coordinates of a previously existing space point is smaller than r2

max, any hits in the
current combo not already included in the existing space point are added to it. Each
“combo” is only allowed to be part of one space point, meaning that the first time a
combo is added to an existing space point, it is not compared to any subsequent space
points. If the combo under consideration is more than r2

max away from all previously
existing space points, a new space point is created with this combo as a seed, and all
subsequent combos are tested against the new space point.

Once all hits in the chamber are grouped into space points in the manner above,
the position of the track is roughly known. Using this information, small corrections
to the drift time are made for signal propagation time in the wires based on the
distance along each wire from the track position to its readout card. Some space
points may have more hits than needed to fit a track. In particular, if two adjacent
wires in the same plane fired, they will end up on the same space point. When fitting
tracks to hits, it is preferable to use only one hit per wire plane. A special “cloning”
routine examines all the found space points for multiple hits in the same plane, and
creates new space points with all possible combinations of one wire per plane within
an existing space point, with the exception that the total number of space points
is not allowed to exceed a hard-coded upper limit of 20 per drift chamber, and the
number of planes with multiple hits in a single space point is not allowed to exceed
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3. If any space point still contains multiple hits in the same plane after the cloning
procedure is carried out, because of e.g. 4 or more planes in a space point having
multiple hits, then the single hit in that plane is chosen which has the shortest drift
time. The last task of the pattern recognition routine is to throw away all space
points for which either the total number of hits is less than five or the total number
of “combos” contributing to the space point is less than 4.

The next task of the HMS tracking algorithm is to use the (now propagation-
corrected) drift times to fit track “stubs” to each of the individual space points. Since
most tracks are moving nearly perpendicular to the wire chambers, it is reasonable
to assume that the distance measured by the drift time is the in-plane distance from
the track to the wire, even though in reality the drift time measures the distance to
the point of closest approach between the track and the wire, which may be slightly
out-of-plane. To convert from drift times to drift distances, it is assumed that the
drift distance is a monotonically increasing function of the drift time ddrift = d(tdrift).
Since the size of a drift cell in the HMS is small compared to the envelope of tracks
populating the active area of the chambers, the change in the relative number of
incident tracks within any given drift cell can be assumed to be small. It is a very good
approximation to assume a uniform distribution of drift distances within a cell. Even
given small cell-to-cell variations in the relative non-uniformity of the distribution of
incident tracks as a function of drift distance, when averaged over all the drift cells
in a plane of wires and/or all planes within the chambers, the assumption of uniform
drift distance is quite robust. This assumption greatly simplifies the time-to-distance
conversion, since it is straightforward to map the observed drift time spectrum onto
a uniform distance distribution. The drift time distribution n(tdrift) is defined as
the probability density of events as a function of drift time within the allowed time
window. ∫ tmax

tmin

n(t)dt = 1 (4.12)

For a uniform distribution of events, then, the drift distance for a given drift time is
simply given by the integral of the observed drift time spectrum up to the measured
tdrift:

1

dmax

∫ ddrift

0

dx =
ddrift
dmax

=

∫ tdrift

tmin

n(t)dt

ddrift(tdrift) = dmax

∫ tdrift

tmin

n(t)dt (4.13)

Figure 4-4 shows an example drift time spectrum and the resultant drift distance
spectrum. Using the time spectrum, a time-to-distance map is generated by calcu-
lating the integral (4.13) for each of 138 2 ns-wide time bins starting at tmin = −24
ns up to tmax = 250 ns. This map is then included in the parameter database of the
ENGINE. The drift distance is then calculated from the drift time for each hit by
linearly interpolating within time bins in the drift map file.
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Figure 4-4: Example drift time spectrum for the HMS drift chambers (left) and
calculated drift distance spectrum (right).

Once the drift distance is determined, however, the track still isn’t known. Only
the magnitude of the distance is determined, not its sign. The track could have
passed on either side of the wire at the same distance. The appropriate drift sign of
the hits in a space point is determined by fitting test track stubs to the possible left-
right combinations of the hits within a point. A small-angle approximation is used to
determine the sign of the hits in the Y planes if they are both present on the track.
Because the tracks are very nearly perpendicular to the chambers |y′| ≤ ±.03, and the
positions of the wires in the Y’ plane are staggered by one half of a cell size or 0.5 cm
relative to the Y plane, it is quite reasonable to choose the left-right assignment for
these wires that makes the track go between the two wires. This reduces the number
of left-right combinations that have to be tested from 26 = 64 to 24 = 16 and speeds
up the tracking code. Since the X and X’ planes are farther apart and the spread
of good tracks in x′ is about twice as large as in y′, no small-angle approximation is
used for these planes. The small-angle approximation also assumes that y′ = 0 when
performing the “stub” fits, so only x, y, and x′ are fitted. The left-right combination
of hits is chosen that gives the best χ2 for the stub fit. The coordinate of the hit
along the direction measured by its wire is then whit = wpos± ddrift where wpos is the
wire position. Additionally, since it is possible for some hits to appear on multiple
space points, the best drift sign of each hit is remembered for each space point on
which it appears, to be recalled later for full track fitting.

After performing the stub fits to determine the best left-right combination, the
two chambers are considered together. The code compares all possible combinations
of one space point from each chamber, linking space points together to form tracks
in an attempt to find the best possible combination of hits to form the full track.
The track stubs fitted to the hits in each space point are projected to the focal plane.
The slope x′ and the coordinates xfp and yfp are compared. Since y′ is assumed
to be zero in the stub fits, it is ignored. If a stub from chamber 1 agrees with a
stub from chamber 2 in all three parameters to within user-defined tolerances1, the

1Given the y′ = 0 assumption in the stub fits, the y tolerance parameter for stub linking basically
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stubs are joined to form a track. A single space point from one chamber can be
used in multiple tracks if there are multiple space points in the other chamber with
which it agrees. Even if only a single particle passed through the chambers, it is
still possible to reconstruct multiple tracks if, for example, a track leaves hits in two
adjacent wires such that two space points are formed that share all but one of their
hits. Events such as this are much more common than true multi-particle events, but
with single-particle rates approaching 1 MHz, there is still a non-negligible chance of
a second particle going through the chambers within the ≈ 100 ns good drift time
window defined by the track responsible for the trigger. The hits left by such a track
would be significantly out of time with the start time defined by the hodoscopes,
but could still wreak havoc during the pattern recognition, since each valid “combo”
can only appear in one space point, making it easy to either mix hits from different
tracks in the same space point or to fail to build space points containing the correct
combination(s) of hits. This is particularly true for kinematics in which tracks are
focused onto a narrow region of the focal plane, which unfortunately coincide with
high single-particle rates, since both phenomena are associated with forward central
angles of the HMS.

Once all possible “stub links” have been performed, a number of candidate tracks
are defined, each one corresponding to a different combination of space points and
therefore a different combination of hits. Using the left-right combinations of the hits
determined from the stub fitting and the measured drift distances, a straight line is fit
to all 10-12 hits2 on the track, determining the best fit parameters (xfp, yfp, x

′
fp, y

′
fp)

which define the trajectory. Along the way, the reduced χ2 of the track and the
residuals of each hit on the track are computed in order to check the quality of the
tracking.

In the analysis, it is assumed that only one particle went through the drift cham-
bers per event. Although this single-particle assumption is not strictly true, only
one track is chosen as the best track for each event for further analysis. After all
candidate tracks have been reconstructed, a number of subsequent procedures are
carried out for each track before choosing the best track. For this experiment, just
two additional subroutines were carried out before choosing the best track. First,
each candidate track is transported back to the target using the HMS optical recon-
struction coefficients. The trajectory angles x′tar and y′tar, the momentum deviation
δ, and the vertex position ytar are reconstructed. Then, each track is projected to the
hodoscope planes, and the hodoscope timing analysis is revisited with reconstructed
tracks in hand. The number of PMT hits on the scintillators pointed to by each track
is counted, and the timing of those hits is compared to the tstart value determined by
the initial hodoscope analysis and used in the tracking algorithm. The hit times are
recalculated using the track information. By projecting the drift chamber tracks to

defines the maximum allowed y′ for the full track. In this analysis, a tolerance of 4 cm was used,
restricting the possible values of y′ to ±.05, which is fairly conservative given the smaller spread in
y′ of true tracks.

2Recall that a minimum of five hits per space point is required, and only one hit per plane is
used in each space point, so that the total number of hits on a track in our analysis can only vary
between 10 and 12.
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the scintillators, the position at which the particle crossed the scintillators is more
precisely determined than by the time difference between the + and - PMTs, and
since the momentum and angles of the trajectory are known, the time-of-flight of
the particle from the focal plane to the scintillators is also more precisely known. A
“time at focal plane” is determined for each track based on the average corrected focal
plane time of all hits on scintillators pointed to by that track. Once the transport
of tracks back to the target and the improved scintillator reconstruction is complete,
the “best” track is selected by a “pruning” algorithm.

The pruning algorithm works by subjecting all candidate tracks to a series of
tests. At first, all tracks are assumed to be valid. For each test considered, if any
of the remaining tracks passes that test, all tracks failing that test are discarded.
In this way, the code is guaranteed to choose at least one track from among all the
candidates, even if all tracks fail one or more of the tests. For this kind of track
selection algorithm, the order in which the tests are considered matters somewhat.
In this analysis, the following tests were considered in the order in which they are
listed:

• |x′tar| ≤ 100 mrad

• |y′tar| ≤ 50 mrad

• |δ| ≤ 9%

• |ytar| ≤ 10 cm

• NPMT on track ≥ 3

• |tfp − tstart,0| ≤ 10 ns3

The test definitions for the pruning algorithm are very permissive, as they are designed
only to throw away tracks with reconstructed vertex variables far outside the useful
acceptance of the HMS. Applying tight prune tests in these variables can have the
undesired effect of shifting unwanted tracks of marginal quality into the acceptance.
The tests on the number of hodoscope PMTs on the track and the focal plane time
of those hits is designed to bias the track selection in favor of the track which caused
the trigger. If more than one track passes all the prune tests, the track from among
the remaining tracks which has the lowest χ2 is chosen as the best track.

Figure 4-5 shows an example of the wire hit pattern of a high-quality track in
the HMS drift chambers. This event display highlights only the wires with hits that
end up on the best chosen track. In this event, only one track was found. Figure 4-6
shows, for the same event, the projection of the track along the direction measured by
each of the four wire orientations, with a line showing the fitted track, and markers
showing the wire positions, the hit positions reconstructed from the measured drift
times, and the track position at each plane.

3tstart,0 is the user-defined “central” start time parameter, which corresponds to the position
of the peak in the start time distribution corresponding to the HMS self-timing in the coincidence
trigger.
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Figure 4-5: Example event display of results of HMS tracking. Hit wires in chamber 1
(above, left) and chamber 2 (above, right), with X(black) and X’(red) horizontal wires,
Y(black) and Y’(red) vertical wires, and U(green) and V(blue) wires. The projection
of the fitted track to the middle of each chamber is marked by the magenta x.
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Figure 4-6: Track projections along the x(top left), y(top right), u(bottom left), and
v(bottom right) axes, along with wire positions (black circles), in-plane hit positions
(red diamonds with 200 µm error bars) reconstructed from drift times, and fitted track
coordinates at each plane (blue ×’s.). Note that the horizontal scale in each plot is
much smaller than the vertical scale, which corresponds to the distance between the
two drift chambers.
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Figure 4-7: Tracking residuals in the HMS drift chambers, averaged over all planes,
with no χ2 cut applied. Less than 2% of events lie outside the ±2 mm range of this
histogram.
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Figure 4-7 shows a histogram of the tracking residuals in the HMS drift chambers
after fully calibrating the hodoscope timing (which determines the start time relative
to which the drift times are measured) and the time-to-distance maps. The final
resolution achieved is approximately 280 µm (1 σ), which is the result averaged over
all wire planes4.

Since the U and V planes are oriented only 15◦ away from the horizontal, they can
be thought of as measuring the x coordinate. The Y planes dominate the measure-
ment of the y coordinate. Therefore, there are four planes in each chamber measuring
x, and two planes in each chamber measuring y, giving a per-drift-chamber spatial
resolution of 140 µm (200 µm) in x(y). The resolution of the focal plane track slopes
is 0.24 mrad (0.35 mrad) in x′fp(y

′
fp). Recalling equations (3.9), the approximate con-

tribution of the drift chamber resolution to the resolution of the trajectory angles at
the target from the lowest-order HMS optics coefficients is 0.72 mrad in x′tar and 0.76
mrad in y′tar. Multiple scattering in the air between the HMS vacuum exit window
and the first drift chamber, the air between the drift chambers, and the drift chambers
themselves make the actual angular resolution somewhat worse, and, as discussed in
section 3.4.4, the introduction of S0 before the first drift chamber adds a multiple
scattering contribution which dominates the angular resolution.

4.1.4 HMS Optics

Once the proton trajectory at the focal plane is reconstructed from the pattern of
drift chamber hits and measured drift times, the next step is to reconstruct its mo-
mentum, trajectory angles and position at the target. The optical properties of the
HMS are very well known after more than a decade of data taking and repeated cali-
bration measurements. The state of the particle coming from a reaction in the target,
for purposes of transport through the HMS magnets, is characterized by its position
at zspec = 0, (xtar, ytar), the angles of its trajectory, (x′tar, y

′
tar), and its deviation from

the central momentum of the HMS, δ ≡ (p − p0)/p0. The correspondence between
these “target” coordinates in the five-dimensional (xtar, ytar, x

′
tar, y

′
tar, δ) phase space

and the four focal-plane trajectory coordinates (xfp, yfp, x
′
fp, y

′
fp) is one-to-one when

one of the target coordinates is fixed.

For the analysis of HMS data, one is faced with solving the inverse problem of
reconstructing the target coordinates from the focal plane coordinates. Since only four
parameters of the track are measured at the focal plane, it is generally not possible
to reconstruct all five target coordinates. However, since the beam impinges on the
target at an almost fixed vertical position which is known on a per-event basis from the
raster signals, it is adequate as a first approximation to set xtar, which is the vertical
position at zspec = 0 of the scattered particle, equal to the vertical beam position, and
then solve for the other four target coordinates ytar, x

′
tar, y

′
tar, and δ assuming this

value of xtar. For thin targets, this approximation is quite accurate. For extended
targets such as the 20 cm cryotarget used in this experiment, however, significant
corrections arise for particles scattered from different points along the length of the

4There are slight plane-to-plane variations in the width of the tracking residuals.
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target.
Quite generally, the solution for the reconstruction coefficients can be expanded

in a Taylor-series up to arbitrary order:

(x′, y′, y, δ)tar =

α+β+µ+ν+λ≤n∑
α,β,µ,ν,λ=0

Cαβµνλ
(x′,y′,y,δ)(xfp)

α(yfp)
β(x′fp)

µ(y′fp)
ν(xtar)

λ (4.14)

The order n of the expansion is defined so that only terms for which the sum of the
five exponents does not exceed n are included in the expansion. The coefficients C
are determined in an iterative fitting procedure [126] from a more or less reasonable
starting set of coefficients determined by a model of the spectrometer. COSY[127], a
differential-algebra based code for the modeling of charged-particle optics and other
applications, was used as the starting model for the HMS. The fitting of the expansion
coefficients is carried out up to sixth order. To calibrate the spectrometer reconstruc-
tion coefficients, a series of dedicated optics runs using the sieve slit collimator and
thin multi-foil targets was taken. For these runs, the S0 detector was removed. An-
other, smaller trigger scintillator was placed between the two drift chambers near the
optical focal point of the spectrometer in order to achieve better angular resolution
than in the default trigger configuration. In addition to the sieve-slit, multi-foil target
runs, a set of “delta scan” data consisting of a series of elastic-ep runs using the 20-cm
hydrogen target were taken. For these runs, the HMS central angle was varied at a
fixed central momentum in order to scan the envelope of elastic-ep scattering events
across the acceptance of the HMS. Since the proton scattering angle and momen-
tum are correlated, different regions of the HMS acceptance in δ were populated at
different HMS central angles. Additionally, since the measured scattering angle de-
termines the proton momentum through two-body elastic kinematics, the delta-scan
data could be used to fit the reconstruction matrix elements for δ.

Each of the four reconstructed target variables has an independent polynomial
expansion, so the four sets of coefficients are optimized separately. For the ytar and
angle optimization, the multi-foil/sieve-slit data is used. A number of thin solid
target foils at a known, surveyed z position along the beamline provide point targets
at known, fixed ytar. Additionally, the sieve slit collimator blocks all tracks but those
passing through narrow holes at known, surveyed positions. Having tracks originating
from point targets at known positions, passing through small holes at known positions,
provides a set of events populating nearly the full acceptance of the HMS in ytar, x

′
tar,

and y′tar, with well-defined rays of known x′tar, y
′
tar, and ytar that can be compared to

the values reconstructed from the expansion (4.14) in the optimization process.
Figure 4-8 shows the projection of reconstructed tracks to the sieve slit, for data

taken with the HMS set at negative polarity in order to detect electrons, at a central
momentum of 2.4 GeV/c and a central angle of 22.0 degrees. The data in the plot
come from three different multi-foil targets5:

• The three-foil Aluminum target, with foils located at z = 0.95± 7.5 cm and at

5A global offset of +0.95 cm from the ideal z position was applied to all the optics targets,
reflecting the result of a survey of the target positions[128].
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Figure 4-8: Reconstructed HMS tracks projected to the sieve slit. Magenta ellipses
are the sieve holes. In these runs, the HMS was set for negative polarity to detect
electrons at a central momentum of 2.4 GeV/c and a central angle of 22.0 degrees.
Data are from a two-foil Aluminum target with foils at z = 0.95± 3.8 cm, a two-foil
Carbon target with foils at z = 0.95± 2.0 cm, and a three-foil Aluminum target with
foils located at z = 0.95± 7.5 cm and at z = 0.95 cm. A cut was applied on the HMS
calorimeter energy to select electrons.

z = 0.95 cm.

• The two-foil Carbon target, with foils located at z = 0.95± 2.0 cm.

• The two-foil Aluminum target, with foils located at z = 0.95± 3.8 cm.

The data plotted in figure 4-8 were reconstructed after optimization, using the same
reconstruction coefficients that were used in the final analysis. For the optimization
of x′tar, a special procedure was carried out which took into account the dependence
of x′tar on xtar for a given (x, y, x′, y′)fp. At ytar = zvertex = 0, xtar is exactly equal
to the vertical beam position6,7. However, since the beam intersects the ray of the
scattered proton trajectory at zvertex 6= 0, for non-zero ytar/zvertex, the track must be

6The beam position from the BPMs and the raster signals is in a different coordinate system in
which +y points vertically upward, so in fact xtar = −ybeam

7zvertex is defined as the position of the interaction vertex along the target/beamline.
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projected back to zspec. = 0:

xtar = −ybeam − x′tarzvertex cos ΘHMS (4.15)

In this experiment, the hydrogen target extends over an asymmetric range in
zvertex of −6.16 cm ≤ zvertex ≤ 13.84 cm. For rays at the far end of the target and
near the maximum |x′tar|, significant corrections to xtar arise. For example, with the
HMS positioned at an angle of 11.6 degrees, a particle scattered at zvertex = 13 cm
and x′tar = 60 mrad experiences a correction to xtar of approximately 7.6 mm, which
is much larger than the rastered beam spot size of 2 mm and introduces significant
corrections to the reconstruction of both the momentum and x′tar of the scattered
particle. Although this represents the worst-case correction for this experiment, it
absolutely cannot be neglected in the reconstruction of x′tar and δ.

It is easy to see qualitatively how the vertical beam position affects the momentum
reconstruction. Consider a particle detected at a position xfp in the HMS. Suppose the
beam position on the target is actually ybeam = −xtar = +3 mm, but the momentum
is reconstructed assuming ybeam = −xtar = 0. By assuming that the particle starts at
a higher x, a smaller vertical deflection is assumed than actually took place, which
corresponds to a smaller total bend angle, and a higher momentum than the true
momentum. By similar logic, if the true beam position is ybeam = −3 mm, than
the reconstructed momentum will be lower than the true momentum for an assumed
ybeam = 0. A similar effect operates for x′tar.

xtar-dependent reconstruction coefficients were calculated up to sixth order within
the COSY model of the HMS. The lowest order reconstruction matrix elements in-
volving xtar are 〈δ|xtar〉 = 0.077 %/mm and 〈x′tar|xtar〉 = 1.1 mrad/mm. Imme-
diately one sees the importance of xtar for extended targets. With corrections to
xtar = −ybeam approaching 8 mm for rays near the extremes of vertex position and
x′tar, and especially at small ΘHMS, the correction to the momentum can be as large
as 0.6%, and the correction to x′tar can be as large as 9 milliradians, as compared
to the 0.1% momentum resolution and ≈1 mrad angular resolution of the HMS8.
In previous optimizations of the HMS reconstruction coefficients, the xtar correction
had been neglected, since previous experiments had not used targets as long as the
cryotarget of this experiment and smaller corrections were involved. When using the
reconstruction coefficients in the analysis, the value of xtar is not a priori known,
so the full correction cannot be applied. It is approximated by −ybeam. Once x′tar,
y′tar and ytar are roughly known from the first iteration of the reconstruction, one
can calculate xtar and perform an arbitrary number of additional iterations of the
reconstruction to improve x′tar and δ an arbitrary number of times. One additional
iteration is enough in practice to correct the reconstructed quantities to a level well
below the intrinsic resolution of the HMS and certainly below the resolution needed
by this experiment.

The δ matrix elements involving xtar were found to significantly improve the mo-
mentum reconstruction with no further optimization needed. On the other hand, the

8The xtar dependence of ytar and y′tar, on the other hand, is much smaller.
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Figure 4-9: Difference between reconstructed and known angles for foil 1, located
at zvertex = −6.55 cm. Top plot shows x′recon. − x′true vs. x′true, bottom plot shows
y′recon − y′true vs. y′true. Left: reconstruction using old coefficients, fitted without xtar
correction. Right: reconstruction using new coefficients, fitted with xtar correction.

reconstruction of x′tar became worse in the second iteration of reconstruction when
the existing coefficients were used. In order for a second iteration to improve the re-
construction of x′tar, the expansion coefficients had to be refitted taking into account
the xtar corrections for foils located at large |z|. In the fitting procedure, all matrix
elements involving non-zero powers of xtar were fixed; only those elements with no
xtar dependence were allowed to vary. The fitting procedure was performed three
times. In each subsequent fit, the matrix elements of the previous fit were used as
the starting point for the next fit. The following plots demonstrate the improvement
in the reconstruction of x′tar.

At a given HMS central angle ΘHMS, a particle scattered from a thin foil located
at zvertex = zfoil and passing through a sieve hole centered at (x, y) = (xhole, yhole) has

y′true =
yhole − zfoil sin ΘHMS

D − zfoil cos ΘHMS

(4.16)

where D is the distance from the origin to the sieve slit collimator. Similarly, ytar is
determined from y′true and zfoil by

ytrue = zfoil (sin ΘHMS − y′true cos ΘHMS) (4.17)

and x′tar is determined from

x′true =
xhole + ybeam

D − zfoil cos ΘHMS

(4.18)
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Figure 4-10: Difference between reconstructed and known angles for foil 2, located
at zvertex = 0.95 cm. Top plot shows x′recon. − x′true vs. x′true, bottom plot shows
y′recon − y′true vs. y′true. Left: reconstruction using old coefficients, fitted without xtar
correction. Right: reconstruction using new coefficients, fitted with xtar correction.

Figure 4-11: Difference between reconstructed and known angles for foil 3, located
at zvertex = 8.45 cm. Top: x′recon. − x′true vs. x′true. Bottom: y′recon − y′true vs. y′true.
Left: reconstruction using old coefficients, fitted without xtar correction. Right:
reconstruction using new coefficients, fitted with xtar correction.
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Figure 4-12: Average difference (over all sieve holes for a given foil) between recon-
structed and known angles as a function of zfoil. Data points are average differences
in mrad, with “error bars” representing the R.M.S. hole-to-hole differences in mrad.
Black points are reconstructed using the old coefficients. Red points are reconstructed
using the new coefficients.
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Figures 4-9–4-11 show the improvement made possible by including the xtar correction
in the fitting of x′tar. Each plot shows the difference x′tar − x′true(top) and y′tar −
y′true(bottom) between reconstructed and true angles as a function of x′true and y′true,
respectively, in milliradians. Each marker type corresponds to a different sieve slit
row (constant x), while each marker color corresponds to a different sieve slit column
(constant y). Each sieve hole is represented by a unique marker type and color. The
plots on the left in each figure show the data reconstructed using the old HMS matrix
elements, while the plots on the right in each figure show the data reconstructed
using the new, re-optimized HMS matrix elements. In each plot, if the reconstruction
coefficients worked perfectly well, and all of the following quantities were known
exactly

• The positions of the sieve holes relative to the HMS optical axis.

• The absolute positions and angles of the beam on target.

• The absolute position of the target foils.

• The distance from the target foils to the collimator.

• The pointing angles of the spectrometer.

, then all points would lie along the x′(y′)diff = 0 axis. For the x′tar reconstruction
coefficients, the improvement is obvious and unambiguous. For the foils at z = −6.55
cm and at z = +8.45 cm, the x′ difference reconstructed from the old matrix elements
exhibited a strong slope, changing by up to 6 mrad over the full x′tar acceptance,
symptomatic of the neglect of the xtar correction. After optimization, the slopes are
largely absent. For y′tar, re-optimization yields slight improvement in slopes that were
already quite small, with y′tar differences no more than 2 mrad for any single sieve
hole.

Figure 4-12 shows the x′ and y′ differences as a function of zfoil for the five foils used
in the optimization, which included the Aluminum foils in figures 4-9–4-11, and the
two-foil Carbon target, with foils located at zfoil = −1.05 and 2.95 cm, respectively.
The data are plotted as a function of zfoil and averaged over all sieve holes for each
foil. The “error bars” are not uncertainties but RMS hole-to-hole deviations from the
mean. The black points show the results using the old optics coefficients, while the
red points show the results using the new optics coefficients. For both x′ and y′, the
optimization is observed to flatten the z dependence of the deviation from the “true”
value and reduce its RMS spread, particularly for the foils at large |z|.

The reconstruction of the position of the interaction vertex in the transverse spec-
trometer coordinate; i.e., ytar, was also optimized. Figure 4-13 shows the improve-
ment. As in figure 4-12, the data points represent the difference between ymeasured and
ytrue as a function of ytrue, averaged over all sieve columns for a particular target foil.
The vertical “error bars” represent the R.M.S. spread in ydiff over all sieve columns
for a given foil, while the horizontal bars represent the R.M.S. difference between
ytrue for a given sieve column and the ytrue value averaged over all sieve columns for a
given foil. The slight variations of ytrue as a function of sieve column simply reflect the
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Figure 4-13: Mean (data points), and R.M.S. (“error bars”) difference between re-
constructed ytar and ytrue, before (black) and after (red) optimization.
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fact that each sieve column represents a different y′true for a given foil position, and
to get ytrue, one must project from zspec = zfoil cos ΘHMS back to zspec = 0. Figure
4-14 shows the resolution achieved in ytar. Each histogram in the picture shows the
reconstructed ytar distribution for a different sieve slit column for the carbon foil lo-
cated at zfoil = −1.05 cm. The 1σ resolution in ytar is approximately 1.6 millimeters.
Similar results were obtained for all other foils after optimization. The first-order
optical coupling of ytar to the focal-plane trajectory angles is relatively weak. ytar is
most sensitive to the position of the trajectory at the focal plane. Therefore, like δ,
it is minimally affected by multiple scattering in S0. Even though the data in figure
4-14 were taken with no S0, the observed resolution in ytar with S0 in the detector
stack from data taken with the “dummy” target was approximately 1.7 millimeters
at p0 = 5.4 GeV/c. At lower momenta, the resolution was slightly worse.

To check the quality of the momentum reconstruction, elastic ep scattering from
hydrogen was used. From the reconstructed scattering angle of the proton, θp, and
the known beam energy corrected for energy loss in the target, the proton momentum
is determined by equation (3.14). The data were taken with a beam energy Ebeam =
4.109 GeV, with the HMS central momentum set to 2.02 GeV/c. BigCal was placed
at an angle of approximately 25.8 degrees at a distance of approximately 8.82 meters
from the target9. Elastic scattering data were obtained at central angles of 40.5◦,
39.5◦, 38.5◦, 37.5◦, 36.5◦, and 36.0◦. The angular acceptance of the HMS is roughly
±1.8◦, so scanning across a 4.5◦ range in θp is sufficient to populate the full acceptance
of the HMS with elastically scattered protons. Another advantage of having taken
this data at relatively large θp is that a large range of ytar is populated as well, since
ytar ≈ zvertex sin ΘHMS. In this way, the validity of the momentum reconstruction
was checked over an effective target length in ytar that was larger than that of all the
other kinematics of both experiments which used smaller ΘHMS with the same target
length along z.

Figure 4-15 shows the difference between the reconstructed proton momentum
and the momentum of an elastically scattered proton at the reconstructed proton
angle θp, as a function of the focal plane trajectory parameters xfp, yfp, x

′
fp, and y′fp,

expressed as a percentage of central momentum. The black curves in each plot show
the mean momentum difference in each bin and illustrate the excellent quality of the
reconstruction. As a function of xfp and x′fp, the quantities which primarily determine
δ, there is no significant variation of p−p(θp) across the full acceptance. As a function
of yfp and y′fp, however, some significant variations appear at large, negative values of
yfp and y′fp. These variations come mainly from errors in the reconstruction of θp for
events coming from extreme positions along the length of the target, since the HMS
reconstruction coefficients are not very well behaved when extrapolated outside the
range in ytar and y′tar of the data used in the fitting procedure, as illustrated in figure
4-16.

Figure 4-16 shows the same momentum difference as a function of the recon-

9The position and orientation of BigCal were not surveyed at this setting so the numbers could
not be independently confirmed, only re-aligned in software according to the location of the elastic
peak.
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Figure 4-14: Resolution in ytar. Each histogram represents the ytar distribution for
a different sieve slit column for the carbon foil located at zfoil = −1.05 cm. “ypred”
is what has been referred to as ytrue; i.e., the ytar position of the foil projected to
zspec = 0.
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Figure 4-15: Difference between reconstructed proton momentum and expected mo-
mentum from the reconstructed proton angle as a function of xfp (top left), yfp (top
right), x′fp (bottom left), and y′fp (bottom right). The momentum difference is ex-
pressed as a percentage of central momentum. The black points represent the mean
momentum difference in each bin.

structed target variables x′tar, y
′
tar, δ, and ytar. The mean momentum difference

shows significant deviation from a constant for ytar < −2.5 cm and ytar > 4 cm, and
also for y′tar < −28 mrad and y′tar > 32 mrad, reflecting the decreasing quality of the
reconstruction coefficients outside the range of the data used in the fit (recall figures
4-9–4-13). Given the absence of any significant correlation between the reconstructed
momentum difference and the quantities xfp and x′fp which are dominant in deter-
mining the reconstructed δ, and also the absence of significant correlations between
p−p(θp) and reconstructed x′tar and δ, it was concluded that the residual correlations
between p − p(θp) and ytar/y

′
tar were mainly due to errors in the reconstruction of

θp, which is primarily determined by y′tar. Further optimization of the reconstruction
matrix elements for δ was deemed unnecessary based on the above results. It is worth
remarking that the correlations between p− p(θp) and ytar, y

′
tar, yfp and y′fp were sig-

nificantly reduced by the optimization described above, and that the pictures shown
in figure 4-15 and figure 4-16 were significantly worse prior to the optimization. The
final reconstruction matrix elements obtained from fitting ytar, y

′
tar, and x′tar including

secondary xtar corrections provided the most accurate possible reconstruction over the
largest possible acceptance that could be obtained from the optics calibration data
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Figure 4-16: Difference between reconstructed proton momentum and the momen-
tum of an elastically scattered proton at the reconstructed θp, as a function of the
reconstructed target variables x′tar (top left), y′tar (top right), δ (bottom left), and ytar
(bottom right).

taken in this experiment. Further improvements would have been possible given more
optics data on multi-foil targets at larger ΘHMS and/or foils located at larger |zfoil|;
however, the optimization, which took place at ΘHMS = 22◦, was sufficient to cover
(nearly) the full acceptance in ytar for all but two kinematic settings, at θp ≈ 31.0◦,
ε ≈ .63 and θp ≈ 36.1◦, ε ≈ .79 for Q2 = 2.5 GeV2. The δ-scan data showed that the
momentum reconstruction was already well optimized for |δ| < 9%, a δ acceptance
significantly larger than the range populated by elastically scattered protons for any
of the kinematics (see table 3.11). In the final analysis, the results obtained using
hard cuts around the “safe” regions in x′tar, y

′
tar and ytar were compared to the results

obtained using less restrictive cuts to exclude possible systematic error arising from
regions where the optics are less well calibrated.

4.1.5 FPP Drift Chamber Track Reconstruction

The next step in event reconstruction is to track protons (and other charged par-
ticles) scattered in the CH2 blocks of the FPP. The tracking algorithm for the FPP
drift chambers works somewhat differently than that of the HMS drift chambers. The
HMS tracking algorithm is designed for speed, with pattern recognition and “stub”
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fitting proceeding separately for each chamber before considering both chambers to-
gether. The fact that all tracks of interest in the HMS drift chambers are very nearly
perpendicular to the wire planes further simplifies the tracking procedure. Because
of the relatively large number of wire planes (12) in the HMS drift chambers, this
approach is preferable to a “brute force” tracking algorithm which considers all pos-
sible combinations of one hit per plane and performs full drift-based tracking to each
combination. The FPP drift chambers, on the other hand, have only six wire planes
with which to define a track, so a more exhaustive consideration of possible hit com-
binations is possible without requiring prohibitive CPU time. Furthermore, tracks of
interest in the FPP drift chambers cover a much wider range of angles than in the
HMS drift chambers.

As in the HMS drift chamber tracking, the first step in the FPP tracking is to
convert raw TDC values to rough drift times. This is done via equation (4.10), with
a separate t0 offset defined for each wire to align all the drift times in a window from
0 to approximately 200 ns. A loose cut is applied on the rough drift time to partially
suppress noise and random hits not associated with the trigger. For the data taken
with Fastbus TDCs, the raw hit time traw is simply given by the count resolution (0.5
ns) times the raw TDC value. For the data taken with the VME TDCs, special care
must be taken to identify events where the free-running counters roll back to zero
between the arrival of the drift chamber hits and the arrival of the stop signal, as
detailed in appendix C. Once the raw hit times are known and loose cuts are applied,
the process of pattern recognition and track reconstruction begins.

The pattern recognition procedure for the FPP drift chambers starts by grouping
individual wire hits into “logical hits” consisting of clusters of hits on up to three
adjacent wires in a given plane. By grouping adjacent hits, which probably come
from the same track, the total number of hit combinations is reduced considerably.
If more than three adjacent wires have hits, only the first three wires are considered
for that logical hit, and subsequent wires are ignored. After the raw hits are grouped
into logical hits, the algorithm examines all possible combinations of one logical hit
per plane. On the first iteration, the tracking algorithm requires all six planes to fire,
but if one plane fails to fire, it will also test five-plane combinations. If more than
one plane fails to fire, the algorithm gives up as there will be insufficient hits to fully
define a track.

For all combinations of one logical hit per plane, the code fits a “simple” track
(straight line) to the positions of the hit wires, ignoring the drift distance information.
A χ2 test is defined as

χ2 ≡
Nhit∑
i=1

(
wtrack − wwire

σwire

)2

(4.19)

where wtrack is the track projection along the direction measured by the wire, wwire is
the position of the wire center, and σwire is a resolution parameter defined as the wire
spacing d divided by

√
12. If only one wire per plane is considered, then the maximum

allowed track-wire distance should be 1 cm or d/2. Thus, the maximum contribution

of a single wire to χ2 is
(

d/2

d/
√

12

)2

= 3. For six planes, there are two degrees of freedom
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in the fit, so the maximum possible χ2 for a “good” track is χ2
max/n.d.f = 3×6/2 = 9.

In order to handle the case where a logical hit contains two or three adjacent hits
in the same plane, the code fits an initial track with all wires included and then
projects that track to each plane to calculate the residual for each hit wire in that
plane. The closest wire to the initial track in each plane is chosen and a second fit is
performed with only one wire per plane, and a cut is applied to the χ2 of the second
track to decide whether the combination of logical hits under consideration should be
considered as a candidate for drift-based tracking.

For every combination of one logical hit per plane passing the χ2 cut of the fit
to wire positions only, the next step is to consider the drift time information and
perform full track reconstruction. Since the rough track coordinates are known from
the fits to wire positions at this stage of the analysis, the drift times are corrected
for the delay due to the finite signal propagation speed on the wires based on the
distance along the wire from the point where the track crossed the wire plane to
the readout card. An example of a corrected drift time spectrum is shown in figure
4-17(a). The spectrum in figure 4-17(a) was obtained at the highest HMS central
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Figure 4-17: FPP drift time spectrum (a) and FPP drift distance spectrum (b) after
drift map calculation.

momentum setting of 5.4 GeV/c. It is qualitatively similar to the HMS drift time
spectrum, but approximately twice as wide, with a more pronounced tail at large
drift times (from approximately 250-400 ns). The large-time tail in the FPP drift
time spectrum arises because of the fact that tracks which scatter at large angles in
the CH2 analyzer can cross the wire planes of the FPP at large angles of incidence
relative to the normal to the wire planes, passing through the corners of drift cells
and giving hits with larger closest-approach distance in regions of highly non-uniform
electric field. Despite the presence of this tail, the observed drift time spectrum is
translated into a time-to-distance map using a uniform drift distance mapping as in
equation (4.13). The resulting drift distance spectrum is shown in figure 4-17(b).

Unlike figure 4-4, figure 4-17(b) also shows the sign of the drift distance determined
from fitting. Although tracks may scatter at large angles and cross the wire planes
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at significantly non-normal incident angles, the drift time calculated from the drift
distance was still equated with the in-plane track-wire distance, which ranges from
0 to 1 cm. For the high-Q2 kinematics (Q2 =5.2, 6.8, and 8.5 GeV2), the tracks of
interest (those with significant analyzing power) have scattering angles ϑ of no more
than ≈ 20◦, such that the error introduced by equating the measured drift distance
with the in-plane distance is no more than ≈ 1 cm/ cosϑ − 1cm ≈ 64 µm. In the
example above, the drift time spectrum is restricted to hits on tracks with scattering
angles ϑ < 15◦, which is approximately the upper limit of tracks with significant
analyzing power for Q2 = 8.5 GeV2. The drift map was also calculated using this
cut, in order to optimize the track reconstruction for the events of interest.

By restricting the range of drift distances to ±1 cm, events passing through the
corners of drift cells, which can have drift distances up to

√
(1.0 cm)2 + (0.8 cm)2 =

1.28 cm, will be incorrectly mapped to a drift distance of ≈ 1 cm. Fortunately,
however, events with hits in the corners of a drift cell are very likely to have hits on
an adjacent wire with drift times and distances well within the “safe” region, and
the tracking algorithm is designed to favor these hits in the track fitting procedure.
The slight residual non-uniformities in the drift distance spectrum do not significantly
affect the quality of reconstructed tracks. The residuals of FPP tracks after calibration
of the time-to-distance map are shown in figure 4-18. The 1σ resolution, fitted to the
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Figure 4-18: Residuals of FPP tracking.
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full-width at half-maximum of the peak, is approximately 126 microns.
Apart from the fact that the FPP drift chambers were brand-new and relatively

leak-proof, the FPP tracking residuals are more than a factor of two smaller than
the HMS tracking residuals because of the smaller number of planes on the track and
the smaller separation in z between planes. Because the six wire planes provide only
one more coordinate measurement than the minimum required to define a track, the
fitted track, which is of course strongly influenced by the hits it contains, tends to be
closer to those hits, on average, than a track defined by twelve hits as in the HMS
drift chambers. The smaller z separation reduces the amount of multiple scattering of
the measured track along the path over which it is measured. Each drift chamber in
each FPP has one plane measuring only the x coordinate, and two planes measuring
the x and y coordinates in equal proportions. With a separation of 21.3 cm between
the middle planes of each chamber in a pair, the angular resolution of the FPP drift
chambers is approximately 0.37 mrad in x′ and 0.42 mrad in y′, which is only slightly
worse than the angular resolution of the HMS drift chambers. The resolution of the
relative angles between tracks measured by the FPP and by the HMS drift chambers
also has a significant contribution from multiple scattering in the roughly two cm
thickness of scintillator lying between the HMS and FPP drift chambers (see table
3.9), not to mention the thickness of CH2 analyzer traversed by the proton before
and after the primary scattering.

Because of the relatively high particle flux in the HMS for many of the kine-
matic settings of the experiment, and because of the large acceptance of the FPP
drift chambers, it is often difficult, especially with only six wire planes, to choose the
best combination of hits for a track unambiguously and correctly, particularly if only
the wire positions are considered. For this reason, all wire combinations passing the
χ2 test of the fit to wire positions are considered as possible candidates for tracks.
For each such combination, the drift distances are calculated and the best left-right
combination of the hits is determined by fitting a track to all 26 = 64 possible combi-
nations of drift signs and choosing the combination which gives the smallest χ2. Then,
from among all candidate tracks, the combination of hits which has the smallest χ2 of
drift-based tracking is chosen as the first true track. At this point, all logical hits on
the first track are marked as used, and the tracking algorithm starts over, searching
for more tracks among the remaining unused hits. A cut on the χ2 of drift-based
tracks is applied such that no hit on the track is allowed to be further from the fitted
track than 1.55 millimeters, or just over 12σ. If the χ2 of the fit exceeds this test,
then the hit with the worst contribution to χ2 is dropped and the fit is repeated until
either the track passes the χ2 test or the number of hits/planes on the track drops
below the minimum.

In the first iteration of pattern recognition/track reconstruction, at least six hits
are required with at least one hit per plane. If no combination of wires and drift
distances can be found with the required number of hits/planes that passes the χ2

test, then the hit/plane requirement is dropped to five and the algorithm is repeated.
If all six planes fire and one or more multi-hit clusters are present, then hits within
multi-hit clusters are always considered for removal before single hits. The tracking
algorithm strongly favors tracks with all six wire planes firing over tracks with only
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five planes, since five-plane tracks are actually under-determined given the FPP drift
chamber design, particularly with respect to left-right determination. If the track
passes the χ2 test, with all six planes firing and one or more multi-hit clusters present
such that “extra” hits might be removed to improve χ2, it is treated according to
the following procedure, with user-customizable behavior through a “clean track” χ2

test:

• For each two-hit cluster on a track, the sign of the drift distance of both hits
is fixed to force the track to go between the two wires. Each three-hit cluster
is reduced to two hits by testing both two-hit combinations which include the
middle hit, and throwing away the outer hit which gives the worst χ2 when
paired with the middle hit.

• If the “clean” χ2 test is set smaller than the maximum χ2 test, then the code will
remove the worst hit from within a multi-hit cluster according to its contribution
to χ2, and this procedure will repeat until χ2 falls below the “clean” χ2 test or
the track drops to exactly six hits with one hit per plane. In the final analysis,
the “clean” χ2 test was set to zero, resulting in the reduction of all six-plane
tracks to one hit per plane.

• If only five planes fire, then all multiple hits are retained on the track as long as
the χ2 is below the maximum, since these extra hits help constrain the otherwise
ambiguous left-right combination.
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Figure 4-19: Multiplicity in FPP tracking. The number of wire combinations passing
the χ2 test of the fit to wire positions with no drift information (a), and (b) the
number of wire combinations passing the χ2 test of the fit to wire positions ± drift
distances.

Figure 4-1910 illustrates the problem of the high multiplicity of potentially valid
hit combinations per event in the FPP tracking at Q2 = 8.5 GeV2, for which single-
particle rates in the HMS approached 1 MHz. Figure 4-19(a) shows the number

10Both histograms in figure 4-19 are for the first set of drift chambers only. The multiplicities in
the second set of drift chambers are even higher.
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of “logical hit” combinations passing the χ2 cut for “simple” tracking, on the first
iteration of pattern recognition. Approximately 54% of events with at least one
valid track have exactly one valid wire combination. The other 46% of events have
two or more valid wire combinations. In this situation, it is generally not possible to
reliably choose the correct combination of hits for a track without considering the drift
information. Figure 4-19(b) shows, for the same events as figure 4-19(a), the number
of hit combinations passing the χ2 test for drift-based tracking. Even after considering
drift, only 55% of events have just one valid track. Though many hit combinations still
pass the χ2 test with drift taken into account, choosing the combination of hits/drifts
with the smallest χ2 gives a correct track with high probability.

In a simple Monte-Carlo simulation of events with exactly two real tracks in the
FPP drift chambers and a conservative input coordinate resolution of 200 µm, it was
demonstrated that choosing hits based only on the χ2 of “simple” tracking resulted
in an incorrect choice in approximately 20% of events, whereas choosing hits based
on the χ2 of drift-based tracking resulted in an incorrect choice in less than 2% of
events. To the extent that the intrinsic coordinate resolution is even better than
200 µm in the FPP drift chambers, as suggested by figure 4-18, then the fraction of
events with correctly chosen hit combinations should be even closer to 100%, when
two or fewer real tracks pass through the chambers per event. On the other hand,
events with more than two real tracks will cause additional confusion of the tracking
algorithm, and one expects the efficiency for correctly reconstructing all tracks to
decrease further with increasing numbers of real tracks in the chambers per event.

The number of hit combinations passing drift-based tracking roughly follows the
number of wire combinations passing simple tracking at relatively small N . This
reflects the relatively loose maximum χ2 test applied to the drift-based tracks. At
larger N , however, the number of “good drift” tracks falls more rapidly than the
number of good “simple” tracks as one should expect. It is important to note that in
the case of multiple real tracks in the drift chambers, virtually any hit combination
involving the pairing of one localized set of 2-3 hits left by a real track in the first
drift chamber with another such set of hits in the second drift chamber is likely to
give a valid track, unless the tracks are from uncorrelated events and are significantly
out of time with the HMS trigger. If the proton which caused the trigger scatters in
the CH2 and produces multiple secondary particles which are detected by the drift
chambers in time with the scattered primary, then many “space point”-like pairings
will appear to give reasonable tracks even if the groupings of hits do not come from the
same track. This is because of the minimal drift chamber design in which the track
coordinates are essentially measured at only two values of z, and the fact that, since
tracks are allowed to have virtually any slope, the track position in the second chamber
is not significantly constrained by the measured coordinates in the first chamber and
vice versa. The six-plane design contains an inherent, irreducible ambiguity in the
reconstruction of events with multiple tracks, which are rather frequent in the data at
Q2 = 8.5 GeV2, which could be largely eliminated for future experiments by adding
a third wire plane for each wire orientation.

In addition to the FPP chambers’ relatively poor ability to reconstruct events with
multiple tracks, the six-plane design with symmetric wire orientations has another
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inherent drawback pertaining to the left-right determination. Since each chamber
consists of three planes, close together in z, with wire orientations of ±45◦ and 90◦

relative to the vertical, tracks passing through regions of the chamber with certain
“magic” arrangements of wire positions will leave hit patterns for which more than
one solution exists for the left-right combination. One of the most obvious examples of
this situation is shown in figure 4-20. The FPP drift chambers were designed so that at

Figure 4-20: Illustration of left-right ambiguity for three wires (black lines) intersect-
ing at the same point, as in the center of the FPP drift chambers. If the track crosses
a drift chamber in such a region along any of the lines bisecting two wires (magenta
dot-dashed lines), the same combination of drift distances (red/green/blue dashed
lines) gives two equally valid solutions for the track crossing point (black stars).

the origin (center) of each drift chamber, the three different wire orientations intersect
at the same point in the xy plane, namely (0, 0). Because of the symmetry of the wire
orientations, any track crossing the chamber at near-perpendicular incidence along
any of the three lines bisecting the wires as shown in figure 4-20 has a mirror-image
solution with identical drift distances on the other side of the origin. Fortunately,
since the spacing of the ±45◦ wires in the x direction is

√
2 times the nominal wire

spacing of 2 cm (because of the equal spacing along the coordinate measured for all
wire planes), this pattern never repeats itself exactly (but sometimes approximately).
Thus, in small regions of the chamber acceptance, there is an approximately 50%
chance of choosing the wrong drift sign.

The purpose of the FPP drift chambers is to measure the asymmetry of the an-
gular distribution of tracks scattered in CH2. Both the rate-dependent “space point
pairing” ambiguity and the rate-independent intrinsic left-right ambiguity are recon-
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struction inefficiencies which are independent of the beam helicity state. Therefore,
they affect only the statistical precision of the result, and not the result itself. Both
ambiguities can be somewhat mitigated by looking not only at χ2, but also the re-
constructed scattering parameters relative to the incident proton track in the HMS,
before choosing the best combination of hits, as discussed below. The potential bene-
fit of such considerations is, however, limited by the need to avoid potentially negative
side effects of biasing the reconstruction of tracks toward favorable scattering condi-
tions, including the possibility of shifting bad tracks into the “good track” acceptance
and diluting the asymmetry.
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Figure 4-21: Number of tracks found per event at Q2 = 8.5 GeV2, in FPP1 (a), for all
events in which a good HMS track was found, and FPP2 (b), for all events in which
a good HMS track and a good FPP1 track were found.

Despite the daunting proliferation of hit combinations producing apparently valid
tracks, once the best initial combination (based on χ2 of the fit to drift distances) is
chosen and its hits are removed from consideration, the multiplicity of tracks decreases
substantially, showing that many of the candidate hit combinations found on the first
iteration of reconstruction share one or more logical hits. Figure 4-21 shows the
distribution of the number of tracks reconstructed per event, for the first polarimeter
(4-21(a)) and the second polarimeter (4-21(b)). In figure 4-21(a), the presence of a
good HMS track is required, with cuts applied on the reconstructed target quantities
x′tar, y

′
tar, ytar, and δ to guarantee reasonably good events. The number of zeroes in fig.

4-21(a) is about 8.8%. Events with no found tracks come partly from reconstruction
inefficiencies, but also from the non-negligible probability of

1. Scattering by such a large angle in the first block of CH2 as to be outside the
acceptance of the first set of drift chambers

2. Charge-exchange/absorption/proton capture reactions in the CH2 producing
either no particle or a neutron which goes undetected by the drift chambers.

The percentage of events with a non-zero number of tracks that have exactly one
track is 62.8%, and there are almost no events with more than four tracks. Similarly,
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for the second polarimeter (fig. 4-21(b)), requiring a good track in the HMS and
the first polarimeter, roughly 12.0% of events have no track, and the percentage of
single-track events (55.3%) is lower among those with at least one track. The higher
percentage of zeroes and the higher track multiplicity in the second polarimeter are
to be expected, since there is twice as much thickness of CH2 intercepting the flux
of incident protons before the second set of drift chambers. As in the case of FPP1,
there are significant numbers of 2, 3, and 4-track events with a negligible probability
for five or more tracks.

Scattering Angle/Closest Approach Reconstruction and Best Track Selec-
tion

Once track reconstruction is complete, the next step is to reconstruct the param-
eters of the scattering in CH2. All tracks reconstructed in the first chamber pair are
compared to the incident track reconstructed by the HMS drift chambers, and all
tracks reconstructed in the second chamber pair are compared to the HMS track, and
also any tracks reconstructed in the first polarimeter. Each track is characterized by
its (x, y) coordinates at z = 0, and its slopes (x′ ≡ dx

dz
, y′ ≡ dy

dz
). The first and simplest

quantity to reconstruct is the polar scattering angle ϑ. The incident and scattered
trajectories are expressed in terms of unit vectors n̂i and n̂f , respectively:

n̂i =
1√

1 + x′2i + y′2i

 x′i
y′i
1

 , n̂f =
1√

1 + x′2f + y′2f

 x′f
y′f
1

 (4.20)

The polar scattering angle ϑ is then given by

cosϑ = n̂f · n̂i (4.21)

The next step is to reconstruct the azimuthal scattering angle ϕ. The consistent
definition of ϕ everywhere in the data analysis is very important to get the right
answer for Gp

E/G
p
M . ϕ is defined in the local coordinate system defined by the incident

trajectory, with n̂i as the z axis. The x and y axes of this coordinate system are both
orthogonal to the z axis, and the definition of ϕ = 0 is more or less arbitrary, but must
be defined exactly the same way everywhere in order to be correct and meaningful.
The chosen definition is for the local y axis to always be parallel to the yz plane of
the transport coordinate system. Thus, the unit vector in transport coordinates of
the y axis in the local coordinate system of the incident proton is given by

ŷlocal ≡
n̂i × x̂transport
|n̂i × x̂transport|

(4.22)

where x̂transport ≡ (1, 0, 0) is the x axis of the (fixed) transport coordinate system
and n̂i is the unit vector of the incident (HMS) track, still expressed in transport
coordinates. This definition guarantees that the local y axis with respect to which ϕ
is measured is always perpendicular to both the incident trajectory and the x axis of
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the fixed transport coordinates. Finally, the x axis of the local coordinate system is
defined such that (x̂local, ŷlocal, n̂i) is right-handed and orthonormal:

x̂local ≡ ŷlocal × n̂i (4.23)

where again all vectors are expressed in transport coordinates. x̂local defined by equa-
tion (4.23) is already a unit vector since ŷlocal and n̂i are already orthonormal. In the
local coordinate system thus defined, the azimuthal scattering angle is defined by

n̂f ≡ sinϑ cosϕx̂local + sinϑ sinϕŷlocal + cosϑn̂i (4.24)

so that

tanϕ =
n̂f · ŷlocal
n̂f · x̂local

(4.25)

In the analysis code, the “atan2(y,x)” function, which gives the result in the correct
quadrant given two signed numbers y and x, is used to determine ϕ from (4.25). This
FORTRAN intrinsic function returns a value between −π ≤ ϕ ≤ π. In this analysis,
ϕ is taken to be the angle measured from the positive x axis toward the positive
y axis, with ϕ = 0 along the x axis. Events with −π ≤ ϕ < 0 are shifted by 2π,
ϕ→ ϕ+ 2π so that the final ϕ value runs from 0 to 2π.

The next step is to find the point and distance of closest approach between the
incident and scattered trajectories. This is a textbook minimization problem–in this
case, the expression for the squared distance between two straight lines in three-
dimensional space is to be minimized. Given two lines (x1(z1), y1(z1)) = (x1(0) +
x′1z1, y1(0) + y′1z1) and (x2(z2), y2(z2)) = (x2(0) + x′2z2, y2(0) + y′2z2), the squared
distance between the two lines at two arbitrarily chosen points z1 and z2 along those
lines is given by

s2 = (x1(z1)− x2(z2))2 + (y1(z1)− y2(z2))2 + (z1 − z2)2 (4.26)

which is minimized as a function of z1 and z2 by setting the partial derivatives ∂s2/∂z1

and ∂s2/∂z2 to zero:

0 = (x1(z1)− x2(z2))x′1 + (y1(z1)− y2(z2)) y′1 + (z1 − z2)

0 = (x1(z1)− x2(z2))x′2 + (y1(z1)− y2(z2)) y′2 + (z1 − z2) (4.27)

Substituting xi(zi) = xi(0) + x′izi and yi(zi) = yi(0) + y′izi yields the following matrix
equations for z1 and z2:(

1 + x′21 + y′21 −1− x′1x′2 − y′1y′2
−1− x′1x′2 − y′1y′2 1 + x′22 + y′22

)(
z1

z2

)
=(

x′1(x2(0)− x1(0)) + y′1(y2(0)− y1(0))
x′2(x1(0)− x2(0)) + y′2(y1(0)− y2(0))

)
(4.28)
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which can be re-written in the convenient shorthand(
a −b
−b c

)(
z1

z2

)
=

(
−x′1∆x0 − y′1∆y0

x′2∆x0 + y′2∆y0

)
(
z1

z2

)
=

1

ac− b2

(
c b
b a

)(
−x′1∆x0 − y′1∆y0

x′2∆x0 + y′2∆y0

)
(4.29)

with

a ≡ 1 + x′21 + y′21
c ≡ 1 + x′22 + y′22
b ≡ 1 + x′1x

′
2 + y′1y

′
2 (4.30)

∆x0 ≡ x1(0)− x2(0)

∆y0 ≡ y1(0)− y2(0)

From the solutions (4.29) for the parameters z1 and z2 of the point of closest approach
between the two lines, the point of closest approach zclose is defined as the average
zclose ≡ 1

2
(z1 + z2), and the distance of closest approach sclose ≡

√
s2(z1, z2), obtained

by substituting the solutions into (4.26).
The scattering is fully defined by the angles ϑ and ϕ and the closest approach

parameters sclose and zclose. In the ideal scattering scenario, the proton scatters
elastically from a single carbon or hydrogen nucleus within the CH2, and a single,
solitary track is detected in the FPP drift chambers. The reconstructed sclose of this
track will be zero, up to the smearing effects of multiple scattering in the scintillators
and CH2 before and after the scattering, and tracking resolution. The zclose of this
ideal track should lie within a range corresponding to the thickness of the CH2. If
the proton scatters by a non-negligible angle more than once within the analyzer, it
is likely that sclose will be blown up and zclose will no longer necessarily lie inside the
analyzer.

The last parameter of the scattering to be determined is a logical variable called a
“cone test”. The cone test is designed to eliminate false azimuthal asymmetries arising
from the rectangular acceptance by requiring that, for the measured scattering angle
θ and vertex position zclose, the full 2π azimuthal cone at angle ϑ surrounding the
incident track lies within the acceptance of the drift chambers measuring the scattered
track. Given (xfp, yfp) and (x′fp, y

′
fp) of the incident track, and ϑ, zclose of the scattered

track, the acceptance is checked by calculating the maximum and minimum x and y
coordinates at the position of each chamber plane. The maximum (minimum) x/y
coordinate occurs when the proton scatters along the +(−)x/y direction by an angle
ϑ. The position of the incident track at the interaction vertex is given by

xclose = xfp + x′fpzclose (4.31)

yclose = yfp + y′fpzclose (4.32)

If the scattering is purely along the x(y) direction, then the scattered track makes an
angle arctan x′fp(arctan y′fp)±ϑ with the x(y) axis. Its slopes x′scat and y′scat are given
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by

x′scat = tan
(
arctanx′fp ± ϑ

)
=

x′fp ± tanϑ

1∓ x′fp tanϑ
(4.33)

y′scat = tan
(
arctan y′fp ± ϑ

)
=

y′fp ± tanϑ

1∓ y′fp tanϑ
(4.34)

Since ϑ is always positive, as long as zclose lies in front of the drift chambers, the
maximum and minimum coordinates are given by:

xmax = xclose +
x′fp + tanϑ

1− x′fp tanϑ
(zback − zclose) (4.35)

xmin = xclose +
x′fp − tanϑ

1 + x′fp tanϑ
(zback − zclose) (4.36)

ymax = yclose +
y′fp + tanϑ

1− y′fp tanϑ
(zback − zclose) (4.37)

ymin = yclose +
y′fp − tanϑ

1 + y′fp tanϑ
(zback − zclose) (4.38)

where zback is the z coordinate of the last plane of the drift chambers measuring the
track. If the size of the active area of the drift chambers is Lx in the x direction and
Ly in the y direction, then the cone test is satisfied if the following conditions are
met:

xmax ≤ x0 +
Lx
2

(4.39)

xmin ≥ x0 −
Lx
2

(4.40)

ymax ≤ y0 +
Ly
2

(4.41)

ymin ≥ y0 −
Ly
2

(4.42)

(x0, y0) are the coordinates of the center of the FPP drift chambers relative to the
transport coordinate system; i.e., the HMS optical axis.

Figure 4-22 illustrates the effect of the cone test on the distribution of recon-
structed tracks. The polar scattering angle ϑ in degrees is plotted on the y axis as
a function of the reconstructed point of closest approach zclose. Several prominent
features of the spectrum deserve mention. First, the two “stripes” around z ≈ 60
cm and z ≈ 80 cm are tracks that scatter from the scintillators used in the trigger.
Scattering in the CH2 analyzers is clearly visible in the broad stripes from about
106 ≤ zclose ≤ 172 cm and 205 ≤ zclose ≤ 270 cm. The characteristic “razor blade”
shape of the distribution comes from the application of the cone test. Events that
scatter further upstream of the drift chambers satisfy the conetest for a smaller range
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Figure 4-22: Correlation between polar scattering angle ϑ and point of closest ap-
proach zclose at Q2 = 8.5 GeV2, for events with exactly one found track in FPP1
(blue) and FPP2 (red), passing the cone test, with sclose ≤ 3(6) cm for FPP1(2). In
the second polarimeter, events with small scattering angles in the first polarimeter
were selected (ϑ1 ≤ 1◦). Black lines illustrate the zclose cut used in the final analysis.

of angles than tracks which scatter closer to the chambers. Note that the maximum
ϑ passing the conetest ranges from just over 30◦ at the front of the CH2 to just over
60◦ at the end of the CH2 closest to the drift chambers. The solid black vertical lines
in the plot illustrate the zclose cut applied to the first and second analyzers used in
the final analysis.

The stripes at the locations of the drift chambers come at least in part from
scattering within the drift chambers, but are also symptomatic of the difficulties in
track reconstruction inherent in the FPP design. One mechanism for the “collapse”
of zclose to the position of the drift chambers is when an “unscattered” track passes
through the analyzer, but one of its “space points”, which lies more or less on top of
the incident track, is incorrectly paired with another space point from a second track,
giving rise to a larger ϑ with zclose at the position of the “good” space point. Another
mechanism for an event to reconstruct to a value of z inside the drift chambers is the
left-right ambiguity discussed above. If the incident track doesn’t scatter in the first
analyzer, the measured track should have ϑ ≈ 0. But if this track passes through the
FPP drift chambers such that the condition depicted in figure 4-20 is satisfied, then
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one (or both) of the space points of the measured track may be significantly displaced
from its true position, resulting in a reconstructed track with erroneously large ϑ and
zclose inside the FPP drift chambers. This situation may also occur if one of the
planes on the track does not fire. In such a situation, the left-right combination of
the hits in the chamber with one missing plane may be underdetermined; i.e., several
different combinations of drift signs may give roughly equal χ2.
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Figure 4-23: ϑfpp (a) and sclose (b) distributions in both polarimeters at Q2 = 8.5
GeV2, for tracks passing the zclose and cone test cuts.

Figure 4-23 shows the distributions of polar scattering angle ϑfpp (4-23(a)) and the
distance of closest approach sclose (4-23(b)) at Q2 = 8.5 GeV2, for events passing the
cone test and the zclose cuts around the CH2 analyzer illustrated in figure 4-22. The
distributions shown are for events with exactly one track found in the polarimeter in
question. The peak at small angles in the ϑfpp distribution is dominated by Coulomb
scattering, and events inside this peak have negligible analyzing power. The dip
as ϑ → 0 simply reflects the vanishing phase-space volume at ϑ = 0 for tracks
reconstructed by detectors with finite resolution in x′ and y′. The sclose distribution
is peaked at zero, with long non-Gaussian tails at larger distances reflecting the
possibility for protons to scatter more than once in the CH2, destroying the sclose ≈ 0
result obtained for tracks that scatter only once. The distribution is wider for the
second polarimeter, which is to be expected since the proton must cross twice as much
material before it is detected in the second polarimeter.

In the first polarimeter, the scattering angles and closest approach parameters are
always calculated with respect to the HMS track, and if multiple tracks are found,
the single track with the smallest polar angle ϑfpp is chosen as the “best” track for
use in the polarization analysis, for the following reasons:

• The scattering cross section is larger at small angles. Choosing the track with
the smallest scattering angle gives the greatest likelihood of choosing the most
interesting particle (the scattered incident proton) as opposed to low-energy
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secondaries produced by inelastic reactions or random tracks uncorrelated with
the trigger.

• The analyzing power distribution is heavily concentrated at small angles.

In the second polarimeter, the angles may be calculated with respect to either the
HMS track or any of the tracks found in the first polarimeter. Making the appropriate
choice for each event is a non-trivial matter. In the subset of events in which the inci-
dent proton is unscattered; i.e., it is detected in the first polarimeter with a “small”11

scattering angle, the angles calculated relative to the HMS track are approximately
equal to the angles calculated relative to the FPP1 track, and the choice only matters
to the extent that either set of angles is more accurately measured than the other.

For events in which the measured track in FPP1 has a larger scattering angle,
it would appear at first glance that one should always calculate the angles in FPP2
relative to the FPP1 track. However, given the not insignificant probability of failed
tracking or mistracking of events in the FPP1 drift chambers, it is preferable to revert
to the angles calculated relative to the HMS track for events in which the FPP1 track
is either unreliable or absent. Since only one track is chosen from each polarimeter
for the analysis, a criterion is needed to choose not only the best track in FPP2 to
use in the analysis but also the best track from either the HMS or FPP1 to use as
the reference track in calculating the scattering angles of the chosen track. For both
choices, the smallest-angle approach is used. Each track found in FPP2 is compared
to each track found in FPP1 and also to the HMS track, and the combination of
(FPP2) track and (HMS or FPP1) reference track resulting in the smallest ϑ is chosen,
regardless of the angle of the FPP1 track relative to the HMS track. This track
selection algorithm can be summarized as seeking out the smallest-angle scattering
in each polarimeter. It was found to give the best figure of merit from among several
possible approaches, and is reflected in the ϑ (figure 4-23(a)) and sclose (figure 4-23(b))
distributions. The use of such an algorithm for the second polarimeter is validated
by the nearly identical shape of the FPP1 and FPP2 ϑ distributions shown.

FPP Alignment

The result for Gp
E/G

p
M depends critically on the accuracy of the reconstructed

scattering angles ϑ and particularly ϕ, which in turn depends on knowing the location
and orientation of the FPP drift chambers to a very good accuracy. The accuracy of
the alignment of the FPP drift chambers becomes more important at higher momenta,
where the angular distribution of the analyzing power is concentrated at more forward
angles, since the error in ϕ blows up as ∆ϕ ∝ sin−1 ϑ as ϑ→ 0. For example, at Q2 =
8.5 GeV2, the maximum of the analyzing power is found at ϑ ≈ 4◦. The accuracy of
the surveyed chamber positions is not better than approximately ± 1 millimeter. In
order to fine-tune the alignment of the FPP drift chambers in software and reduce the

11The definition of “small” scattering angles corresponds roughly to the width of the Coulomb
peak, which depends on the incident proton momentum roughly as p−1. For purposes of this analysis,
“Coulomb” events are defined as events with pT ≡ p sinϑfpp ≤ 0.07 GeV/c.
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systematic uncertainty in the reconstructed scattering angles, dedicated “straight-
through” data runs were taken with both CH2 doors open, in order to align the
measured FPP tracks with the incident HMS tracks in software.

The software alignment procedure works by fitting a quadratic, position-dependent
correction to each of the four FPP track parameters that minimizes the difference
between the slopes and positions of the FPP and HMS tracks. A “grid” (essentially
a two-dimensional histogram) of each of the track parameter differences ∆x, ∆y,
∆x′, and ∆y′ between the HMS and FPP track slopes and positions12 is filled from
the reconstructed straight-through track data. Each grid consists of 25 bins in x
between -50 and +50 centimeters, and 10 bins in y between -20 and +20 centimeters.
Within each bin, the average and root-mean-square difference in each of the four track
parameters is calculated. The measured x and y-dependent offsets are then used to
fit a correction of the form

xtrack → xtrack + cx,00 + cx,10x+ cx,01y + cx,20x
2 + cx,02y

2 + cx,11xy (4.43)

ytrack → ytrack + cy,00 + cy,10x+ cy,01y + cy,20x
2 + cy,02y

2 + cy,11xy (4.44)

x′track → x′track + cx′,00 + cx′,10x+ cx′,01y + cx′,20x
2 + cx′,02y

2 + cx′,11xy (4.45)

y′track → y′track + cy′,00 + cy′,10x+ cy′,01y + cy′,20x
2 + cy′,02y

2 + cy′,11xy (4.46)

which is the most general possible correction to the track at quadratic order in x and
y. Provided the rotations of the FPP drift chambers relative to their ideal orientation
(perpendicular to the z axis of the transport coordinate system) are sufficiently small
that the O3 and higher terms in the polynomial expansion of said rotations are
negligible, fitting the correction above is equivalent to finding the best set of position
offsets and rotations, and is significantly simpler in practice.

Figures 4-24 and 4-25 show the quality of alignment of the track slopes achieved
using the above procedure. Figure 4-24(a) shows the difference between the recon-
structed x′ of the FPP1 track and that of the HMS track for straight-through data
after applying the alignment correction described above. Figure 4-24(b) shows the
y′ difference. The mean values of the fits to the difference distributions show that
the track slopes are aligned to better than 10−5. The σ’s of the distributions provide
an estimate of the angular resolution, which turns out to be ≈2.3 mrad in x′ and
≈2.6 mrad in y′ for 2 GeV protons. For the 2.2 GeV electrons shown in figure 4-24,
the resolution is slightly better. At this momentum, the θ0 of the multiple scattering
distribution in 2 cm of plastic scintillator for electrons is ≈0.8 mrad, representing a
significant contribution to the overall angular resolution. The total angular resolution
is the combined effect of the intrinsic tracking resolution of the HMS and FPP drift
chambers, and multiple scattering of the proton in the scintillators, the drift cham-
bers themselves, and the air inside the HMS hut. The alignment of the track slopes
at the ≈ 10−5 level limits the maximum (ϑ-dependent) systematic uncertainty on ϕ
to ∆ϕ ≤ 10−5/ sin(0.6◦) ≈ 0.95 milliradians, and usually much smaller. At ϑ = 4◦,
for instance, ∆ϕ = .14 mrad. In the final analysis, as discussed below, a systematic

12Positions are evaluated at the z coordinate of the midpoint of the pair of FPP drift chambers
being aligned.
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Figure 4-24: Difference in x′ (a) and y′ (b) between the FPP1 drift chamber track
and the HMS track, after alignment.

uncertainty was assigned for a more conservative estimate of the alignment uncer-
tainty of 0.1 mrad in each direction by applying a ϑ-dependent shift to the azimuthal
angle ϕ in the asymmetry analysis. The shift in the form factor ratio induced by a
shift in the azimuthal angle by ∆ϕ = ±0.14 mrad/ sinϑ was then taken to be the
contribution of FPP alignment uncertainty to the overall systematic uncertainty in
Gp
E/G

p
M . Figures 4-25(a) and 4-25(b) show the correlations ∆x′ vs. x′fp and ∆y′ vs.
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Figure 4-25: ∆x′ vs. x′fp (a) and ∆y′ vs. y′fp from straight-through data for the FPP1
drift chambers after alignment. No significant correlations remain.

y′fp after the alignment procedure, demonstrating the lack of significant correlations
between the angle differences and the measured angles. Results of similar quality
were obtained for the track coordinates and slopes in both chamber pairs. The fitted
corrections to the track angles were no more than ≈1.6 milliradians at the very ex-
tremes of the acceptance, and much smaller in the interesting part of the acceptance,
indicating not only the applicability of the correction but also the fact that the FPP

204



drift chambers’ orientation was reasonably close to ideal.

4.1.6 Electron Coordinate and Energy Reconstruction with
BigCal

The last step in event reconstruction is the reconstruction of the electron scattering
angles and energy using BigCal. The total information for each event includes

• Raw ADC values for each PMT signal with a hit above the programmed CODA
threshold.

• Raw TDC values for each “first level” sum of 8 signals as described in section
3.6.

• Raw ADC and TDC values for each second-level sum of 64 signals, per section
3.6.

The engine searches this data for the cluster of hits corresponding to the scattered
electron which caused the trigger and formed a coincidence with the HMS proton
trigger. The first task of the engine is to convert raw ADC values to amplitudes.
This is accomplished for every run using the pedestal (type 4) events, for which
every ADC channel is read out. The CODA ADC threshold for BigCal was typi-
cally set to a conservative value of ≈ 1σ above the pedestal mean, where σ is the
pedestal width (R.M.S.), to avoid the suppression of good data while still accom-
plishing significant event size and readout time reduction through zero suppression.
In software, the pedestal width obtained from the pulser events was used to calcu-
late a software threshold, typically higher than the “hardware” threshold, such that
ADCraw − PED ≥ 2.5σPED. Only the hits passing this threshold were retained for
subsequent analysis.

The second step in the reconstruction of BigCal is the conversion of ADC ampli-
tudes to energies. Each channel of BigCal is assigned a unique calibration constant
which varies with time as accumulated radiation damage reduces the light output of
each lead-glass bar, and hence, the size of the signal measured by the ADC. For the
elastic scattering reaction under study, the scattered electron energy is known from
both the measured proton momentum and the measured electron angle. Therefore,
the gain of each channel of BigCal could be continuously monitored and recalibrated
in software. Each elastic electron shower consists of a cluster of up to 5× 5 hits, the
sum of whose energies equals the incident electron energy:

Ee =
∑
i∈5×5

ciAi (4.47)

In equation (4.47), ci is the calibration constant and Ai is the pedestal-subtracted
ADC value for each hit in the cluster. During the commissioning of BigCal, dedicated
elastic ep scattering data with BigCal positioned far enough away from the target
to be fully populated with elastically scattered electrons was used to perform the

205



initial gain matching of the BigCal PMTs. The high voltages of all 1,744 PMTs
of BigCal were adjusted to give a signal size of 1,000 ADC channels per GeV of
energy deposited by the showering electron. Matching the signal sizes as closely as
possible was crucial to insure that channel-to-channel gain variations would not give
rise to local trigger inefficiencies for channels with signals too small relative to the
fixed trigger threshold and/or extra junk triggers for channels with signals too large
compared to the threshold. The calibration constants were found by minimizing the
differences between the reconstructed and known electron energies in a sample of
elastic ep scattering events:

χ2 =
Nevent∑
i=1

[
E

(i)
true −

∑
j∈5×5

c
(i)
j A

(i)
j

]2

(4.48)

Minimizing the χ2 defined in equation (4.48) as a function of the 1,744 calibration
constants cj involves solving a system of 1,744 linear equations in as many unknowns,
which is easily accomplished using standard linear algebra software libraries. During
the initial gain matching phase, several iterations of calibration and high-voltage
adjustment were required since each PMT has a slightly different characteristic gain
curve as a function of applied high voltage. During the experiment, the calibration
procedure was repeated periodically to keep the calibration constants up to date and
to adjust the PMT high voltage as needed to compensate for the gain losses due to
radiation damage.
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Figure 4-26: BigCal calibration example. (a) Calibration constants by PMT, in MeV
per ADC count. (b) Distribution of calibration constants.

Figure 4-26 shows an example calibration result obtained from ≈ 250000 elastic ep
events in CODA runs 66574-66577 at Q2 = 5.2 GeV2. The central scattered electron
energy for this setting is 1.27 GeV. In this example, BigCal had been operated in beam
for approximately two weeks since the initial gain matching/high-voltage adjustment.
Figure 4-26(a) shows the calibration constant for each individual PMT, while figure

206



4-26(b) shows the distribution of calibration constants13. The average result in this
case was 1.15 MeV per ADC count. The spread in the constants after two weeks of
operation in beam was approximately 9%.
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Figure 4-27: Energy resolution of BigCal with 4” aluminum absorber. σE
E

= 10.8%

Figure 4-27 shows the energy resolution of BigCal after calibration, also at Q2 =
5.2 GeV2, Ee = 1.27 GeV. The histogram shows the difference between the energy
sum of all hits in the cluster detected in BigCal and the known electron energy
calculated from the measured proton momentum and the beam energy, assuming
elastic kinematics. Cuts were placed around the elastic peak in p−p(θp) and p−p(θe)
in order to obtain a clean sample of elastic events. The resulting energy resolution
for these kinematics is σE/E = 10.8%. The “ideal” resolution obtained for these
kinematics in the BigCal Monte Carlo simulation, with all four inches of absorber in
front of BigCal was σE/E = 9.1%. The difference between the ideal energy resolution
obtained in the simulation and the experimental energy resolution comes from the
combined effects of electronic noise, calibration uncertainties, and radiation damage.

13In both plots, the blocks lining the edges of BigCal were omitted, since showers initiated near
the edge of BigCal may lose a significant, unknown fraction of their energy which cannot easily be
accounted for in the calibration procedure. When the edge blocks are included (not shown), their
calibration constants come out systematically higher than those of the blocks at least one row or
column away from the edge of BigCal, reflecting the fraction of the shower that is undetected. In
the analysis, the calibration constants for the edge blocks were replaced with the average calibration
constant of all non-edge blocks.
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The resolution in figure 4-27 was obtained approximately two weeks after the start of
the experiment. The difference between the ideal and experimental energy resolution
only became worse with time as the cumulative effect of radiation damage increased.
By the end of the experiment, the energy resolution increased to σE/E = 15.4% at
Ee = 2.09 GeV, and the relative gain of BigCal dropped by a factor of nearly 2.5
relative to the beginning of the experiment14.

Despite the poor energy resolution, the coordinate resolution of BigCal was only
minimally affected by radiation damage, and was more than sufficient to cleanly
separate elastic and inelastic events throughout the duration of the experiment. After
converting ADC amplitudes to energies, the process of cluster finding proceeds. A
relatively simple algorithm is used to find clusters of hits. Starting with the largest-
energy hit, the code looks for hits in the four nearest-neighbor blocks around the
maximum (above, below, left, and right). The maximum energy hit is stored in the
cluster and marked as used so that it is only added to the cluster once. Each nearest-
neighbor block with a hit above the ADC threshold is then added to the cluster and
marked as used, and the process is repeated for each new hit, adding any unused
nearest-neighbor hits above threshold until no more hits are found in the nearest
neighbor blocks of any hit in the cluster. Clusters are allowed to expand freely in
any direction until a maximum of 25 blocks is reached, at which point cluster growth
is simply truncated. In practice, the number of blocks per cluster with a hit above
threshold almost never reaches the maximum due to the relatively high software ADC
threshold (2.5σPED) required to suppress pedestal noise. In terms of the electron
energy, this ADC threshold suppresses all blocks containing less than about 2-3% of
the total shower energy15.

The behavior of the clustering algorithm was controlled by two additional energy
cuts. First, a threshold was applied to the energy of the central maximum. Since each
iteration of the cluster finding algorithm seeks out the hit with the maximum energy,
whenever the remaining unused hit with the largest energy falls below this threshold,
cluster finding stops and no additional clusters are generated. Secondly, a threshold
was applied to the total energy of the cluster. Cluster finding stops when no additional
clusters with total energy sums exceeding this threshold are found. To optimize the
clustering behavior for elastic ep events, a subset of the data was analyzed with very
low thresholds. Elastic events were selected using the methods of section 4.2, and
the distributions of the total cluster energy and the energy of the central maximum
were obtained. The cluster sum and central maximum thresholds were both set as
high as possible without rejecting significant numbers of elastic events. In practice,
this meant that the threshold applied to the total cluster energy was no more than
40% of the elastic ep energy and the threshold applied to the energy of the central

14Recall that the absolute gain was maintained at an approximately constant value by periodic
high voltage increases.

15The effective energy threshold varies slightly across kinematic settings due to changes in the
ratio of the pedestal width to the total shower signal. The width of the BigCal pedestal comes
from integrating the noise and random background in each channel over the entire gate width. The
noise/background level depends strongly on the BigCal singles rate, which is determined by the
beam current, the beam energy, and the angle and distance at which BigCal is placed.
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Figure 4-28: Size of clusters in BigCal for Q2 = 5.2 GeV2, Ee = 1.27 GeV, for events
passing elastic kinematic cuts. Number of hits (top left), cluster size in horizontal
direction (bottom left), cluster size in vertical direction (bottom right), and their
correlation (top right).

maximum was no more than 15% of the elastic ep energy.

Figure 4-28 illustrates the typical size of hit clusters in BigCal for events passing
elastic kinematic cuts at Q2 = 5.2 GeV2. The most probable cluster size is 3 × 3,
while the most probable total number of hits is five. The fraction of clusters with
a size of only one block along either direction is less than 2%, and the fraction of
clusters with exactly one block is less than 0.1%. Many of the clusters of single-block
width in one or both directions had their maxima located at the edges of BigCal.
Such clusters were allowed in the analysis. More than 98% of events passing elastic
kinematic cuts for this setting have a size of at least 2× 2.

The fact that practically all showers initiated by elastically scattered electrons at
this energy are shared between multiple lead-glass bars allows for excellent coordinate
resolution. For each cluster, an energy-weighted average block position or “moment”

209



is calculated as

〈x〉 =
∑
i∈3×3

Ei
Ecluster

(xi − xmax) (4.49)

〈y〉 =
∑
i∈3×3

Ei
Ecluster

(yi − ymax) (4.50)

where (xi, yi) are the coordinates of the center of the ith bar in the cluster, and
(xmax, ymax) are the coordinates of the center of the maximum-energy block around
which the cluster is built. The sum in this case runs over the 3 × 3 grid of blocks
centered on the maximum, in contrast to the energy sum, which runs over a 5 × 5
grid. This is in order to prevent small signals at the periphery of the cluster from
distorting the calculated central shower coordinate16.

To convert the measured cluster moments to shower coordinates, a procedure
similar to the drift map calculation for the FPP and HMS drift chambers is used.
Denoting the block size d, the allowed range of shower moments is

−d
2
≤ 〈x〉 ≤ d

2
(4.51)

−d
2
≤ 〈y〉 ≤ d

2
(4.52)

The measured distribution of moments, shown in figure 4-29, is mapped onto a uni-
form shower coordinate distribution within the central, maximum-energy cell, result-
ing in the distribution of shower coordinates shown in figure 4-30. To perform this
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Figure 4-29: Cluster moments in BigCal.

16The signals in cells outside the 3 × 3 grid centered on the maximum are typically small with
large statistical fluctuations and low signal-to-noise ratios, and are disproportionately weighted in
the moment sums because of their large distances from the maximum (2 cell sizes or approximately
1.7 Moliere radii). Including these signals in the moment sums does not improve the coordinate
resolution and in some cases makes it worse.
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Figure 4-30: Calculated shower coordinate, relative to the center of the maximum-
energy cell in the cluster.

mapping, the calorimeter was divided into 28 sections of 8× 8 blocks, with separate
< x > and < y > mappings calculated for each section. Each section had a slightly
different distribution of moments, because of the different incident angles of electrons
hitting different parts of the calorimeter, which gave rise to different effective shower
shapes in each section. The calculated mapping between shower moments and shower
coordinates is shown in figure 4-31. The characteristic “S” shape of the mapping
makes intuitive sense. Showers impacting near the center of the maximum-energy
block tend to share less energy with neighboring blocks, and also tend to distribute
that energy more evenly. The moments of this kind of cluster change more slowly
as a function of the impact coordinate, giving rise to the steeper slope of x(< x >)
near the block center. At larger < x >, more energy is shared with neighboring
blocks, and < x > varies more rapidly as a function of the shower impact coordinate.
There are twenty-eight different curves in figures 4-31(a) and 4-31(b), one x(< x >)
curve and one y(< y >) curve for each 8 × 8 section of the calorimeter. The curves
corresponding to the lower half of the calorimeter cover a range equal to the size of
the Protvino blocks (−1.9 cm ≤ xclust−xmax ≤ 1.9 cm), while the curves correspond-
ing to the upper half cover a range equal to the size of the RCS blocks (−2.0 cm
≤ xclust − xmax ≤ 2.0 cm). For a uniform distribution of shower coordinates, given
the moment distributions f(< x >) and g(< y >), the cluster coordinates are given
by

x(< x >) = −d
2

+

∫ <x>

− d
2

f(< x >)d < x > (4.53)

y(< y >) = −d
2

+

∫ <y>

− d
2

g(< y >)d < y > (4.54)

The cluster coordinates thus defined are equated to the point at which the show-
ering particle impacts the surface of BigCal, and are restricted to lie inside the area

211



, cmmomentx
-3 -2 -1 0 1 2 3

, c
m

m
ax

 -
 x

cl
us

te
r

x

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

BigCal S Curves, x (horizontal) coordinate

(a) xclust − xmax vs. < x >

, cm
moment

y
-3 -2 -1 0 1 2 3

, c
m

m
ax

 -
 y

cl
us

te
r

y

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

BigCal S Curves, y (vertical) coordinate

(b) yclust − ymax vs. < y >

Figure 4-31: Calculated mapping between cluster moments and shower coordinates
illustrating characteristic “S” shape.

of the maximum-energy cell. This assumption is not strictly true. For electrons
impinging at significantly non-normal incident angles, the shower maximum can be
significantly displaced from the surface impact point. The longitudinal depth of
the maximum energy deposition in electromagnetic shower development for electron-
induced showers is well approximated by[9]

tmax = X0 ln

(
Ee
Ec

)
− 1

2
(4.55)

where Ee is the energy of the primary electron, X0 is the radiation length of lead
glass, and Ec is the critical energy. If the incident electron trajectory makes angles
θx and θy relative to the normal to the surface of BigCal, then the displacement of
tmax in x and y from the impact point at the surface is given by

xmax − x0 = tmax sin θx (4.56)

ymax − y0 = tmax sin θy (4.57)

The displacement of the observed shower maximum from the surface impact coordi-
nate should be proportional to the displacement of the maximum energy deposition.
The constant of proportionality was determined using the BigCal Monte Carlo simu-
lation by comparing the true surface impact coordinates to those reconstructed using

the mapping above, and was found to be very close to
√

1
2

for all the kinematics of

these experiments. The fact that this constant is independent of the distance from
the origin R and the incident electron energy Ee is strong evidence for the validity of
the assumption that the displacement of the maximum from the surface coordinate
is proportional to tmax. Therefore, a “distortion” correction was applied to each clus-
ter as follows. Under the assumption of a point target; i.e., assuming the scattered
electrons start at the origin, the incident angles of a cluster detected at a point (x, y)
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on the calorimeter are

sin θx =
x√

x2 +R2
(4.58)

sin θy =
y√

y2 +R2
(4.59)

where R is the distance from the origin to the surface of BigCal. The final shower
coordinates, corrected for the displacement of the shower maximum from the surface
impact coordinates, are therefore given by

xshower = x(< x >)− tmax√
2

x(< x >)√
(x(< x >))2 +R2

(4.60)

yshower = y(< y >)− tmax√
2

y(< y >)√
(x(< x >))2 +R2

(4.61)

The slight variations in the incident angle due to the extended target were neglected
in applying the above correction.

Figure 4-32 shows the effect of this correction on the accuracy of the electron
coordinate reconstruction. Figure 4-32(a) shows the correlation between the uncor-
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Figure 4-32: Difference between reconstructed shower coordinate and expected coor-
dinate of elastically scattered electron, as a function of the reconstructed coordinate,
(a) before incident-angle correction, and (b) after incident-angle correction.

rected coordinate x(< x >) on the x axis, and the difference between the uncorrected
coordinate and the expected coordinate calculated from elastic kinematics of the de-
tected proton on the y axis. There is an obvious correlation, which is caused by the
displacement of the shower maximum discussed above. Figure 4-32(b) shows how the
incident angle correction eliminates this correlation.

The final coordinate resolution for BigCal obtained using the method described
above in the Monte Carlo simulation is ∆x ≈ 0.54 cm/

√
Ee. Estimating the true

coordinate resolution achieved from the data is complicated by the fact that the reso-
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lution of the coordinates predicted from elastic kinematics of the measured proton is,
in most cases studied in these experiments, comparable to or worse than the intrin-
sic coordinate resolution of BigCal, such that any estimate of the BigCal resolution
relies on and is highly sensitive to estimates of the HMS resolution, which is only
approximately known. Since the angular resolution of the HMS is degraded by S0,
the measured proton momentum is used to calculate the scattered electron angle:

Q2 = 2MpTp = 2EeE
′
e(1− cos θe) (4.62)

Tp =
√
p2
p +M2

p −Mp (4.63)

cos θe = 1− MpTp
Ee(Ee − Tp)

(4.64)

To calculate the expected electron coordinates requires in addition the position of
the interaction vertex z and the azimuthal angle of the scattered proton φp, so one
cannot completely avoid using the measured proton angles. The z coordinate of the
interaction vertex is determined by the intersection point between the beam ray and
the projection of the spectrometer ray onto the horizontal plane, and is a function of
ytar and y′tar:

zbeam = ytar

(
cos ΘHMS

tan (ΘHMS − arctan y′tar)
+ sin ΘHMS

)
(4.65)

where ΘHMS is the central angle of the HMS. The azimuthal angle of the scattered
proton is determined by rotating the proton’s measured trajectory, which is in trans-
port coordinates, into Hall C or “beam” coordinates:

x̂transport ≡
x′tar√

1 + x′2tar + y′2tar
(4.66)

ŷtransport ≡
y′tar√

1 + x′2tar + y′2tar
(4.67)

ẑtransport ≡
1√

1 + x′2tar + y′2tar
(4.68) x̂

ŷ
ẑ


beam

=

 1 0 0
0 cos ΘHMS − sin ΘHMS

0 sin ΘHMS cos ΘHMS

 x̂
ŷ
ẑ


transport

(4.69)

The “physics angles” of the scattered proton, the polar angle θp with respect to the
beamline and the azimuthal angle φp are then defined by

cos θp = ẑbeam (4.70)

tanφp =
ŷbeam
x̂beam

(4.71)
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The proton’s polar angle θp is not used in the calculation, since θe is already deter-
mined by pp. The azimuthal angle of the electron is determined by the requirement of
co-planarity; i.e., φe = φp +π. In the “beam” coordinate system, the HMS azimuthal
angle is centered at φp = −π

2
, and BigCal is centered at φe = π

2
. The x axis of this

coordinate system points vertically downward, and the y axis points toward beam
left (toward BigCal). By historical accident, the coordinate system for BigCal was
defined differently, such that x is the horizontal coordinate, with positive x pointing
in the direction of increasing θe, and y is the vertical coordinate, with the +y axis
pointing vertically upward. Therefore, an alternate “beam” coordinate system is de-
fined which is simply a re-labeling of the coordinate axes, with y → x and x → −y,
so that the new y axis points vertically upward and the new x axis points toward
beam left. In this coordinate system, the trajectory of the electron is

x̂e = sin θe sinφe (4.72)

ŷe = − sin θe cosφe (4.73)

ẑe = cos θe (4.74)

The coordinates of the electron at any point s along its trajectory, with s ≡ 0 at the
interaction point, are given by r(s) ≡ (x(s), y(s), z(s)) defined as

x(s) = xbeam + sx̂e (4.75)

y(s) = ybeam + sŷe (4.76)

z(s) = zbeam + sẑe (4.77)

The electron trajectory intersects the surface of BigCal at s = s0 such that the unit
normal vector to the surface of BigCal n̂ is orthogonal to the ray from the center of
BigCal R0 to the trajectory vector r(s0):

n̂ · (r(s0)−R0) = 0 (4.78)

n̂ ≡ (sin Θcal, 0, cos Θcal) (4.79)

R0 ≡ Rcaln̂ (4.80)

Solving (4.78) for s0 gives

Rcal = (xbeam + s0x̂e) sin Θcal + (zbeam + s0ẑe) cos Θcal (4.81)

s0 =
Rcal − xbeam sin Θcal − zbeam cos Θcal

x̂e sin Θcal + ẑe cos Θcal

(4.82)

The coordinates measured at BigCal are the coordinates parallel to its surface, with
+xcal pointing in the direction of increasing θe and +ycal pointing vertically upward.
The expected coordinates from the proton kinematics (xHMS, yHMS) are given by a
simple rotation of r(s0):

xHMS = x(s0) cos Θcal − z(s0) sin Θcal (4.83)

yHMS = y(s0) (4.84)
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Figure 4-33 shows the difference between the measured x coordinate at BigCal and
the expected coordinate xHMS at Q2 = 6.7 GeV2. The data for this kinematic setting
were obtained at the end of the experiment, so they represent the worst-case scenario
for the degradation of the position resolution due to radiation damage. On the other
hand, the central electron energy for this setting was a fairly high 2.09 GeV, and
both the coordinate and energy resolution get worse at lower energies. Nonetheless,
these data provide a suitable test case to estimate the position resolution of BigCal.
The resolution of the difference ∆x, which is a combination of the BigCal and HMS
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Figure 4-33: xcal − xHMS with Rcal = 608.2 cm, Θcal = 44.2◦, Ebeam = 5.71 GeV,
E ′e = 2.09 GeV, ΘHMS = 19.07◦, and p0 = 4.4644 GeV/c.

resolution, is approximately 1.05 cm. To estimate the contribution from BigCal, one
must first estimate the contribution from the HMS. Assuming a momentum resolution
of δp/p = 0.1% and δytar = .17 cm, the change in the expected electron angle defined
by equation (4.64) induced by a 0.1% shift in momentum is ∆θe(p → p + dp) =
1.4 mrad for the central kinematics at Q2 = 6.7 GeV2. The resulting change in
xHMS is ∆xHMS,p ≈ Rcal∆θe = 0.82 cm. There is also an error in xHMS due to
the error in zbeam, ∆xHMS,y ≈ sin Θcal∆zbeam ≈ sin Θcal

sin ΘHMS
∆ytar = 0.36 cm. The

quadrature sum of the momentum and ytar contributions to the resolution ∆xHMS,tot

is ∆xHMS,tot =
√

(∆xHMS,p)2 + (∆xHMS,y)2 = 0.90 cm. The observed resolution in
∆x ≡ xcal−xHMS, which should be zero for elastically scattered electrons, equals the
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quadrature sum of the HMS and BigCal contributions:

∆(xcal − xHMS) =
√

(∆xcal)2 + (∆xHMS,tot)2 (4.85)

⇒ ∆xcal =
√

(∆(xcal − xHMS))2 − (∆xHMS,tot)2 = 0.55 cm (4.86)

The result (4.86) of ∆xcal = 0.55 cm with E ′e = 2.09 GeV was obtained at the end of
the experiment when the most radiation damage had been done. It is to be compared
with the “ideal” resolution from the Monte Carlo of 0.54 cm/

√
Ee = 0.37 cm. It is

a very rough estimate, given the fact that the HMS contribution to the resolution of
∆x is nearly twice as large, and the result for the BigCal resolution is quite sensitive
to the estimated HMS resolution. Nonetheless, it is not too far from the ideal result
and significantly better than d/

√
12. One of the key facts of this experiment is that

for most of the kinematics, the limiting resolution, as far as the separation of elastic
and inelastic events is concerned, is that of the HMS. Among the three high-Q2 data
points, Q2 = 6.7 GeV2 actually has the smallest Jacobian at J = 4.77, and it is the
only point for which the contribution of BigCal to the resolution could actually be
estimated. The data points at Q2 = 5.2 GeV2 and Q2 = 8.5 GeV2 have J = 8.36 and
J = 22.0 respectively, making the HMS resolution even more dominant in determining
e.g. the ∆x resolution.

The resolution of the vertical coordinate difference ycal−yHMS is typically 3-5 times
worse than the resolution of the horizontal coordinate. That is because whereas xHMS

is mainly determined by the proton momentum, which is measured with excellent
resolution, the vertical coordinate yHMS is mainly determined by x′tar, the resolution
of which is blown up by multiple scattering in S0. The vertical coordinate in BigCal
is measured with approximately the same precision as the horizontal coordinate, and
actually serves as a more precise determination of the proton azimuthal angle for
elastic events.

BigCal Timing

In the preceding sections, the use of the BigCal ADC information alone to recon-
struct the shower coordinates and energy was discussed. The timing signals from
BigCal, as measured by the TDCs, were also useful in isolating the best clusters,
particularly at high rates. As previously discussed, the signals were combined into
groups of eight channels for timing purposes in order to save on cabling and electron-
ics. Each first-level sum has an associated TDC signal, and each second-level sum
has both an ADC and TDC signal. TDCs for the first and second-level sums were
operated in common stop mode. Several corrections were applied to the raw TDC
values to convert them to hit times.

First, the time difference between each first level sum signal and the BigCal trig-
ger was determined. An example time difference spectrum is shown in figure 4-34(a).
Second, the timing of the BigCal trigger relative to the HMS start time was deter-
mined for events in the true coincidence peak of the trigger time distribution (see
figure 3-17). An example of this time difference is shown in figure 4-34(b). The two
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Figure 4-34: (a) Time difference between first-level sum 26B and BigCal trigger.
(b) Time difference between BigCal trigger and HMS start time (determined by ho-
doscopes).

combined offsets thus determined serve to roughly align the timing of the first-level
sums with the HMS start time.

The final correction to the BigCal hit times was a walk correction to account for the
pulse-height dependence of the arrival time of the signals, which were discriminated
against a fixed threshold of approximately 100 MeV. The walk correction used was of
the same form as that used for the HMS hodoscopes. The signal size of the first level
sums is not directly measured, but can be calculated by summing the eight individual
channels in each group:

tcorr = traw − t0 −
w√∑8

i=1(ADC − PED)i

(4.87)

To determine the walk correction parameters w for each channel, profile histograms
of the time difference between each BigCal first level sum and the HMS start time as
a function of the sum of the eight measured ADC signals in that group were fitted to
the functional form (4.87). An example fit result is shown in figure 4-35(a).

The final timing resolution of BigCal after applying the offset and walk correction
to each TDC channel ranges from 1.5 to 2 ns, depending on the electron energy.
A “cluster time” is calculated for each cluster as the energy-weighted average of
corrected hit times for all unique TDC hits in the cluster. Figure 4-35(b) shows the
resolution achieved for an electron energy of Ee ≈ 2.3 GeV. A loose cut was placed
on this cluster time in the analysis to reject clusters that were out-of-time in favor of
clusters with good timing.

In addition to the first-level timing signals, ADC and TDC signals were recorded
for each of the 38 second-level trigger sums. The TDC hits of the second level sums
responsible for the presence of the trigger always arrive at a fixed time relative to
the BigCal trigger. This is because the discriminators used on the front end to form
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Figure 4-35: (a) Walk correction to BigCal timing signals. (b) Final timing resolution
of BigCal at Ee ≈ 2.3 GeV.

the BigCal trigger are also used to produce the timing signals for the second-level
sums, meaning these signals are only present for channels which exceed the trigger
threshold. For this reason, requiring the presence of one or more second-level TDC
hits in time with the BigCal trigger and in the trigger logic group(s) associated with
a given cluster serves as a very powerful way to select the cluster corresponding to the
shower responsible for the presence of a BigCal trigger, which significantly reduces the
multiplicity of clusters found per event under high-rate conditions. For this reason,
the second level timing signals proved even more useful than the first level timing
signals in this important respect.

4.2 Elastic Event Selection

After the reconstruction of each event is complete, the next task is to separate
elastic and inelastic scattering events. Although it is possible, in principle, to sep-
arate elastic and inelastic events based on the reconstructed proton momentum pp
and scattering angle θp alone, the resolution of the HMS is insufficient to achieve
a clean separation. In other words, inelastic reactions have significant overlap with
elastic scattering within the resolution of the HMS, especially at large Q2 values.
By detecting the scattered electron in coincidence and measuring its scattering an-
gles with a resolution comparable to or in some cases exceeding the resolution of the
HMS for the variables considered, the cleanest possible separation is achieved. The
elastic-inelastic separation provided by BigCal turns out to be most important for
the highest-Q2 data point.

4.2.1 Proton δ-θ Correlation

For a given beam energy Ee, the scattering angle θp and momentum pp of the recoil-
ing proton in elastic scattering are related by equation (3.14). The difference between
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the measured momentum and the momentum predicted by (3.14) at the measured
angle therefore defines the degree of “inelasticity” of a given event. This difference is
subsequently referred to as ∆p ≡ 100× p−p(θp)

p0
, which is expressed as a percentage of

the HMS central momentum for comparison with the nominal resolution of the HMS.
Elastic events show up as a prominent peak at ∆p = 0, with a width determined by
the HMS momentum and angular resolution, the beam energy, and the HMS central
angle. Figure 4-36 shows the ∆p spectrum in the region near the elastic peak for two
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Figure 4-36: ∆p spectrum for Q2 = 5.2 GeV2 (a) and Q2 = 6.7 GeV2 (b), before
applying cuts on BigCal.

different kinematic settings. For both of these data points, the elastic peak is clearly
visible together with a significant inelastic background, represented by the shoulder
on the left side of the peak in each plot. The “super-elastic” events on the right
side of the peak have momenta exceeding the expected proton momentum for elastic
scattering. These events come primarily from quasi-elastic Al(e, e′p) reactions in the
target endcaps and contribute a small fraction of the total non-elastic background.

The “sub-elastic” events on the left side of the peak have lower momenta than the
expected momentum for elastic scattering. These events are primarily protons from
neutral pion photoproduction reactions initiated by hard Bremsstrahlung photons in
the 2.3% radiation-length hydrogen target. When a beam electron radiates a real
photon at or near the full beam energy, the exclusive reaction γ + p → π0 + p has
two-body kinematics quite similar to elastic ep scattering, when the radiated photon
energy is large compared to the π0 mass. The pion immediately decays to two photons
π0 → γ+γ. In the π0 rest frame, the decay photons emerge back-to-back, at a random,
uniformly distributed angle, and each photon has an energy exactly equal to half the
π0 mass. Upon boosting this isotropic, monoenergetic decay photon distribution to
the lab frame, in which the pion is produced with a large momentum determined
by the two-body kinematics of the reaction, both the angle and energy distributions
are folded forward along the pion trajectory, resulting in a significant probability for
one or both photons to hit BigCal with enough energy to pass the trigger threshold.
Since electron-induced and photon-induced showers give identical signals in BigCal,
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the only way to distinguish between pion and elastic events is based on the energy
and position of the detected particle. In the end, only the position of the detected
cluster provided for a meaningful separation between elastic and π0 events due to the
poor energy resolution of BigCal.

Ebeam, GeV p0, GeV/c θp,
◦ pep→ep(θp)− pγp→π0p(θp), MeV (% of p0)

1.87 2.0676 14.50 12.21 (0.590)
2.85 2.0676 31.00 9.06 (0.438)
3.68 2.0676 36.10 7.41 (0.359)
4.05 3.5887 17.94 9.37 (0.261)
5.71 4.4644 19.07 8.21 (0.184)
5.71 5.4070 11.59 9.53 (0.176)

Table 4.2: Momentum difference between elastically scattered protons and protons
from γ+p→ π0+p, for Eγ = Ebeam, evaluated at the central kinematics of experiments
E04-108 and E04-019.

Table 4.2 shows the difference in proton momentum between elastic ep scattering
and π0 photoproduction, calculated from two-body kinematics at the central HMS
angle, for a radiated photon with the full beam energy. The differences are on the
order of 10 MeV for all the kinematics of both experiments. As a percentage of
the HMS central momentum, the differences range from approximately 0.18% to
0.6%. Given the combined angular and momentum resolution of the HMS, the small
“threshold” for pion photoproduction in terms of ∆p allows for significant overlap
with elastic scattering for all kinematics. The smallest percentage difference occurs
at Q2 = 8.5 GeV2. Unless very tight cuts are applied on the inelastic side of the
peak, all kinematics will suffer some contamination from the π0 background. The
amount of remaining background depends on the relative rates of the two reactions.
The pion photoproduction rate involves the convolution of the Bremsstrahlung flux
near endpoint (Eγ ≈ Ebeam) and the photoproduction cross section.

Another reaction contributing to the non-elastic background is real Compton scat-
tering (γ+p→ γ+p), which is also initiated by hard Bremsstrahlung photons radiated
from the primary beam. Unlike pion photoproduction, the kinematics for Compton
scattering at endpoint (k = Ebeam) are identical to elastic ep scattering since the pho-
ton is massless, and whereas the random angle distribution of the π0 decay photons
tends to destroy the kinematic correlation between the particle detected in BigCal and
the proton in the HMS, Compton-scattered photons are kinematically correlated with
the scattered proton in exactly the same way as elastically scattered electrons. Only
the energy difference between the incident Bremsstrahlung photon and the primary
electron beam separates Compton scattering from elastic ep scattering. Although it
would have been possible to distinguish photons from electrons by placing either a
gas Cerenkov detector or a deflecting magnet in front of BigCal, no such measures
were adopted for this experiment, making the Compton background essentially irre-
ducible. Generally speaking, the cross section for real Compton scattering is much
smaller than for pion photoproduction and is of secondary concern for this analysis.
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The worst-case kinematic setting in this experiment for both Compton scattering and
pion photoproduction backgrounds was Q2 = 8.5 GeV2, where the elastic scattering
cross section was small enough that the ratio of background events to signal events
within the applied elastic kinematic cuts was significant.

Pion photoproduction and Compton scattering kinematics are characterized by the
Mandelstam invariants s and t. At Q2 = 8.5 GeV2, the central kinematics give s =
11.6 GeV2 and −t = Q2 = 8.5 GeV2 (for Eγ = Ebeam). Pion photoproduction cross
section data exist over a wide range in s, but the −t range of the data is rather limited.
The highest available momentum transfer measured for γp→ π0p is approximately 7.5
GeV2 for a photon energy of 5 GeV[129], or s ≈ 10.3 GeV2. For Compton scattering,
high momentum transfer data have recently become available[130] for s up to 11
GeV2 and t up to 6.5 GeV2. The highest momentum transfer data point for the
differential cross section for Compton scattering from [130] was dσ/dt = 5.6 pb/GeV2

at s = 10.9 GeV2 and −t = 6.5 GeV2, whereas for π0 photoproduction[129], a result
of dσ/dt = 8.4 nb/GeV2 was obtained at s = 10.3 GeV2 and −t = 7.5 GeV2. Though
the kinematics of these two data points are not identical to each other or to E04-
108 kinematics, one immediately sees that the Compton cross section at the nearest
available data point is approximately three orders of magnitude smaller than the
photoproduction cross section. The smallness of the Compton cross section relative to
the photoproduction cross section was also confirmed in another experiment at lower
momentum transfers in which both cross sections were measured simultaneously[131]
for photon energies from 2 to 6 GeV and momentum transfers up to 4 GeV2, and
found ratios R(s, t) = (dσ/dt)γp→γp/(dσ/dt)γp→π0p never exceeding 5%.

The authors of [130] found a scaling behavior of s−8 for the Compton scattering
cross section at fixed momentum transfer, to be contrasted with the approximate
s−7 scaling of the photoproduction cross section found in [129]. Although it was not
possible to actually measure the Compton background contribution from the data of
this experiment, a reasonable estimate was obtained by extrapolating from the data
of [130] using the empirical s−8 scaling behavior of dσ/dt, which showed that the
Compton scattering background, while irreducible, was safely below the level where
it could significantly impact the form factor ratio results.

The π0 background, on the other hand, was large enough to have a significant
impact on the analysis of the data at Q2 = 8.5 GeV2. Figure 4-37 shows the ∆p

spectrum in the region near the elastic peak for this setting, before applying any
cuts on the detected electron in BigCal. In contrast to the data at lower Q2, the
backgrounds nearly overwhelm the signal in this case, with the elastic peak barely
registering as a small bump at ∆p = 0, on top of a significant π0 background. The
relatively high level of events in the super-elastic region indicates that there is also
a contribution from scattering in the target walls, which is to be expected with the
HMS at the relatively forward angle of 11.6◦. The situation illustrated in figure 4-37
demonstrates the necessity of using BigCal to detect the scattered electron in order
to isolate the elastic events.
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Figure 4-37: ∆p spectrum at Q2 = 8.5 GeV2. No cuts applied on BigCal.

4.2.2 Electron-Proton Kinematic Correlation

The scattering angles of the electron are measured precisely using the ray from
the interaction point reconstructed by the HMS to the position of the detected elec-
tron at the surface of BigCal (see table 3.15). Since the proton momentum is the
most precisely measured kinematic variable by the HMS and the electron angle θe
is the most precisely measured variable by BigCal, the elastic peak is separated by
comparing the measured proton momentum to the expected proton momentum for
elastic kinematics of the measured electron angle. The transverse coordinates of the
interaction vertex are simply the beam positions measured by the BPM and raster
signals. The z coordinate of the interaction vertex is given in terms of ytar and y′tar
measured by the HMS by equation (4.65). The (x, y, z)e coordinates of the electron
at the surface of BigCal are given in terms of the reconstructed cluster coordinates
(x, y)clust and the BigCal distance and angle Rcal and Θcal by

xe = xclust cos Θcal +Rcal sin Θcal (4.88)

ye = yclust (4.89)

ze = −xclust sin Θcal +Rcal cos Θcal (4.90)
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The electron scattering angles θe and φe are then calculated as follows

L =
√

(xe − xbeam)2 + (ye − ybeam)2 + (ze − zbeam)2 (4.91)

cos θe =
ze − zbeam

L
(4.92)

tanφe =
ye − ybeam
xe − xbeam

(4.93)

If the reaction is elastic scattering, the electron angle and the proton momentum are
related by

E ′e =
Ee

1 + Ee
Mp

(1− cos θe)
(4.94)

Tp(θe) = Ee − E ′e =
Ee

1 + Mp

Ee(1−cos θe)

(4.95)

pp(θe) =
√
T 2
p + 2MpTp (4.96)

and the electron and proton must be coplanar, i.e., φe = φp + π.

A momentum difference ∆e ≡ 100 × pp−pp(θe)

p0
is defined using the same conven-

tion as ∆p defined above, but replacing pp(θp) with pp(θe). For all of the high Q2

kinematics, the Jacobian of the reaction is large enough that the HMS momentum
resolution dominates the resolution of ∆e, resulting in a narrower elastic peak in this
variable than in ∆p, and also providing a measure of the HMS momentum resolu-
tion. Furthermore, the broad opening angle distribution of the decay photons from
π0 photoproduction events tends to spread out the ∆e distribution of the background
and reduce the amount of overlap with the elastic peak. This is in stark contrast to
the protons from π0 photoproduction events, which have almost zero separation in
∆p from elastically scattered protons for endpoint Bremsstrahlung photons. Figure
4-38 shows the ∆e distributions at Q2 of 5.2 and 6.7 GeV2. Figure 4-39 shows the ∆e

spectrum at Q2 = 8.5 GeV2, before applying cuts to any other variables.

The elastic peak is now clearly visible. Though it still rests on top of a formidable
π0 background, the signal-to-background ratio is much improved compared to the ∆p

case, even before applying any ∆p or coplanarity cuts.

The last piece of the puzzle is the coplanarity between the electron detected in
BigCal and the proton detected in the HMS. The “acoplanarity” is defined as ∆φ ≡
φe − φp − π. The coordinate resolution of BigCal is approximately the same in
both directions, such that the out-of-plane angle of the electron is measured with
significantly better resolution than that of the proton, which is measured by the
HMS with resolution degraded by S0. The proton azimuthal angle was defined in
equation (4.71). For the central trajectory (x′tar ≈ y′tar ≈ 0), the resolution in φp is a
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Figure 4-38: ∆e distribution at Q2 = 5.2 and 6.7 GeV2, before applying any copla-
narity cuts.

function of the resolution in x′tar, and varies with the HMS central angle as follows:

φp = arctan

(
y′tar cos ΘHMS − sin ΘHMS

x′tar

)
(4.97)

∂φp
∂x′tar

= − y′tar cos ΘHMS − sin ΘHMS

x′2tar + (y′tar cos ΘHMS − sin ΘHMS)2
(4.98)

⇒ dφp −−−−−−−→
x′tar,y

′
tar→0

− dx′tar
sin ΘHMS

(4.99)

Figure 4-40 shows the distribution of ∆φ, before applying any cuts, at Q2 of 6.7 GeV2

(4-40(a)) and 8.5 GeV2 (4-40(b)). One immediately notices that the resolution in ∆φ
is insufficient to provide meaningful elastic-inelastic separation on its own. How-
ever, when combined with inelasticity cuts ∆e and ∆p, the coplanarity cut provides
significant additional background suppression.

To select elastic events, cuts are applied to the momentum differences ∆e and ∆p,
and the azimuthal angle difference ∆φ. While there are different ways of defining the
cuts used to select elastic events, all of them are essentially equivalent to the method
outlined above, as the three inelasticity variables defined in the preceding discussion
exhaust all possible information about the reaction kinematics obtained from the
reconstruction of the HMS and BigCal, except for the measured energy in BigCal.
Given the already poor energy resolution of BigCal and the significant probability of
large energy losses in the four-inch thick absorber, even a loose missing energy cut did
not achieve significant additional background suppression after applying the angular
correlation cuts defined above, and was in fact found to reject significant numbers of
elastic events. For this reason, no cuts were applied to the cluster energy in BigCal
in the final analysis, other than those used in the cluster-finding algorithm discussed
in the previous section.

An alternative method of correlating the electron and proton kinematics of partic-
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Figure 4-39: ∆e spectrum at Q2 = 8.5 GeV2. No cuts applied on ∆p or coplanarity.

ular importance is to compare the detected electron position at BigCal to the expected
position calculated from elastic kinematics of the proton detected in the HMS. The de-
tails of the calculation were already outlined above in the discussion of the coordinate
resolution of BigCal. The coordinate differences are defined as ∆x ≡ xclust − xHMS

and ∆y ≡ yclust − yHMS
17. Elastic events are found at (∆x,∆y) = (0, 0) as shown in

figure 4-41.

Figure 4-41 shows the distribution of ∆y versus ∆x for Q2 = 8.5 GeV2. The
elastic peak is clearly visible on top of a broadly distributed background of π0 decay
photons located primarily at positive ∆x, with a ∆y distribution symmetric about
∆y = 0. In terms of the inelasticity variables defined above, the horizontal coordinate
difference ∆x is roughly equivalent to the momentum difference ∆e, while the vertical
coordinate difference ∆y is roughly equivalent to the azimuthal angle difference ∆φ.
Events at positive ∆x correspond to larger deflection angles than the expected θe for
elastic scattering and therefore correspond to larger expected proton momenta than
the measured proton momentum; i.e., +∆x corresponds to −∆e. Figure 4-42 shows
the projections of the two-dimensional distribution of figure 4-41 along the ∆x axis
(4-42(a)) and the ∆y axis (4-42(b)). In the two-dimensional correlation plot and its
projections, one immediately sees that the level of background events found at the

17These differences are defined in the BigCal coordinate system, for which x is the horizontal
coordinate and y is the vertical coordinate.
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Figure 4-40: ∆φ with no cuts applied, for Q2 = 6.7 and 8.5 GeV2.

expected scattering angle θe and the expected azimuthal angle φe is low, but still
significant compared to the number of elastic events. A “clean” sample of elastic
events is obtained only when cuts are applied to all three inelasticity variables:

• The proton momentum difference ∆p

• The electron momentum difference ∆e (or equivalently the horizontal position
difference ∆x).

• The azimuthal angle difference ∆φ (or equivalently the vertical position differ-
ence ∆y).

Comparing figure 4-42(b) to figure 4-40(b), the unambiguous appearance of the elastic
peak in the ∆y/∆φ spectrum for events found at the expected θe for elastic scattering
is evident. The next section will illustrate the effect of applying these cuts and present
estimates of the remaining inelastic background.

4.2.3 Elastic Event Selection Cuts

The data were analyzed using both methods of elastic event selection described
above. In the first method, cuts were applied to the inelasticity variables ∆e and ∆p,
and the acoplanarity ∆φ. In the second method, which was also used for the final
analysis, the ∆e and ∆φ cuts were replaced by an elliptical cut applied to the (∆x,
∆y) distribution: √(

∆x

xcut

)2

+

(
∆y

ycut

)2

≤ 1 (4.100)

The second method achieves a better background suppression than the first method
because the shape of the cut matches the shape of the elastic peak in the two-
dimensional (∆x,∆y) space, whereas a (∆e,∆φ) cut, which amounts to selecting a
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Figure 4-41: ∆y versus ∆x, with no ∆p cuts applied, for Q2 = 8.5 GeV2.

section of spherical solid angle centered around the elastic peak, does not. In fact, the
latter cut is roughly equivalent to a rectangular cut in the (∆x,∆y) plot. Compared
to a rectangular cut, an elliptical cut throws out events in the corners of the rectangle
where the background-to-signal ratio is higher, leading to a cleaner sample of elastic
events. Figure 4-43 illustrates the quality of the elastic event selection achieved using
the elliptical cut. In figure 4-43(a), an elliptical cut with (xcut, ycut) = (4.4, 14.6)
cm is applied to the (∆x,∆y) spectrum at Q2 = 8.5 GeV2. The ∆p spectrum of
events inside the ellipse is shown in figure 4-43(b). Compared to the ∆p spectrum
of all events (figure 4-37), a fairly clean selection of elastic events is achieved, with a
residual π0 background indicated by the tail on the inelastic side of the peak and a
near-total suppression of the super-elastic events coming from the target endcaps.

At first glance, it appears as if the events at negative ∆p could be part of the elastic
radiative tail, but this is not the case. Since ∆p and ∆e are both calculated from
the measured proton momentum and the measured electron/proton angles assuming
an incident electron energy equal to the full beam energy, elastic scattering events
in which radiation from either the incident beam or the scattered proton occurs will
have the effect of lowering the momentum of the scattered proton for a given angle
θp. This will reduce ∆p, but it will also reduce ∆e, so that these events will fail
the ∆e cut as well. To illustrate how the cuts defined above suppress the elastic
radiative tail, the shift in kinematics of elastic scattering caused by the emission of a
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Figure 4-42: Projection of the ∆y vs. ∆x distribution along the ∆x axis (a), and
along the ∆y axis (b) for Q2 = 8.5 GeV2.

(a) Elliptical (∆x,∆y) cut.
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Figure 4-43: Selection of elastic events using elliptical (∆x,∆y) cut for Q2 = 8.5
GeV2 (a), and ∆p spectrum of events passing elliptical cut.

soft photon of energy k from the incident electron beam was considered. Assuming a
fixed θp and a beam energy given by Erad = Ebeam − k, the true, observed values of
the proton momentum pp, the electron scattering angle θe, and the electron energy
E ′e were calculated for elastic scattering. Then, the inelasticity tests ∆e and ∆p were
calculated from the expected values pp(θp) and pp(θe) assuming k = 0. Figure 4-44
shows the shift in both inelasticity variables due to radiation of energy k from the
incident beam, as a function of k/Ebeam, at Q2 = 8.5 GeV2. Both variables decrease
with k/E at different rates, with ∆e decreasing faster than ∆p because of the large
Jacobian. An elliptical cut with |∆x| ≤ 4.4 cm is roughly equivalent to a cut of
|∆e| ≤ 0.25%. For a detector with infinite resolution, a shift in ∆e of −0.25% due
to radiation from the incident beam corresponds to an even smaller shift in ∆p of
−0.20%, which is well inside the resolution of the peak (see figure 4-43(b)). In short,
because initial state radiation reduces ∆e even faster than ∆p for elastic scattering,
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Figure 4-44: Shift in observed ∆e and ∆p as a function of the fraction of the beam
energy carried away by the (undetected) radiated photon, Q2 = 8.5 GeV2.

a tight cut around the elastic peak in ∆e has the effect of suppressing the elastic
radiative tail at negative ∆p, implying that the observed tail at (large) negative
values of ∆p for events passing the elliptical cut comes from inelastic reactions such
as π0 photoproduction.

In order to suppress these inelastic events, a cut around the elastic peak in ∆p is
applied. The quality of the background suppression achieved by this cut is evident in
figure 4-45, which shows the projections of the (∆x,∆y) spectrum after applying a
roughly 3σ cut around the elastic peak in the ∆p spectrum. Compared to the same
projections obtained before applying the ∆p cut (figure 4-42), the background level
is evidently much lower.

4.2.4 Inelastic Background Estimate

After applying all elastic event selection cuts, there is still an unavoidable residual
background of primarily π0 photoproduction events induced by near-endpoint photons
overlapping with the elastic peak in ∆p, with at least one decay photon that happens
to hit BigCal at the expected position of an elastically scattered electron. The main
determinant of the inelastic contamination within the cuts is the relative rate of elastic
scattering and pion photoproduction. At Q2 = 8.5 GeV2, the π0 photoproduction
cross section is actually much larger than the elastic ep scattering cross section, leading
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Figure 4-45: Projection along the ∆x(∆y) axis for ∆y(∆x) = 0, Q2 = 8.5 GeV2, for
events with |∆p| ≤ 0.62%.

to the overwhelming background in the single-arm18 proton ∆p spectrum of figure 4-
37.

Obtaining an estimate of the inelastic contamination is an important component
of the data analysis, because even a relatively small contamination can have a sig-
nificant effect on the extracted form factor ratio, particularly if the polarization of
protons from background reactions is substantially different from the polarization of
elastic events. Since the elliptical position correlation cut achieves the cleanest elas-
tic/inelastic separation, this section will focus on the method used to estimate the
remaining background of this cut.

Gaussian Extrapolation

The background fraction is estimated directly from the data by parametrizing the
signal and background shapes and fitting the two-dimensional (∆x,∆y) spectrum.
The main π0 decay photon background is parametrized using a Gaussian shape in
two dimensions:

Ninel(x, y) = Ninel exp

[
−(x− µx,inel)2

2σ2
x,inel

− (y − µy,inel)2

2σ2
y,inel

]
(4.101)

The background in the ∆x,∆y plot exhibits tails at very large ∆y at a very low
level. Events in this region, which do not exhibit the same shape as the main π0

background, come from other reactions, including the target walls and a small contri-
bution from particles detected in the HMS which do not come from the target through
the spectrometer. Particles which scatter from the target or other materials along
the beamline but do not scatter into the HMS can enter the detector hut through
small exposed gaps in the shielding between the exit of the dipole and the entrance

18Strictly speaking, figure 4-37 is not a true “single-arm” spectrum, but a coincidence spectrum
of the proton arm before applying any cuts on the electron arm.

231



to the shield hut. These particles may then re-scatter from various materials into the
active area of the detectors19. In order to achieve a better fit to the whole spectrum,
the background parametrization was expanded to include the sum of two Gaussians
of the form (4.101).

The elastic peak is parametrized using a more complicated form. A simple Gaus-
sian shape cannot account for the tail at positive ∆x (figure 4-45(a)), which is assumed
to be an effect of the elastic radiative tail as opposed to the inelastic background20.
A reasonable approximation to the shape of the elastic peak is to form the product
of a Gaussian distribution in y with the sum of Gaussian and Landau distributions
in x. The Landau distribution arises in the theory of straggling in the energy loss
distribution of charged particles passing through thin absorbers[117]. It is defined by
the following integral:

φ(x) ≡ 1

π

∫ ∞
0

e−u lnu−ux sin πudu (4.102)

The integral (4.102) was evaluated numerically using standard software libraries. The
parametrization of the elastic peak assumes the following form:

Nel(x, y) =

[
Ngauss exp

[
−(x− µx,el)2

2σ2
x,el

]
+Nlandauφ

(
x− α
β

)]
×

exp

[
−(y − µy,el)2

2σ2
y,el

]
(4.103)

The parametrization of the sum of signal and background is then given by

N(∆x,∆y) ≡ Nel(∆x,∆y) +Ninel(∆x,∆y) (4.104)

This fit function has eighteen adjustable parameters:

• Means (µx, µy), widths (σx, σy), and normalization constant Ninel for each of
the two Gaussians describing the background shape (ten parameters).

• Normalization constants for the Gaussian (Ngauss) and Landau (NLandau) con-
tributions to the elastic peak (two parameters).

• Means (µx, µy) and widths (σx, σy) for the Gaussian parts of the elastic peak
parametrization (four parameters).

19It is generally assumed that the background from such “non-spectrometer” particles is very
small and is highly suppressed by the cuts already applied to the reconstructed target coordinates;
therefore, no additional cuts were necessary to suppress this kind of event. On the other hand, such
events are much more common when the HMS is positioned at a very forward angle as it was for the
Q2 = 8.5 GeV2 point, and inevitably some small number of these events leaked into the acceptance
of the applied cuts.

20Recall that a tail at positive ∆x corresponds to a tail at negative ∆e.
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• Most probable value α and width β for the Landau component of the elastic
peak parametrization (two parameters).

This parametrization was not motivated by any specific physical considerations.
The detailed shape of the elastic peak was actually not terribly important, since the
goal of fitting the two-dimensional spectrum was merely to separate the signal from
the background. Once this goal was accomplished, the two-dimensional background
shape resulting from the fit was extrapolated into the cut region, and the ratio of this
estimated background to the total number of counts (from the data) inside the ellipse
was taken as the inelastic background. The fit results for the elastic peak shape were
not used for the background estimate.

Figure 4-46: Inelastic background estimate obtained by fitting the (∆x,∆y) spectrum,
Q2 = 8.5 GeV2. Data (top left), and estimated background (top right). Projection
on the ∆x axis (bottom left) and the ∆y axis (bottom right) of the data (blue) and
estimated background (red).

Figure 4-46 shows an example result of the fit procedure for Q2 = 8.5 GeV2. The
top left panel shows the (∆x,∆y) spectrum after applying a cut around the elastic
peak in ∆p. The black ellipse represents the ∆x/∆y cut region. The top right panel
shows the two-dimensional shape of the estimated background resulting from the fit,
plotted on the same color scale as the data. The Gaussian parametrization achieves
a very good description of the background shape. The bottom two panels show the
projections on the ∆x axis (left) and the ∆y axis (right) of the data (blue) and the
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estimated background (red). The fraction of inelastic background in the data selected
by the cut was obtained by integrating the estimated background and the data over
the elliptical cut region:

f ≡ Ninel

Ndata = Ninel +Nel

=

∫ xcut
−xcut

∫ ycut√1−x2/x2
cut

−ycut
√

1−x2/x2
cut

Ninel(x, y)dydx∫ xcut
−xcut

∫ ycut√1−x2/x2
cut

−ycut
√

1−x2/x2
cut

Ndata(x, y)dydx

(4.105)

Table 4.3 shows the results of this calculation for Q2 = 5.2, 6.7, and 8.5 GeV2. The

Q2, GeV2 ∆p cut, % xcut, cm ycut, cm f , %
5.2 0.852 4.3 15.3 1.1
6.7 0.900 3.1 10.2 0.8
8.5 0.600 4.3 13.9 5.6

Table 4.3: Estimated background f of 3σ elliptical position correlation and ∆p cuts.

estimates of the inelastic background obtained by this method were combined with the
measured polarization of events rejected by the cuts to obtain a correction to the form
factor ratio. The uncertainty on this correction is an important source of systematic
uncertainty in the result of the experiment, and was estimated by performing the
same background estimation procedure using cuts of varying width, and observing the
extent to which the background-corrected form factor ratio is invariant with respect
to the cuts. Table 4.4 shows the variation of the inelastic contamination estimated

Background Ellipse cut width, σ
fraction, % 3 5 6

3 5.5 8.3 9.6
∆p cut, σ 5 9.9 14.5 16.7

6 13.5 19.5 22.1

Table 4.4: Cut width dependence of inelastic background contamination estimated
using the two-dimensional Gaussian extrapolation of the inelastic background under
the elastic peak at Q2 = 8.5 GeV2. Cut widths are given in units of the resolution of
the cut variables. The elliptical cut width was only varied in the ∆x; i.e., “inelasticity”
direction. The cut width in the ∆y or “acoplanarity” direction was fixed at 3σ for
the estimates presented here.

using the Gaussian extrapolation as a function of the width of the elastic cuts at
Q2 = 8.5 GeV2.

Monte Carlo Estimate

The above method of estimating the background involves assumptions about the
shape of the signal and background in the two-dimensional (∆x,∆y) space; namely,

234



the shape of the background is assumed to be Gaussian, and the tail at positive ∆x is
attributed to the elastic radiative tail and is assumed to be part of the signal. Neither
assumption is exactly satisfied in practice. In order to provide an independent check
of this background estimate and to understand the signal and the inelastic background
in terms of the underlying physics, a Monte Carlo simulation of the experiment was
performed using SIMC, the standard Hall C Monte Carlo package. The adaptation
of SIMC to this experimental configuration is described in appendix D. The most
significant additions to the standard configuration of the Monte Carlo are the presence
of BigCal as the electron arm, which is approximated by a rectangular acceptance,
and the presence of S0 in the HMS detector hut as part of the trigger and a source
of multiple scattering.

Four reactions were simulated, including elastic ep scattering, π0 photoproduction,
real Compton scattering, and quasi-elastic (e, e′p) from the target endcaps. Since the
simulation did not include inefficiencies, only the relative rate of these different reac-
tions was estimated, not the absolute cross section. An important difference between
the simulation and the true experimental situation is that in the simulation, the in-
teraction vertex is sampled uniformly along the length of the target, reflecting the
assumption of constant target density (and therefore constant luminosity) and a neg-
ligible loss of beam intensity along the target length. Deviations from a uniform
distribution of events along the length of the target in SIMC reflect the combined
acceptance function of the HMS and BigCal. However, the ytarget/zbeam distribution
in the experimental data is significantly different from that of the simulation, with
fewer events from the downstream end of the target relative to the upstream end of
the target. This reduction is primarily caused by a reduction in density along the
target length due to localized boiling of the liquid hydrogen in the heat load of the
intense electron beam. One other possible cause of this effect not accounted for by
the simulation is a zbeam-dependent reduction in the trigger efficiency of BigCal. Elec-
trons scattering from the downstream end of the target must have a larger average
scattering angle θe in order to scatter into the acceptance of the HMS and BigCal.
Since larger scattering angles correspond to lower electron energies E ′e, which have
a higher probability of failing the BigCal trigger threshold, such an effect could be
partially responsible for the reduction in luminosity for the downstream end of the
target. However, since this threshold was set relatively low throughout the experi-
ment, and certainly well below half the elastic ep energy, it is thought that target
boiling is the main cause of the effect.

The dominant background is π0 photoproduction, the rate of which is proportional
to the Bremsstrahlung flux, which increases approximately linearly along the target
length. Since the rate of the main background reaction increases along the target
length, and since the simulation does not account for the reduction in luminosity
along the target length observed in the data, the simulation tends to overestimate
the rate of π0 photoproduction relative to elastic scattering in comparison to the
data when averaged over the full acceptance. In order to account for this effect, a
zbeam-dependent re-weighting of simulated events was used to map the SIMC z distri-
bution, which only includes acceptance effects, onto that of the data, which reflects
the convolution of the experimental acceptance with the z-dependent target density
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reduction, bringing the Monte Carlo background estimate into better agreement with
the background estimated directly from the data using the Gaussian extrapolation
of the (∆x,∆y) spectrum. A reduction in target density affects the elastic yield and
the photoproduction/Compton yield differently because, whereas the electron beam
intensity is unaffected by the reduced target density, the Bremsstrahlung flux is af-
fected, since the radiation lengths of the target are the source of this flux. Therefore,
while the ep luminosity scales linearly with the target density, the luminosity for
Bremsstrahlung-induced reactions scales with the square of the target density, reduc-
ing the yield of such reactions relative to electron scattering for a given reduction in
target density.
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Figure 4-47: SIMC-data comparison of ∆p spectra after applying elliptical (∆x,∆y)
cut, Q2 = 8.5 GeV2.

Figure 4-47 compares the experimental ∆p distribution to the combined ∆p dis-
tribution of all simulated reactions in the region near the elastic peak. The spectra
are obtained after applying the elliptical position correlation cut at BigCal. An over-
all normalization constant was applied to each reaction to give the best agreement
with the data. The target endcap contribution was normalized to the data in the far
super-elastic region where it is assumed to be the only reaction that contributes, and
then the sum of π0 photoproduction, Compton scattering, and the target endcaps was
normalized to the data on the far inelastic side of the peak, where the elastic radia-
tive tail has been removed by the position correlation cut and only the background
contributes. The black vertical lines indicate a 3σ cut around the elastic peak in ∆p.
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SIMC background Ellipse cut width, σ
fraction, % 3 5 6

3 5.8 9.0 10.5
∆p cut, σ 5 10.4 15.6 18.0

6 14.1 20.8 23.7

Table 4.5: Cut width dependence of inelastic background contamination estimated
by SIMC at Q2 = 8.5 GeV2. Cut widths are given in units of the resolution of the
cut variables. The elliptical cut width was varied only in the ∆x direction for a fixed
∆y cut of 3σ.

The estimated Compton scattering contribution turned out to be much smaller
than either the π0 contribution or the cell wall contribution, so it could not be mean-
ingfully renormalized on its own. Instead, the Compton spectrum was scaled by
the same factor needed to bring the π0 contribution into agreement with the data.
The data are fairly well reproduced, except for the non-Gaussian tails of the elastic
peak observed in the data, which are significantly underestimated by the simulation,
even though the resolution of the elastic peak agrees with the data within ≈ ±2σ
of the maximum of the peak. The tails are assumed to be elastic events exhibiting
non-Gaussian resolution effects not accounted for by the simulation.

Table 4.5 shows the simulated inelastic background contamination for different
combinations of cut widths, in units of the resolution of the cut variables21, at
Q2 = 8.5 GeV2. Compared to table 4.4, the Monte Carlo estimate is systemati-
cally higher, by a factor ranging from 4 to 10%, even after renormalizing events as a
function of zbeam. Since the simulation does not fully reproduce the tails of the elastic
peak, the elastic peak in the data is inherently less “sharp” than the elastic peak
of the simulation, reducing its height relative to the background. Simultaneously
renormalizing the elastic peak and inelastic background of the simulation to match
the ∆p spectrum of the data thus reduces the height of the elastic peak relative to
the background without widening the peak to match the data, resulting in a slight
overestimate of the fraction of events accepted by the cuts that are inelastic. The
most important aspect of these results, however, is that they are in good qualitative
agreement with the estimates obtained directly from the data, and that the shape of
the ∆p distribution is well understood in terms of the underlying physics of the signal
and the background. The near-total suppression of the elastic radiative tail by the
elastic cuts defined above was also confirmed by the simulation.

In summary, a prescription for estimating the inelastic background directly from
the data was presented and the results were compared to a full Monte Carlo simu-
lation of the experiment. The background estimates obtained by the two different
methods agreed to within ±10%, and the level of disagreement between the two meth-
ods can plausibly be attributed to the slight difference in the resolution of the elastic

21For the elliptical cut, the vertical and horizontal coordinates have different resolution, and the

cut takes the form

√(
∆x
nσx

)2

+
(

∆y
3σy

)2

, where n is the number given in table 4.5
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peak between the simulation and the data. In the context of achieving the goals of
this analysis, additional fine-tuning of the simulation to achieve exact agreement with
the data was unnecessary, since the main purpose of the simulation was to provide
an independent check of the background estimate obtained from the data and to
demonstrate that the reactions contributing to the inelastic background are well un-
derstood. Conservatively assuming a relative uncertainty on the estimated inelastic
contamination of ±15%, and combining this estimate with the measured polarization
of the background to obtain the correction to the form factor ratio, the size and un-
certainty of the correction for contamination at the level of ≈ 6% (for 3σ elastic cuts)
at Q2 = 8.5 GeV2 is well below the statistical precision of the measurement, making
further improvement of the simulation unnecessary. The irreducible background from
real Compton scattering was estimated to be 0.02% (for 3σ cuts), which is far below
the level where it could significantly affect the form factor ratio. Since the Compton
cross section was estimated using a very crude extrapolation from the existing data
nearest the Q2 = 8.5 GeV2 kinematics of this experiment, the relative uncertainty in
the estimate is large, but even if the cross section were an order of magnitude larger,
it would still be too small to have a significant impact.

4.3 Extraction of Polarization Observables

To measure the form factor ratio Gp
E/G

p
M , the ratio of transverse to longitudinal

polarization of the scattered proton must be extracted from the data. To obtain this
ratio requires the measurement of the azimuthal asymmetry of protons scattered in
the CH2 analyzers of the FPP, and the calculation of the precession of the proton spin
through the HMS magnets. The precession depends on the trajectory of the scat-
tered proton as it enters the HMS, since protons of different (xtar, ytar, x

′
tar, y

′
tar, δ)

see slightly different magnetic fields and experience slightly different deflections de-
pending on their angles, coordinates and momenta. For each event, the precession is
calculated from the COSY model of the HMS, and the physical polarization transfer
observables Pt and Pl are extracted from the experimental angular distribution using
an unbinned maximum likelihood method.

4.3.1 Focal Plane Asymmetry

Section 3.5 demonstrated how spin-orbit coupling in the nuclear force gives rise to
an azimuthal asymmetry in the angular distribution of protons scattered from carbon
and hydrogen nuclei in CH2. Equation (3.11) describes the asymmetry in terms of the
transverse polarization components of the incident proton. The relative minus sign
between the Sy cosϕ term and the Sx sinϕ term reflects the preferential deflection of
the proton along the direction defined by p × S. The definition of the direction of
the x and y axes with respect to the proton momentum is in fact arbitrary, but the
relative sign between the two terms in (3.11) holds for any right-handed coordinate
system.

In an ideal polarimeter, the geometrical acceptance and the detection and tracking
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efficiency are all independent of the azimuthal angle ϕ. In real life, however, a device of
the size and complexity of the FPP will inevitably exhibit some instrumental or false
asymmetries. These asymmetries will be minimized in a well-designed polarimeter
and a well-calibrated data analysis, but they are very difficult to completely eliminate.
The most important difference between the physical asymmetries resulting from the
polarization of the incident proton and the false asymmetries resulting from the ϕ-
dependent variations in acceptance, detection efficiency, and tracking efficiency is
that the false asymmetries are independent of the beam helicity, while the physical
asymmetries change sign upon reversal of the beam polarization22. The experimental
angular distribution including physical and instrumental asymmetries is written as
follows:

N±(p, ϑ, ϕ) = N±0
ε(p, ϑ)

2π

[
1 + (a1 ± hAy(p, ϑ)P fpp

y ) cosϕ+

(b1 ∓ hAy(p, ϑ)P fpp
x ) sinϕ+

(a2 cos 2ϕ+ . . .) + (b2 sin 2ϕ+ . . .)
]

(4.106)

In equation (4.106), N±0 is the number of incident protons in the ± beam helicity
state, h is the beam polarization, ε and Ay are the efficiency and analyzing power
defined in (3.11), P fpp

x and P fpp
y are the polarization components of the incident

proton, and a1, b1, a2, b2, . . . are false asymmetry terms, which may have higher-order
Fourier components than cosϕ and sinϕ.

The rapid 30 Hz reversal of the beam polarization guarantees very nearly equal
numbers of events in each helicity state. By forming sum and difference distributions,
the physical asymmetries and the false asymmetries can be separated unambiguously.
Integrating over the interesting range of p and ϑ in both the numerator and the
denominator yields sum and difference azimuthal angle distributions defined as

fsum(ϕ) ≡ N+(ϕ)

N+
0

+
N−(ϕ)

N−0

=
1

2π

[
1 + a1 cosϕ+ b1 sinϕ+

a2 cos 2ϕ+ b2 sin 2ϕ+ . . .
]

(4.107)

fdiff (ϕ) ≡ N+(ϕ)

N+
0

− N−(ϕ)

N−0

=
hAy
π

[
P fpp
y cosϕ− P fpp

x sinϕ
]

(4.108)

in which the physical asymmetries cancel in the sum distribution (4.107) and the
false asymmetries cancel in the difference distribution (4.108). The cancellation of
the false asymmetries by reversing the beam helicity is a very important aspect of the
recoil polarization technique because it decouples the extraction of the polarization

22This is true of the transferred polarizations, but not the induced polarization, which is zero for
elastic scattering in the Born approximation
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transfer observables from detailed knowledge and understanding of the false asymme-
try. Furthermore, since the induced polarization is zero in elastic scattering, the false
asymmetry can be measured using the sum distribution, and any possible effects of
a false asymmetry, however small, can in principle be corrected.

When the numbers of events in each helicity state are equal (N+
0 = N−0 ), the

cancellation of the false asymmetry also approximately holds for each helicity state
separately. Using the shorthand λ0(ϕ) for the false asymmetry terms, the asymmetries
for the + and − helicity states relative to the sum distribution become

N+(ϕ)

N+(ϕ) +N−(ϕ)
=

1

2

[
1 + λ0(ϕ) + hAy(P

fpp
y cosϕ− P fpp

x sinϕ)

1 + λ0(ϕ)

]

=
1

2

[
1 +

hAy(P
fpp
y cosϕ− P fpp

x sinϕ)

1 + λ0(ϕ)

]
(4.109)

N−(ϕ)

N+(ϕ) +N−(ϕ)
=

1

2

[
1 + λ0(ϕ)− hAy(P fpp

y cosϕ− P fpp
x sinϕ)

1 + λ0(ϕ)

]

=
1

2

[
1−

hAy(P
fpp
y cosϕ− P fpp

x sinϕ)

1 + λ0(ϕ)

]
(4.110)

in which the false asymmetry terms cancel in the numerator but still appear in the
denominator as small φ-dependent modulations of the physical asymmetry, which
remains in the numerator. This partial cancellation for separate helicity states is
illustrated in figure 4-48 at Q2 = 8.5 GeV2, while the difference between the + and −
distributions of figure 4-48 is shown in figure 4-49. The phase shift of the asymmetry
determines the ratio of the two transverse polarization components P fpp

x and P fpp
y at

the focal plane. This phase shift is related to the form factor ratio through the
precession of the proton spin from the target to the focal plane.

FPP Event Selection Cuts

For each event, a single track is chosen from each polarimeter (drift chamber pair).
If multiple tracks are found, the track corresponding to the smallest scattering angle
ϑfpp is chosen. Additional cuts were applied to reconstructed tracks in the FPP to
select the cleanest possible sample of nuclear scattering events for the asymmetry
analysis.

• A cut was applied to zclose to select events which scattered in the CH2 analyzer
as illustrated in figure 4-22. A cut of 107 cm ≤ zclose ≤ 171 cm was applied
to events in the first polarimeter and a cut of 205 cm ≤ zclose ≤ 270 cm was
applied to events in the second polarimeter.

• A relatively loose cut was applied to the distance of closest approach sclose
between the incident and scattered proton tracks. This cut restricts the analysis
to events that correspond to a single scattering of the incident particle with
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Figure 4-48: Helicity-dependent asymmetry terms, Q2 = 8.5 GeV2.

reasonably high probability. A cut of sclose ≤ 3 cm was applied for events in
which either the angles in the first polarimeter were measured with respect to
the HMS track or the angles in the second polarimeter were measured with
respect to the track in the first polarimeter. For events in which the angles in
the second polarimeter were measured with respect to the HMS track, a cut of
sclose ≤ 6 cm was applied.

• All events failing the cone test were rejected in order to eliminate acceptance-
related false asymmetries.

• A momentum-dependent scattering-angle cut was applied in order to suppress
events at very large angles with negligible analyzing power and events at very
small angles, which have small analyzing power because of their overlap with the
Coulomb peak and poor azimuthal angle resolution which diverges as 1/ sinϑ.
For a given central momentum p0 of the HMS, a cut of 0.07 GeV ≤ p0 sinϑfpp ≤
1.2 GeV was applied. Although most of the figure-of-merit of the polarimeter
is concentrated in the range 0.1 GeV ≤ pT ≤ 0.7 GeV , allowing events at larger
and smaller pT in the analysis does improve the overall figure-of-merit slightly
when events are weighted by analyzing power.

All of the cuts listed above were applied in the analysis. For each event, the incident
proton may scatter in the first analyzer, the second analyzer, neither, or both. When
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Figure 4-49: Helicity-difference asymmetry, Q2 = 8.5 GeV2, displayed as (N+ −
N−)/(N+ +N−).

analyzing the asymmetry of both polarimeters combined, all events passing the scat-
tering parameter cuts for the first polarimeter are always counted. In this subset of
events, if the chosen track in the second polarimeter also passes the scattering pa-
rameter cuts relative to the chosen track in the first polarimeter, the event is counted
a second time using the angles of the second track relative to the first, since the two
independent scatterings constitute two independent measurements of the polarization
of the incident proton23.

Events which fail the scattering cuts of the first polarimeter fall into two basic
categories; correctly-tracked events with ϑ outside the useful range, and events which
are mistracked in the first polarimeter. Events in the first category may be further
broken down into small-angle (i.e., Coulomb) and large-angle scattering. Small-angle
events as measured in the first polarimeter make up the majority of useful scattering
events in the second polarimeter. Large-angle events in the first polarimeter, when
properly tracked, are found not to contribute significantly to the figure of merit of
the second polarimeter. Events which fail the cuts for FPP1 because of mistracking,

23Counting two polarization-analyzing scattering events for a single incident proton assumes that
the polarization of the proton after the first scattering is unchanged. Examination of the asymmetry
of the second scattering reveals this assumption to be valid for sufficiently small (but non-zero) angles
of the first scattering. In the analysis, the analyzing power for the second scattering was measured
as a function of the angle of the first scattering to determine the appropriate cut.
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though impossible to unambiguously identify, make up a significant fraction of all
events. A strong signature for mistracking, as discussed previously, is the reconstruc-
tion of zclose to a point inside the drift chambers, which occurs quite frequently. These
events are rejected from the FPP1 asymmetry analysis. In such cases, the event may
still be detected in the second polarimeter with scattering angles and closest approach
parameters compatible with scattering in the second analyzer when compared to the
HMS track. Such events are assumed to be single-scattering events even if the cho-
sen (smallest-angle) track in the first polarimeter is incompatible with such a scenario
due to either mistracking or an incorrect choice made by the track selection algorithm
from among multiple tracks, and are counted in the analysis as such.

An important dichotomy exists in the data between single-track and multiple-track
events. Events with multiple reconstructed tracks in the polarimeter in question
exhibit much lower analyzing power than events with only a single reconstructed
track24. In fact, the asymmetry of multi-track events is so much smaller than the
single-track asymmetry that including multi-track events in the asymmetry analysis
actually dilutes the overall figure of merit. Given this situation, a better figure of
merit is achieved by analyzing the single-track and multi-track events separately,
and combining the results after the fact. Multi-track events contribute a very small
fraction of the total figure of merit.
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(a) Single-track events.
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Figure 4-50: Helicity-difference asymmetry at the focal plane, Q2 = 8.5 GeV2. Fit
function is p0 cosϕ+ p1 sinϕ.

Figure 4-50 illustrates the stark difference between the single-track and multiple-
track asymmetries at Q2 = 8.5 GeV2. In this case, the multiple-track asymmetry is

24A single-track event for the first polarimeter is defined as an event with exactly one reconstructed
track in the first chamber pair, regardless of how many tracks were found in the second chamber
pair, while a single-track event in the second polarimeter is defined as an event with exactly one
reconstructed track in the second chamber pair and either one track or no track found in the first
chamber pair. A multiple-track event in the first polarimeter has two or more reconstructed tracks
by definition, while a multiple-track event in the second polarimeter has two or more reconstructed
tracks in either the first or second chamber pair.
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approximately four times smaller than the single-track asymmetry. Approximately
42% of all events at this Q2 have multiple tracks. The statistical figure of merit of
the asymmetry is proportional to the product of the number of events and the square
of the amplitude of the asymmetry; i.e., the analyzing power. In this example, the
ratio of the figure of merit of the combined asymmetry to that of the single-track
asymmetry becomes

Ay,eff = (fsingleAy,single + fmultiAy,multi) (4.111)

≈ 0.725Ay,single (4.112)

NtotA
2
y,eff

NsingleA2
y,single

≈ 0.91 (4.113)

demonstrating how the dilution of the combined asymmetry outweighs the number
of added events, leading to the decision to analyze single and multiple-track events
separately. It is worth pointing out that although the amplitude of the multi-track
asymmetry is much smaller than that of the single-track asymmetry, the phase shifts
of the two asymmetries are compatible, as they should be since they measure the same
polarization components. It appears that reactions in the CH2 producing multiple
particles simply have lower analyzing power than single-particle reactions such as elas-
tic nuclear scattering. While it is certainly true that track reconstruction difficulties
could be partially responsible for the reduced asymmetry of multiple-track events,
the fact that the difference in the asymmetry was observed to be largely independent
of the various track reconstruction strategies attempted suggests that either

• The difficulties in correctly reconstructing multiple tracks in drift chambers
of this design at single-particle rates typical of experiment E04-108 are insur-
mountable, or. . .

• The reduced asymmetry of multiple-track events is a real, irreducible physi-
cal effect, reflecting the fact that reactions in CH2 producing multiple charged
particles detected in the drift chambers simply have less analyzing power than
single-particle reactions such as elastic ~p+CH2 scattering.

The determination of the exact cause of the single-track/multi-track dichotomy is a
rather involved project that goes beyond the scope of this thesis, but may prove to
be an important consideration for the design of future experiments requiring proton
polarimetry.

Fourier Analysis

The helicity-dependent asymmetries at the focal plane, which are related to the
polarization transfer observables, can be obtained by direct Fourier (i.e., moment)
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analysis of the helicity difference distribution:∫ 2π

0

fdiff (ϕ) cosϕdϕ = hAyP
fpp
y (4.114)∫ 2π

0

fdiff (ϕ) sinϕdϕ = −hAyP fpp
x (4.115)

The integrals can be estimated by sums over all events:

∫ 2π

0

fdiff (ϕ) cosϕdϕ =
1

N+
0

N+
0∑

i=1

cosϕi −
1

N−0

N−0∑
i=1

cosϕi (4.116)

∫ 2π

0

fdiff (ϕ) sinϕdϕ =
1

N+
0

N+
0∑

i=1

sinϕi −
1

N−0

N−0∑
i=1

sinϕi (4.117)

where the sums are over all events of a given helicity state. The statistical uncertainty
in the individual cosϕ and sinϕ moments is determined by

σ2 (cosϕ) =
s2(cosϕ)

N
=

1

N
(cosϕ− cosϕ)2

=
1

N

 1

N

∑
i

cos2 ϕi −

(
1

N

∑
i

cosϕi

)2
 (4.118)

σ2
(
sinϕ

)
=

s2(sinϕ)

N
=

1

N

(
sinϕ− sinϕ

)2

=
1

N

 1

N

∑
i

sin2 ϕi −

(
1

N

∑
i

sinϕi

)2
 (4.119)

leading to uncertainties in the focal plane asymmetries given by

σ
(
hAyP

fpp
y

)
=

√
σ2

+ (cosϕ) + σ2
− (cosϕ) (4.120)

σ
(
hAyP

fpp
x

)
=

√
σ2

+

(
sinϕ

)
+ σ2

−
(
sinϕ

)
(4.121)

where σ± is the uncertainty in the given moment for the ± helicity state. This method
of extracting the asymmetry at the focal plane has the advantage of an “exact”
cancellation of the false asymmetry, but it does not give the physical polarization
transfer observables, because the precession of the proton spin in the HMS has not
been accounted for.

4.3.2 Spin Precession

In equations (4.106) and (4.108), the polarizations P fpp
y and P fpp

x represent the
transverse polarization of the scattered proton after undergoing precession through
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the magnets of the HMS. They are related to the physical transferred polarization
components by a rotation that depends on the trajectory of the scattered proton
entering the HMS. In the Heisenberg picture in non-relativistic quantum mechanics,
the time evolution of the spin operator S of a particle of mass m and gyromagnetic
ratio g in a magnetic field B is given by

dS

dτ
=

ge

2m
S×B (4.122)

This equation of motion applies in the rest frame of the particle. To obtain the
corresponding equation of motion for protons moving at relativistic speeds in the lab
frame, two relativistic effects must be accounted for.

First, the Heisenberg equation of motion (4.122) is assumed to hold in the in-
stantaneously comoving rest frame of the proton. The magnetic field in (4.122) is
understood to be the magnetic field in the proton rest frame, which is modified by
the boost from the lab frame, in which it is static. Secondly, since the proton is accel-
erating in the magnetic field, its instantaneous rest frame is also accelerating, which
leads to the effect known as Thomas precession in which the rest frame spin precesses
in the plane defined by the velocity and acceleration vectors of the particle. The
acceleration of the proton is also determined by the magnetic field. Combining the
effects of Thomas precession and the non-relativistic quantum-mechanical evolution
of the spin in the rest-frame magnetic field, the fully relativistic equation of motion
for the spin precession[132] is obtained25.

dS

dt
=

e

mγ
S×

[g
2
B‖ +

(
1 + γ

(g
2
− 1
))

B⊥

]
(4.123)

In equation (4.123), which is known as the Thomas-B.M.T. equation after Bargmann,
Michel, and Telegdi, the proper time τ has been replaced by the lab time t, γ is the
relativistic boost factor of the particle, B‖ is the component of the magnetic field
parallel to its velocity, and B⊥ is the component of the magnetic field perpendicular
to its velocity. The rotation of the proton spin in the magnetic field of the HMS is
calculated by integrating (4.123) over the full magnetic length of the spectrometer
traversed by each proton. In the following discussion, two model-independent ap-
proximate methods for calculating the precession will be presented alongside the full
calculation of the precession using the COSY model of the HMS.

Ideal Dipole Approximation

The proton trajectory after transport through the HMS is measured very precisely,
and its trajectory at the target is reconstructed precisely using the well-known trans-

25Equation (4.123) is true for the precession of a particle with charge e such as the proton. The
equation of spin precession in a magnetic field for the neutron, on the other hand, is simpler. Since
the neutron does not accelerate in a magnetic field, its spin precession is given by (4.122), up to a
factor γ for time dilation and with B understood to mean the rest frame magnetic field, which is
obtained from the lab magnetic field by a Lorentz boost along the neutron momentum.
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port matrix of the spectrometer. The evolution of the proton trajectory in the HMS
is governed by the Lorentz force law. Since the magnetic field does no work on the
proton, its velocity vector changes but its speed does not change. The equation of
motion of the unit trajectory vector v̂ is

dv̂

dt
=

e

mγ
v̂ ×B (4.124)

Comparing the equation of motion for the proton’s velocity to the equation of motion
for its spin, there is a term e

mγ
S × B⊥ which behaves identically to the velocity26.

The quantity of interest is the precession of the orientation of the proton polarization
relative to its velocity, so it is natural to subtract the term which corresponds to a
rotation identical to that of the velocity. Neglecting the magnetic field component
parallel to the velocity, which is a reasonably good approximation for a spectrometer
with small angular acceptance such as the HMS, the spin precession relative to the
velocity becomes

dS

dt
= γ

(g
2
− 1
)[ e

mγ
S×B⊥

]
(4.125)

which differs from (4.124) only by a factor of γκp, where κp ≈ 1.79 is the proton’s
anomalous magnetic moment. In an idealized picture of the HMS, its horizontal
angular acceptance is infinitesimally small, and the HMS dipole is a region of uniform
magnetic field with no fringe field at its edges, and all protons move on planar, circular
trajectories in this idealized field. The total deflection angle of the proton trajectory
in this magnetic field is given by the 25-degree central bend angle of the HMS plus
the difference in vertical angle between its initial (reconstructed) and final (measured)
trajectories: θbend = Θ0 + θtar − θfp, where Θ0 = 25◦ is the HMS central bend angle,
θtar = arctanx′tar is the vertical angle of the proton trajectory at the target, and
θfp = arctanx′fp is the vertical angle of the proton trajectory at the focal plane.

According to equation (4.125), the polarization precesses relative to the velocity
by an angle χθ ≡ γκpθbend. Elastically scattered protons have transferred polarization
parallel and perpendicular to their momentum in the reaction plane, and no polariza-
tion normal to the reaction plane. In the ideal dipole approximation, the transverse
component of the polarization does not rotate, and the longitudinal component of the
polarization rotates through an angle−χθ about the y axis of the transport coordinate
system:  P fpp

t ≡ P fpp
y

P fpp
n ≡ −P fpp

x

P fpp
l ≡ P fpp

z

 =

 1 0 0
0 cosχθ sinχθ
0 − sinχθ cosχθ

 Pt
Pn = 0
Pl

 (4.126)

The identification of P fpp
n with −P fpp

x and P fpp
t with P fpp

y in equation (4.126) reflects

26Recall B⊥ was defined as the magnetic field component perpendicular to the velocity, so that
v̂ ×B = v̂ ×B⊥.
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the fact that in the coordinate system of the reaction plane (which approximately
coincides with the horizontal plane), Pt is measured along the +x axis, which (ap-
proximately) coincides with the +y axis of transport coordinates, and Pn is measured
along the +y axis, which corresponds to the −x axis of transport coordinates. In this
idealized approximation, the small rotation of the reaction plane with respect to the
horizontal plane due to the out-of-plane angle of the scattered proton is ignored.

The azimuthal scattering angle ϕ is reconstructed from the measured track in the
FPP drift chambers with respect to a coordinate system which is different for each
focal plane trajectory, with the z axis along the proton trajectory v̂, the y axis parallel
to the transport yz plane and perpendicular to v̂, and the x axis defined as x̂ = ŷ× v̂.
In the ideal dipole approximation, the small rotations of the focal plane trajectory
relative to the transport coordinate system are ignored, and (P fpp

x , P fpp
y ) of equation

(4.126) are assumed to be identical to those appearing in the expression (4.108) for
the focal plane asymmetry. In this approximation, the helicity difference distribution
becomes

fdiff (ϕ) =
hAy
π

[Pt cosϕ+ (cosχθPn + sinχθPl) sinϕ]

=
hAy
π

[Pt cosϕ+ sinχθPl sinϕ] (4.127)

where on the second line the Born approximation result of zero normal polarization
in elastic scattering has been included.

Q2, GeV2 p0, GeV/c χθ,
◦

2.5 2.0676 108.5
5.2 3.5887 177.2
6.7 4.4644 217.9
8.5 5.4070 262.2

Table 4.6: Central precession angles χθ for the HMS as a function of central momen-
tum.

Table 4.6 shows the value of χθ corresponding to the central bend angle of the
HMS for the kinematics of this experiment. The ideal dipole approximation shows
that the optimal value of χθ to measure the form factor ratio is |sinχθ| ≈ 1, since
the sensitivity of the focal plane asymmetry to Pl is maximized. This condition
corresponds to maximal rotation of the longitudinal polarization at the target into
transverse polarization at the focal plane, which can be measured. At Q2 = 8.5 GeV2,
this condition is very nearly satisfied with a central χθ near 270 degrees. On the other
hand, at 5.2 GeV2, χθ is near 180 degrees, which is the worst case for measuring Pl.
This situation is not as hopeless as it may seem, however, since there is sufficient
variation of χθ within the acceptance of the HMS to measure Pl with reasonable
precision even at the least favorable central precession angle.
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Geometric Approximation

The ideal dipole approximation is a good approximation to the full precession only
to the extent that the precession angle in the non-dispersive plane either vanishes
or is symmetrically distributed such that its acceptance-averaged value is near zero.
In practice, neither condition is met, since the angular acceptance and the target
length are both finite, and the elastic scattering cross section is not uniform, but
varies strongly with the scattering angle, which is closely related to the trajectory
bend angle (and thus the precession) in the non-dispersive plane.

In order to derive a model-independent approximation to the full dispersive and
non-dispersive precession, the assumption B‖ = 0 is retained so that the equation of
motion for the precession relative to the velocity is still given by (4.125), and several
additional assumptions are made. For an infinitesimal deflection of the trajectory
by dθ in the dispersive plane or dφ in the non-dispersive plane, the spin precesses
by γκpdθ or γκpdφ in the same plane (relative to the velocity). If the trajectory is
planar, then the small rotations of both the trajectory and the spin are additive,
and this microscopic version of the ideal dipole approximation also holds for the
total trajectory bend and the total precession; i.e., χθ =

∫ ∆θ

0
γκpdθ = γκp∆θ and

χφ =
∫ ∆φ

0
γκpdφ = γκp∆φ. In general, the full trajectory through the QQQD magnet

arrangement of the HMS is not strictly planar, but instead consists of simultaneous,
coupled deflections in the dispersive and non-dispersive directions, and the full equa-
tion of motion (4.123) must be numerically integrated over the entire trajectory to
obtain the spin rotation for a given incident trajectory.

In the geometric approximation, however, it is assumed that the trajectory expe-
riences small, independent, additive deflections in the dispersive and non-dispersive
planes, and the dipole approximation is assumed to hold separately for the precession
in each plane. In this approximation, the full rotation of the spin is characterized by
angles χθ and χφ given by27

χθ ≡ γκp (Θ0 + θtar − θfp) (4.128)

χφ ≡ γκp (φfp − φtar) (4.129)

For the HMS, this turns out to be a quite reasonable approximation. Most of
the deflection of the trajectory in the non-dispersive plane takes place in the three
quadrupoles preceding the dipole and most of the deflection of the trajectory in the
dispersive plane takes place in the dipole. And although the trajectory is also de-
flected in the dispersive plane in the quadrupoles, these rotations are generally small
compared to the main dipole precession, and their average effect on the non-dispersive
precession is very nearly zero, since the distribution of the out-of-plane angle of tracks
entering the HMS is very nearly symmetric, unlike the generally asymmetric distri-

27The reason for the sign inversion between θtar − θfp in the expression for χθ and φfp − φtar in
the expression for χφ is that both angles are defined to be positive along the deflection direction
of the trajectory. For φ, the deflection direction is the same as the +φ direction, but since ∆θ is
positive for downward deflection angles, and the central bend angle Θ0 is vertically upward, χθ must
be defined with the signs of θtar and θfp reversed.
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bution of the in-plane angle.

The total rotation of the spin corresponding to dispersive and non-dispersive pre-
cession angles χθ and χφ becomes P fpp

t = P fpp
y

P fpp
n = −P fpp

x

P fpp
l = P fpp

z

 =

 cosχφ 0 sinχφ
− sinχφ sinχθ cosχθ cosχφ sinχθ
− sinχφ cosχθ − sinχθ cosχφ cosχθ

 Pt
Pn = 0
Pl


(4.130)

which is simply the mathematical expression of the approximation that the total
spin precession in the HMS consists entirely of a rotation in the horizontal plane by
angle χφ in the three quadrupoles, which mixes Pt and Pl, followed by a rotation
in the vertical plane by angle χθ, which mixes P ′l and Pn. Again, this turns out to
be a very good approximation to the full precession because of the QQQD magnet
arrangement of the HMS, for which the assumptions leading to (4.130) are more nearly
satisfied than in other, more complicated magnetic systems[133]. The advantage of
this approximation is its model independence. The spin transport matrix for each
event is a simple function of well-known quantities–the total trajectory bend angles in
the dispersive and non-dispersive planes, and the momentum (through the γ factor),
making it particularly useful for the estimation of systematic uncertainties.

Working again under the assumption of zero normal polarization in elastic scat-
tering, the helicity-difference asymmetry at the focal plane in terms of χθ and χφ
becomes:

fdiff (ϕ) =
hAy
π

[
(cosχφPt + sinχφPl) cosϕ+

(cosχφ sinχθPl − sinχφ sinχθPt) sinϕ
]

(4.131)

COSY Spin Transport Matrix

To perform the integration of equation (4.123), the COSY[127] model of the HMS
was used. Coefficients of the polynomial expansion of the forward spin transport
matrix in powers of xtar, ytar, x

′
tar, y

′
tar, and δ were calculated up to fifth order. The

expansion is given by

Mij(xtar, ytar, x
′
tar, y

′
tar, δ) =

α+β+λ+µ+ν≤5∑
α,β,λ,µ,ν=0

Cαβλµν
ij (xtar)

α(ytar)
β(x′tar)

λ(y′tar)
µ(δ)ν

(4.132)

where Mij with i, j = x, y, z is the matrix element coupling the ith component of the
spin at the focal plane to the jth component of the spin at the target.

The rotation expressed by the expansion (4.132) takes place in the fixed trans-
port coordinate system rather than the comoving coordinate system of the proton
trajectory. To obtain the correct expression for the total rotation of the spin from
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the target to the focal plane, two additional rotations must be accounted for. First,
the reaction-plane polarization components must be expressed in transport coordi-
nates before calculating the COSY sums for each matrix element. This rotation,
denoted R1, multiplies M from the right. The combined rotation MR1 transports
the polarization components from the reaction plane to the focal plane in transport
coordinates. Finally, since the polarization components P fpp

x and P fpp
y appearing in

the expression for the asymmetry are in the comoving coordinate system of the pro-
ton trajectory coinciding with the definition of the azimuthal angle ϕ, one additional
rotation is required, which is denoted R2.

The reaction plane is defined by the beam momentum k and the momentum
transfer q. The definitions of Pt and Pl in the derivation in chapter 1 are such that
the normal polarization is taken to be positive along the direction of q × k, and
the transverse polarization is taken to be positive along the direction (q× k) × q,
which points in the direction of decreasing proton scattering angle θp. To obtain the

rotation R1, the t̂, n̂, and l̂ axes must be expressed in transport coordinates. These
unit vectors are defined in terms of k̂ = k/ |k| and q̂ = q/ |q| as follows:

l̂ ≡ q̂ (4.133)

n̂ ≡ q̂ × k̂∣∣∣q̂ × k̂∣∣∣ (4.134)

t̂ ≡ n̂× l̂ (4.135)

In transport coordinates, k̂ and q̂ are given by

k̂ = (0, sin ΘHMS, cos ΘHMS) (4.136)

q̂ =
1√

1 + x′2tar + y′2tar
(x′tar, y

′
tar, 1) (4.137)

The rotation R1 from reaction plane coordinates to transport coordinates (x, y, z) is
then given by the matrix whose columns are equal to the unit vectors (t̂, n̂, l̂): Px

Py
Pz

 =

 t̂x n̂x q̂x
t̂y n̂y q̂y
t̂z n̂z q̂z

 Pt
Pn
Pl

 (4.138)

A similar procedure is used to calculate R2. The unit vectors x̂, ŷ, and ẑ of the local
coordinate system defined by the proton trajectory are given in transport coordinates
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by

ẑ =
1√

1 + x′2fp + y′2fp

(
x′fp, y

′
fp, 1

)
(4.139)

ŷ =
ẑ × x̂transport
|ẑ × x̂transport|

(4.140)

x̂ = ŷ × ẑ (4.141)

where x̂transport = (1, 0, 0) is the fixed x axis of the transport coordinate system. The
rotation R2 is then simply the matrix whose rows are equal to the unit vectors x̂, ŷ,
and ẑ:  P fpp

x

P fpp
y

P fpp
z

 =

 x̂x x̂y x̂z
ŷx ŷy ŷz
ẑx ẑy ẑz

 Px
Py
Pz


transport

(4.142)

The product of rotations S ≡ R2MR1 gives the total rotation of the spin from the
reaction plane to the focal plane in the correct coordinate system. In terms of the
total rotation S, the polarization components measured by the FPP are related to
the physical polarization transfer observables as follows: P fpp

x

P fpp
y

P fpp
z

 =

 Sxx Sxy Sxz
Syx Syy Syz
Szx Szy Szz

 Pt ≡ P tar
x

Pn ≡ P tar
y

Pl ≡ P tar
z

 (4.143)

where the identification of (t̂, n̂, l̂) with the (x, y, z) axes of the reaction-plane coor-
dinate system described in chapter 1 has been made explicit.

To see that the spin really behaves according to equation (4.123), it is instructive
to bin the data as a function of the dispersive and non-dispersive precession angles
χθ and χφ defined above and plot the measured asymmetries as a function of these
angles. Figure 4-51 shows the measured normal asymmetry P fpp

x at the focal plane
as a function of χθ at Q2 = 5.2 GeV 2, for which the precession angle corresponding
to the 25◦ central bend angle of the HMS is close to 180 degrees. In the ideal dipole
approximation, the longitudinal polarization at the target precesses by χθ in the xz
plane, the transverse polarization does not rotate, and the normal polarization is zero.
Therefore, in this approximation, the normal polarization at the focal plane should
cross zero at χθ = 180◦, which indeed appears to be the case. The data in figure
4-51 were fit to the form Pn = a sin(χθ + δ), and the phase shift δ differs from π
by 6.3 ± 15.9 mrad, i.e., the zero crossing is consistent with π. Small corrections to
the zero crossing arise due to deviations from the ideal dipole approximation. The
primary mechanism for a displacement of the zero crossing is the extent to which the
transverse polarization mixes with normal polarization in the quadrupoles before the
main dipole precession, but this effect is quite small, because of the optical properties
of the HMS and because in this case the magnitude of the transverse polarization is
approximately a factor of ten smaller than the longitudinal polarization. Any possible
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Figure 4-51: Normal asymmetry as a function of the dispersive plane precession angle
χθ, Q

2 = 5.2 GeV 2. Red points are the data with statistical errors. Blue points are
hAy (SxzPz + SxxPx), where Ay is the average analyzing power of the sample, h
is the beam polarization, Pz = Pl and Px = Pt are the longitudinal and transverse
polarization components at the target, and the matrix elements Sxz and Sxx are those
calculated by COSY.

offset of the expected or measured zero crossing from π is certainly not distinguishable
within the statistical uncertainty of the data shown in figure 4-51. The figure also
shows the expected variation of the asymmetry across the acceptance calculated using
COSY, which agrees very well with the data. The transverse asymmetry also varies
across the acceptance in the predicted fashion. Figure 4-52 shows the measured
transverse asymmetry as a function of χφ at Q2 = 8.5 GeV 2 (red points) together
with the variation predicted by COSY.

Before discussing the extraction of the polarization observables from the mea-
sured asymmetry and the calculated spin precession, some additional remarks on the
geometric approximation are needed. The precession angles χθ and χφ as defined
above are understood to represent precession relative to the trajectory. The rotation
matrix given in (4.130) does not include the rotations R1 from the reaction plane to
transport coordinates and R2 from transport coordinates to comoving coordinates at
the focal plane. As presented, the geometric approximation should not include these
extra rotations, since the dispersive and non-dispersive precessions χθ and χφ are
understood to take place in the comoving coordinates of the proton. This approach is
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Figure 4-52: Transverse asymmetry as a function of the non-dispersive precession
angle χφ, Q2 = 8.5 GeV 2. Red points are data with statistical errors. Blue points
are hAy (SyzPz + SyxPx), where Ay is the average analyzing power, h is the beam
polarization, Px = Pt and Pz = Pl are the transverse and longitudinal polarization
components at the target, and the matrix elements Syx and Syz are calculated by
COSY.

not entirely satisfactory, since the orientations of the trajectory and the polarization
components with respect to the fixed dispersive and non-dispersive planes of the HMS
are constantly changing, and even the initial, reaction-plane longitudinal (transverse)
polarization component does not lie strictly in the dispersive (non-dispersive) plane.
Furthermore, it is not at all obvious that P fpp

x and P fpp
y correspond exactly to the

components of the polarization assumed to undergo precession by χθ and χφ. Though
it is perfectly reasonable to neglect these conceptually troubling issues since (4.130)
is only meant as an approximation, an alternative approach is possible that improves
its accuracy and logical consistency.

Instead of using equation (4.130) alone, the precession can be viewed as occuring in
the fixed transport coordinate system, as in the COSY expansion. In this approach,
the total rotation S is given by R2MR1, with M given by a modified version of
(4.130), and with the precession angles redefined as

χθ ≡ γκp (Θ0 + θtar − θfp) + θtar − θfp
χφ ≡ γκp (φfp − φtar) + φfp − φtar (4.144)

254



In this picture, the small rotations from reaction-plane to transport coordinates and
from transport coordinates to comoving coordinates at the focal plane are applied,
and since the precession is now assumed to take place in a fixed coordinate system,
the precession angles χθ and χφ must now be understood as absolute precession angles
(in transport coordinates).

To obtain absolute precession angles which correspond to the relative precessions of
the geometric approximation, the required modification is to simply add the trajectory
bend angles in the dispersive28 and non-dispersive planes to χθ and χφ, as in equations
(4.144). With this modification, the coordinate system ambiguity is eliminated and
the extra rotations R1 and R2 are no longer neglected. While neither approximation
should be thought of as representing the true precession, and the differences between
the two approximations are typically quite small, the latter approximation tends to
give results for the form factor ratio that are in slightly better agreement with the
full COSY calculation.

4.3.3 Maximum-Likelihood Analysis of Polarization Observ-
ables

The experimental asymmetry for the ± helicity state in terms of the reaction-plane
polarization components P and the total spin rotation S is given by

N±(P, S) =
N±0 ε

2π

[
1 +

(
a1 ± hAy

∑
j=x,z

SyjPj + AySyyPy

)
cosϕ+(

b1 ∓ hAy
∑
j=x,z

SxjPj − AySxyPy

)
sinϕ+

+a2 cos 2ϕ+ b2 sin 2ϕ+ . . .

]
(4.145)

The asymmetry (4.145) allows for the possibility of an induced polarization Py, which
is independent of the beam polarization and helicity state. Although Py is identically
zero in elastic scattering in the Born approximation, a non-zero Py is still possible due
to either inelastic background processes with non-zero induced polarization, effects
beyond the Born approximation, or false asymmetries which mimic induced polariza-
tion. The p and ϑ dependence of ε and Ay are implicit. The likelihood function of the
polarizations P is obtained by forming the product of (4.145) over all contributing

28In transport coordinates, the central bend angle Θ0 = 25◦ corresponds to a trajectory bend of
zero, so the correct modification to χθ in this case is to add ∆θ only, not ∆θ+ Θ0. Rotation by Θ0

is built in to the definition of the coordinate system.

255



events:

L(P) =
1

2π

Nevent∏
i=1

[
1 +

(
a1 + hεiA

(i)
y

∑
j=x,z

S
(i)
yj Pj + A(i)

y S
(i)
yyPy

)
cosϕi +(

b1 − hεiA(i)
y

∑
j=x,z

S
(i)
xj Pj − A(i)

y S
(i)
xyPy

)
sinϕi +

+a2 cos 2ϕi + b2 sin 2ϕi + . . .

]
(4.146)

In the likelihood function (4.146), the sign of the beam helicity for each event is
absorbed into the factors εi. The analyzing power Ay, the spin rotation S, and the
azimuthal scattering angle ϕ are unique for each event. The goal of the analysis is
to find the values of P which maximize L. As is common practice, the product is
converted into a sum by forming the logarithm lnL. Since the natural logarithm
is a monotonically increasing function of its argument, the maximum of lnL (or,
alternatively, the minimum of − lnL) coincides with the maximum of L, with the
advantage that sums over all events are much more convenient to work with for this
particular problem than products over all events.

The maximum-likelihood estimates of the polarizations P are found by solving
the three simultaneous equations

∂ lnL
∂Pj

= 0, j = x, y, z (4.147)

On the way to the solution of the problem, it is helpful to regroup the expression in
square brackets in (4.146) using a convenient shorthand:[

. . .

]
i

=

[
1 + λ

(i)
0 +

∑
j=x,y,z

λ
(i)
j Pj

]
(4.148)

where λ0 represents the sum of all false asymmetry terms and λj represents the
coefficient of polarization component Pj in the expression for the contribution of the
ith event to the asymmetry:

λ
(i)
0 ≡ a1 cosϕi + b1 sinϕi + a2 cos 2ϕi + b2 sin 2ϕi + . . . (4.149)

λ(i)
x ≡ hεiA

(i)
y

(
S(i)
yx cosϕi − S(i)

xx sinϕi
)

(4.150)

λ(i)
y ≡ A(i)

y

(
S(i)
yy cosϕi − S(i)

xy sinϕi
)

(4.151)

λ(i)
z ≡ hεiA

(i)
y

(
S(i)
yz cosϕi − S(i)

xz sinϕi
)

(4.152)
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Using this notation, the logarithm of the likelihood function becomes

lnL = ln
1

2π
+

Nevent∑
i=1

ln

[
1 + λ

(i)
0 +

∑
j=x,y,z

λ
(i)
j Pj

]
(4.153)

and the partial derivatives become

0 =
∂ lnL
∂Pj

=
Nevent∑
i=1

∂

∂Pj

(
ln

[
1 + λ

(i)
0 +

∑
j=x,y,z

λ
(i)
j Pj

])
(4.154)

The coupled, nonlinear system of equations (4.154) is formidable and does not lend
itself to a simple solution. However, if the asymmetry is sufficiently “small”, it can be
converted to a system of linear equations by Taylor-expanding the logarithm about
x = 0:

ln(1 + x) =
∞∑
n=0

dn

dxn
ln(1 + x)

∣∣∣∣
x=0

xn

n!
= x− x2

2
+Ox3 + . . . (4.155)

If only the terms up to second order are retained, then the partial derivatives are
linear in the polarizations Pj:

∂ lnL
∂Pj

= 0 =
Nevent∑
i=1

[
λ

(i)
j −

(
λ

(i)
0 +

∑
k=x,y,z

λ
(i)
k Pk

)
λ

(i)
j

]
(4.156)

⇒
Nevent∑
i=1

λ
(i)
j

(
1− λ(i)

0

)
=

Nevent∑
i=1

∑
k=x,y,z

λ
(i)
j λ

(i)
k Pk (4.157)

This system of linear equations can be written as a matrix equation b = AP thusly:

Nevent∑
i=1


λ

(i)
x

(
1− λ(i)

0

)
λ

(i)
y

(
1− λ(i)

0

)
λ

(i)
z

(
1− λ(i)

0

)
 =

Nevent∑
i=1


(
λ

(i)
x

)2

λ
(i)
x λ

(i)
y λ

(i)
x λ

(i)
z

λ
(i)
y λ

(i)
x

(
λ

(i)
y

)2

λ
(i)
y λ

(i)
z

λ
(i)
z λ

(i)
x λ

(i)
z λ

(i)
y

(
λ

(i)
z

)2


 Px

Py
Pz


(4.158)

Each element of A and b is a sum over all events of combinations of the various
coefficients λ. The solution of the system is obtained by inverting the matrix A. The
solution vector is P = A−1b, and the covariance matrix is given by A−1. In particular,
the variances of the polarization components are given by the diagonal elements of
the covariance matrix:

∆Pj =
√

(A−1)jj (4.159)

Of interest for the extraction of the form factor ratio is the ratio of Px(= Pt) and Pz(=
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Pl). Adopting the shorthand K = Ee+E′e
2Mp

tan θe
2

for the kinematic factor appearing in

the expression for the form factor ratio and K for the average of this factor over all
contributing events, the extracted form factor ratio is given by

µp
Gp
E

Gp
M

= −µpK
Pt
Pl

(4.160)

The covariance29 of Pt and Pl is given by ρ = (A−1)xz. The statistical error on
R = µpG

p
E/G

p
M is given by

(
∆R

R

)2

=

√(
∆Pt
Pt

)2

+

(
∆Pl
Pl

)2

− 2
ρ

PtPl
(4.161)

where the uncertainty in the kinematic factor K has been neglected. The correlation
term is generally quite small compared to the quadrature sum of the variances of Pt
and Pl and has a negligible impact on the statistical uncertainty in the form factor
ratio.

It is reasonable to ask whether the linearization of the problem achieved by trun-
cating the Taylor expansion of ln(1 + x) at second order has any significant effect
on the results. The variable x corresponds to the asymmetry. In this experiment,
the helicity-dependent asymmetry determined by the transferred polarization and the
analyzing power, is never greater than about 15% for events near the maximum of the
analyzing power distribution, and never more than about 10% when averaged over the

full acceptance. At x = −0.15, the fractional difference
x−x

2

2

ln(1+x)
− 1 is -0.78%, while at

x = +0.15, it is -0.72%. It appears, then, that the expansion of the log-likelihood func-
tion to second order is a very good approximation to the true log-likelihood function
for the full range of asymmetries measured in this experiment. However, the relevant
question is not the accuracy of the approximation to lnL but rather the effect of this
approximation on the accuracy of the maximum-likelihood values of the parameters.
The linearization (4.158) of equations (4.154) leads to estimators for the polarization
P̂ that are mathematically equivalent to those of the “weighted sum” method de-
scribed in section 2.2 of [134], in which the authors showed that these estimators are
unbiased and very nearly as efficient as the true maximum-likelihood estimators over
a wide range of values of the asymmetry which comfortably includes the ±15% region
of this experiment. Therefore, it was concluded that this approximation engenders
a negligible loss of information compared to an exact maximum-likelihood estimate
while dramatically simplifying the calculations involved.

Cancellations

The matrix elements on the right hand side of equation (4.158) are proportional
to λ2, while the components of the vector on the left hand side are proportional
to λ(1 − λ0). The λ’s are proportional to the analyzing power Ay and, in the case

29The matrix A defined in (4.158) and its inverse are always symmetric
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of the transferred polarization components Px and Pz, the beam polarization. The
beam polarization is known to within 1% or less from the Möller measurements (see
table 3.3). The analyzing power, on the other hand, is not a priori known, although
dedicated measurements of the ~p + CH2 analyzing power covering the momentum
range of this experiment have been previously performed[120]. For the measurement
of the form factor ratio it is not even necessary to know the analyzing power since it
enters the ratio Pt/Pl in both the numerator and the denominator and cancels out.
The same is true of the beam polarization. Given the independence of the extracted
form factor ratio on the analyzing power used as input to the likelihood analysis, and
the fact that the Born approximation values of Pt(1.93) and Pl(1.92) depend only
on the ratio of form factors, the analyzing power can be rigorously extracted from
the data of this experiment by comparing the extracted values of Pt and Pl to the
values Pt(r = GE/GM) and Pl(r = GE/GM) expected in the Born approximation.
The resulting analyzing power can then be used to improve the statistical precision
of the likelihood analysis in a second pass over the data as described below.

In section 4.3.1, the cancellation of the false asymmetries in the helicity difference
distribution fdiff (ϕ) was demonstrated. It is not obvious that the false asymmetry
appearing in the vector on the left hand side of equations (4.158) strictly cancels in
the determination of the maximum-likelihood estimators P̂ to all orders. Since the
factors λ

(i)
x and λ

(i)
z multiplying 1 − λ

(i)
0 are proportional to the sign of the beam

helicity εi and the numbers of incident protons in the + and − helicity states are
equal for all practical purposes of this experiment, the contribution of λ0 to the sums∑

i λx(1 − λ0) and
∑

i λz(1 − λ0) must be quite small. But it cannot generally be
assumed to vanish completely. The effect of the false asymmetry on the form factor
ratio was studied in several ways.

• The result of analyzing the data assuming λ0 = 0 was compared to the result of
analyzing the data with false asymmetry coefficients (a1, b1, a2, b2) obtained from
Fourier analysis of the helicity sum spectrum fsum(ϕ) included. The difference
between the uncorrected and corrected results indicates the size of the false
asymmetry effect.

• Both of the above results were compared to the value of the form factor ra-
tio obtained from Fourier analysis of the helicity difference spectrum fdiff (ϕ),
for which the cancellation of the false asymmetry is “exact”. The focal plane
asymmetries and their uncertainties were obtained by the method described in
section 4.3.1, and the precession was calculated using the acceptance-averaged
COSY matrix elements. Because the precession was not handled event-by-event
as in the likelihood analysis, differences between this method and the likelihood
method did not necessarily indicate the effect of a false asymmetry.

The cancellations of the beam polarization, the analyzing power, and the false asym-
metry in the extraction of Gp

E/G
p
M greatly reduce the systematic uncertainty in the

result. The primary remaining sources of systematic uncertainty are

• The uncertainty in the calculation of the spin precession in the HMS, which
consists of the uncertainties arising from errors in the reconstructed quantities
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used as input to the calculation, and uncertainties in the model of the HMS
used to derive the COSY expansion of the precession matrix elements.

• The uncertainty in the correction to the result arising from the inelastic back-
ground and its polarization.

• The uncertainty in the reconstructed scattering angles in the FPP, particularly
the azimuthal angle ϕ.

These and other, less significant uncertainties will be addressed in the sections that
follow.

4.3.4 Analyzing Power

The analyzing power is the momentum and angle-dependent constant of proportion-
ality between the polarization of the incident proton and the measured asymmetry.
If the proton polarization is known, then the size of the asymmetry measures the
analyzing power. In this experiment, the analyzing power is initially unknown. The
result of extracting the transferred polarization components assuming Ay = 1 mea-
sures the combinations hAyPt and hAyPl. The beam polarization h is known from the
Möller measurements. The form factor ratio is independent of the analyzing power.
The polarization components can be expressed in terms of the form factor ratio as

r ≡ GE

GM

(4.162)

Pt = −2
√
τ(1 + τ) tan

θe
2

r

r2 + τ
ε

(4.163)

Pl =
√
τ(1 + τ) tan2 θe

2

Ee + E ′e
Mp

1

r2 + τ
ε

(4.164)

so that the analyzing power can be obtained from the ratio of the measured polariza-
tion (assuming Ay = 1 in the analysis) to the predicted polarization for the measured
form factor ratio:

Ay =
Pmeas.
t

hPt(r)
=
Pmeas.
l

hPl(r)
(4.165)

with an uncertainty obtained by propagating the uncertainties in r, h, and the mea-
sured transverse and longitudinal asymmetries through the formulae (4.165). In the
results of this experiment, the longitudinal component Pl is typically “large” in mag-
nitude while the transverse component Pt is typically “small”, while the absolute
uncertainties on each component are similar, meaning Pl is usually measured with a
smaller relative uncertainty. This means that Pl usually provides the more precise
determination of the analyzing power. The measurements Ay(Pl) and Ay(Pt) are
combined in a weighted average which is typically dominated by Ay(Pl).

Examining the formula for Ay(Pl) in particular, the factor r2 + τ
ε

appears in the
numerator, while the denominator is independent of r. In this experiment, τ

ε
is a
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number significantly larger than 1, and r2 is typically a number significantly smaller
than 1, so Pl(r) (and thus Ay(Pl)) depends mainly on kinematic factors and is not
especially sensitive to r. Pt(r), on the other hand, is highly sensitive to r. The
uncertainty in Ay(Pl) is a function of the uncertainties in r, h, and Pmeas.

l :

∂Ay
∂r

=
2rPmeas.

l

ha
=

2

r

(
Ay −

τPmeas.
l

εha

)
(4.166)

a ≡
√
τ(1 + τ) tan2 θe

2

Ee + E ′e
Mp

(4.167)

∂Ay
∂h

= −Ay
h

(4.168)

∂Ay
∂Pmeas.

l

=
Ay

Pmeas.
l

(4.169)

⇒ ∆Ay(Pl)

Ay(Pl)
=

√([
1− τPmeas.

l

εhaAy

]
2∆r

r

)2

+

(
∆h

h

)2

+

(
∆Pmeas.

l

Pmeas.
l

)2

(4.170)

The analyzing power was obtained separately for single-track and multiple-track
events. Figure 4-53 shows the extracted single-track analyzing power for the kinemat-
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Figure 4-53: Ay(pT ) extracted from the data of this experiment.
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ics of E04-108, as a function of the transverse momentum pT = p sinϑ. The proton
momentum entering the expression for pT is corrected for energy loss. In terms of
pT , the angular distribution of Ay has a more or less constant shape which peaks at
around pT ≈ 0.4 GeV/c. Within uncertainties, the maximum analyzing power Amaxy

is proportional to p−1 as expected. The errors shown are statistical only, and do not
take into account the uncertainty in the beam polarization, which is assumed equal
to the value given in 3.3. For the purpose of this analysis, the absolute normalization
of the analyzing power distribution is unimportant. It is the relative variation of Ay
with scattering angle that is of interest.

Using the measured Ay(pT ) as an input to the likelihood analysis as an event
weight improves the statistical uncertainty by giving more weight to events with large
analyzing power and reducing the influence of events with lower analyzing power. This
is accomplished by fitting the following parametrization to the observed Ay(pT ):

Ay(pT ) = A0pT e
−bp2

T (4.171)

with adjustable parameters A0 and b which determine, respectively, the height and
the width of the curve. An adequate description of the measured analyzing power for
the entire interesting range of pT is achieved for all three kinematics.
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Chapter 5

Results

In this chapter, the results of experiment E04-108 are presented and the analysis
of uncertainties in the results is discussed. The thesis concludes with a discussion of
the implications of these results for the understanding of nucleon structure. For the
final analysis, the maximum likelihood method was used to extract the polarization
transfer observables at the target. Elastic event selection cuts were tuned to optimize
the tradeoff between the number of elastic events rejected and the amount of inelastic
background accepted. The spin transport model used for the final analysis is COSY.
The results of analyzing the data using the geometric approximation are presented for
comparison and used to estimate the model uncertainty in the precession calculation.

No radiative corrections have been applied to the results presented here. The
model independent radiative corrections to polarization transfer observables in elastic
eN scattering were calculated to lowest order in α by Afanasev et al.[135]. Model-
independent radiative corrections include internal and external Bremsstrahlung, vac-
uum polarization, and electron-photon vertex corrections, and can be calculated ex-
actly. Reversing the beam polarization cancels the external Bremsstrahlung correc-
tions to the polarization asymmetries, leaving only internal corrections that can affect
the asymmetries. The observed cross section can be expressed as a sum of two terms

σu,pobs. = (1 + δ)σu,p0 + σu,pR (5.1)

where u, p denote unpolarized and polarized cross sections, respectively, and σ0 is the
Born approximation cross section. The radiative corrections enter through the multi-
plicative factor (1 + δ), which comes from the vacuum polarization and vertex correc-
tions, and the additive radiation cross section σR, which comes from Bremsstrahlung.
The observed asymmetry is given by the ratio of the polarized and unpolarized cross
sections σpobs./σ

u
obs.. The multiplicative factor (1 + δ) can be large (10-30%), but it

cancels exactly in the numerator of the expression for the absolute correction to the
asymmetry. For this reason, even in situations where the radiative correction to the
cross section is large, the correction to the polarization asymmetry is still rather small.
The additive portion of the radiative correction will not generally cancel and can give
an important correction to the asymmetry of order several percent. However, this
correction can by reduced by applying a cut on the inelasticity defined either through
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missing energy or missing mass.
In [135], the relative radiative correction to the ratio of polarization components

was calculated for the kinematics of the Hall A recoil polarization experiments [33, 31],
resulting in corrections no larger than 1% for any of the kinematics. Given the high
degree of similarity between the Hall A experiments and this experiment, and the
tight inelasticity cuts applied in this analysis to both electron and proton kinematics
(see section 4.2.3) to suppress the inelastic background, model-independent radiative
corrections to the results presented in this thesis are expected to be at worst similar
to, and probably smaller than the 1% level predicted by [135], although the general
tendency for radiative corrections to increase with Q2 may somewhat contradict this
statement. Assuming relative corrections to the polarization ratio of 1% or less, the
absolute correction to the form factor ratio for the Q2 = 8.5 GeV 2 kinematics of this
experiment would be ∆R ≤ 0.002. Even assuming an order-of-magnitude larger than
expected radiative correction to the polarization ratio of 10%, the absolute correc-
tion to R = µpG

p
E/G

p
M would be 0.02. Compared to the statistical and systematic

uncertainties in the results of this experiment, relative radiative corrections to the
ratio Pt/Pl at the level of several percent are negligible. These corrections would only
become important for an experiment with much higher statistical precision.

The argument for neglecting radiative corrections to the results of experiment
E04-108 can be summarized as follows: The polarization asymmetries experience
partial cancellations of radiative corrections because they are ratios of cross sections.
The remaining correction comes from internal Bremsstrahlung, and is estimated to
be at the level of several percent. The ratio of polarization observables Pt/Pl is a
ratio of asymmetries, which in turn is a ratio of ratios of cross sections, and it expe-
riences radiative corrections which are even smaller than the corrections experienced
by the asymmetries themselves due to further partial cancellations in the ratio. When
inelasticity cuts are applied to the kinematics of both the measured electron and pro-
ton, these corrections can be further reduced, in principle, and the potential size of
these corrections is negligible compared to the uncertainties in the results themselves.
Having justified the decision not to apply radiative corrections to the data, the fol-
lowing sections document the analysis procedure through which the final results are
obtained.

5.1 Final Cuts

The first decision taken for the final analysis is the choice of cuts applied to select
events. These cuts fall into three categories.

1. Acceptance cuts are applied to the reconstructed target variables x′tar, y
′
tar, δ,

and ytar. The HMS angular acceptance is independent of the kinematics. The
following loose cuts were applied to the reconstructed proton angles at the
target:

|x′tar| ≤ 0.08 (5.2)

|y′tar| ≤ 0.04 (5.3)
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For all kinematics except Q2 = 5.2 GeV 2, the target was the 20 cm LH2 target
offset by z0 = 3.84 cm. For these kinematics, the following cut was applied to
zbeam:

|zbeam − z0| ≤ 10 cm + dz (5.4)

where dz = 0.6 cm/ sin ΘHMS represents a roughly 3σ tolerance1 in z due to
the HMS resolution in ytar and y′tar. For Q2 = 5.2 GeV 2, the 15 cm LH2

target was used. In this case, the offset was z0 ≈ 1.5 cm, dz was unchanged,
and instead of 10 cm for the target half-length, 7.5 cm was used. Finally, a
loose momentum acceptance cut was applied. This cut, however, had very little
additional influence on the selection of events because it was redundant with
the angular acceptance cut after elastic kinematic cuts, for which pp and θp are
correlated.

2. Elastic kinematic cuts consist of cuts applied to the proton inelasticity variable
∆p and the difference between the detected electron position at BigCal and its
expected position from elastic kinematics; i.e., the two-dimensional elliptical cut
defined in section 4.2.3. The width of these cuts was optimized to accept the
largest possible fraction of elastic events for which the improvement in statistical
uncertainty was not outweighed by the inelastic background contamination.

3. FPP track cuts consist of minimum and maximum scattering angles ϑmin and
ϑmax, a maximum distance of closest approach smax, and zclose limits chosen to
correspond to the physical extent of the CH2 with an extra tolerance of several
cm to allow for the resolution of zclose, which blows up approximately as 1/ tanϑ
at small angles. Only the ϑ cuts depend on kinematics. The final cuts are given
as follows:

sclose ≤ 3(6) cm, for FPP1(2) (5.5)

107 ≤ zclose ≤ 171 cm (FPP1) (5.6)

205 ≤ zclose ≤ 270 cm (FPP2) (5.7)

sinϑmin =
0.07 GeV/c

p0

(5.8)

sinϑmax =
1.2 GeV/c

p0

(5.9)

where p0 is the HMS central momentum in GeV/c. The minimum scattering
angle cut is determined by the width of the Coulomb peak, which is inversely
proportional to the momentum, while the maximum scattering angle cut is
determined by the angle beyond which no significant asymmetry is observed

1The background from the target endcaps after applying elastic kinematic cuts was not significant
enough to necessitate applying z cuts to eliminate events from the target walls, which would have
resulted in a significant loss of elastic ep statistics, since scattering from hydrogen overlaps with
scattering from the target endcaps within the vertex resolution of the HMS.
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in the data, which to a good approximation occurs at a constant transverse
momentum defined by pfppT ≡ p sinϑmax.

To determine the optimal elastic event selection cuts, the background estimate
described in section 4.2.3 was performed for each kinematic setting for cut widths of
3, 5, and 6σ in both ∆p and ∆x, with a fixed 3σ cut width in ∆y. For a given inelastic
contamination f , the observed polarization corresponds to a linear combination of the
signal and background polarizations:

P obs.
i = (1− f)P el.

i + fP inel.
i (5.10)

⇒ P el.
i =

P obs.
i − fP inel.

i

1− f
(5.11)

Neglecting momentarily the uncertainty in the background-corrected polarization and
the uncertainty in f , it is clear that the statistical uncertainty in the corrected polar-
ization is magnified by a factor 1/(1− f) relative to that of the total sample, which
includes N(1 − f) elastic events and Nf inelastic events, with N the total number
of events accepted by the cut. For large values of f , the uncertainty in f and the
uncertainty in the background polarization can no longer be neglected. Propagating
the uncertainties through the formula (5.11), the statistical error on the corrected
polarization is given by

∆P el.
i =

1

1− f

√(
∆P obs.

i

)2
+ f 2

(
∆P inel.

i

)2
(5.12)

The corrected polarization also has a systematic uncertainty due to the uncertainty
in the estimated background ∆f :

∆P el.
i

∣∣
∆f

=

∣∣∣∣P obs.
i − P inel.

i

(1− f)2

∣∣∣∣∆f (5.13)

The cuts were chosen to minimize both uncertainties. For sufficiently small f ,
minimizing the uncertainty in the corrected polarization is equivalent to maximizing
(1 − f)

√
N , where N is the total number of events accepted by the cut. For the

final analysis, relatively tight 3σ cuts in ∆p, ∆x, and ∆y were chosen. If the ex-
perimental resolution were purely Gaussian, 3σ cuts would accept 99.99% of elastic
events. However, the experimental resolution is not strictly Gaussian, and radiative
effects redistribute significant numbers of events away from the main peak. Slightly
lower statistical errors can be obtained with looser cuts for Q2 =5.2 GeV2 and 6.7
GeV2. Given the assumptions involved in correcting the measured form factor ratio
for inelastic background contamination, the true systematic uncertainty in the size of
the background correction is probably larger than what is estimated from the formu-
lae above even for conservative estimates of ∆f . For this reason, the choice of cuts
was weighted more heavily toward maximal background suppression. Additionally,
applying tight cuts to the variables of section 4.2.3 has the added benefit of reducing
the already quite small radiative corrections to the ratio Pt/Pl, which are not applied
to the results presented here. Table 5.1 shows the chosen final cuts and the estimated
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inelastic background contamination of these cuts.

Q2, GeV2 xcut, cm ycut, cm ∆p cut, % f, %
5.2 4.3 15.3 0.852 1.1
6.7 3.1 10.2 0.9 0.8
8.5 4.3 13.9 0.6 5.6

Table 5.1: Final elastic event selection cuts and estimated inelastic contamination.

5.2 Statistical Uncertainties

The covariance matrix of the maximum likelihood estimate of the polarizations P
is given by the inverse of the matrix A appearing on the right hand side of equation
(4.158). The elements of A are proportional to the total number of events contributing
to the asymmetry and the square of the product hAy. Therefore, the statistical
uncertainty behaves as ∆P ∝ 1√

Nh2A2
y

. This error also depends on the precession

angle since the sensitivity of the asymmetry to Pl is proportional to sinχθ, meaning
the error on Pl is typically larger than the error on Pt, which is proportional to
cosχφ ≈ 1. Table 5.2 shows the absolute statistical uncertainty inR for the kinematics
of E04-108. Presentation of the final results is deferred until after the discussion of
systematic uncertainties and background subtraction.

5.3 Systematic Uncertainties

5.3.1 Spin Precession

The calculation of the spin precession in the HMS is one of the most important
sources of systematic uncertainty in the extraction of the ratio GE/GM . The uncer-
tainties in the precession calculation can be separated into two categories. Errors
in the reconstructed quantities x′tar, y

′
tar, δ, and ytar lead to errors in the precession

matrix, since the matrix elements are calculated as polynomials in these quantities.
This kind of error is the most important. The second kind of error in the precession
calculation is the uncertainty in the COSY model used to calculate the precession
matrix, which is generally much smaller than the effect of reconstruction errors.

Q2, GeV2 ∆R
5.2 0.067
6.7 0.11
8.5 0.18

Table 5.2: Absolute statistical uncertainties in the results of E04-108.
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To see how reconstruction errors propagate to the uncertainty in the form factor
ratio, it is useful to work with the geometric approximation of section 4.3.2. Neglect-
ing the small rotations from the reaction plane to transport coordinates and from
transport coordinates to the proton trajectory coordinates at the focal plane, the
following approximate expressions for the polarization components at the focal plane
in terms of the dispersive precession angle χθ and the non-dispersive precession angle
χφ are obtained:

P fp
y = cosχφPt + sinχφPl (5.14)

P fp
x = − cosχφ sinχθPl + sinχφ sinχθPt (5.15)

Solving these equations for Pt and Pl and forming their ratio gives

Pt
Pl

= −
1 + sinχθ cotχφ

P fpy

P fpx

1− sinχθ tanχφ
P fpy

P fpx

tanχφ (5.16)

In this approximate form, it is immediately clear that the form factor ratio is highly
sensitive to the non-dispersive precession angle χφ ≡ γκ(φfp − φtar). This is because
precession in the non-dispersive plane mixes Pt and Pl. Because the non-dispersive
bend angle for the central ray is zero, the average of χφ over the full acceptance is
usually close to zero, so that the formula above reduces to

Pt
Pl
−−−→
χφ→0

−χφ − sinχθ
P fp
y

P fp
x

(5.17)

∆

(
Pt
Pl

)
χφ

≈ ∆χφ (5.18)

In terms of the error in the total non-dispersive bend angle ∆φ ≡ φfp − φtar, this
becomes

∆

(
Pt
Pl

)
≈ γκ∆(∆φ) (5.19)

The error in the form factor ratio due to this uncertainty is given by

∆R ≈ γκK∆(∆φ) (5.20)

where K is the kinematic factor multiplying Pt/Pl in the expression for R.

Equation (5.20) shows that any uncertainty in the total non-dispersive bend an-
gle in the HMS is magnified by a factor γκK in the form factor ratio. The factor
γκK grows rather large at high Q2, as shown in table 5.3. In order to keep this un-
certainty manageable, the total non-dispersive bend angle must be determined with
relatively good accuracy. The main source of uncertainty in ∆φ is a misalignment
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Q2, GeV2 γκK
5.2 32.2
6.7 40.2
8.5 72.5

Table 5.3: γκK for E04-108 kinematics.

Quadrupole magnet (φ|s) (mrad/mm)
Q1 +0.246
Q2 -0.796
Q3 +0.273

Table 5.4: First-order couplings (φ|si) calculated by the HMS COSY model for the
nominal tune.

of the quadrupoles with respect to the optical axis of the HMS. The stated accuracy
in the alignment of the quadrupoles is ±1.0 mm. A quadrupole offset in the non-
dispersive direction manifests itself as a non-zero ∆φ for the central ray. To estimate
the shift in ∆φ, quadrupole offsets were introduced in the HMS COSY model, and
the first-order couplings (φfp|si), (i = 1, 2, 3) representing the displacement in φfp for
a quadrupole shift si for the nominal point-to-point tune of the HMS were calculated.
These couplings are shown in table 5.4. Assuming an uncertainty of ±1 mm in the
positioning of the quadrupoles with respect to the optical axis of the HMS, the max-
imum possible range of ∆φ is ±1.3 mrad. An error of ±1.3 mrad in ∆φ translates
into an absolute error on the form factor ratio of ∆R = ±(0.042, 0.052, 0.094) for
Q2 = (5.2, 6.7, 8.5) GeV 2. The actual error is larger or smaller depending on any
possible higher-order effects which manifest themselves in the full COSY calculation
but not in the geometric approximation.

To reduce the uncertainty in ∆φ, a dedicated study of the HMS optics in the non-
dispersive plane was performed. Using an unrastered electron beam impinging on a
thin carbon target positioned at the origin and the sieve slit collimator, with the HMS
positioned at an angle of 12 degrees and set for a central momentum of 1.022 GeV
with negative polarity to detect electrons, electron scattering data were obtained for
seven different settings of the HMS magnets other than the nominal setting, and the
movements of the image of the central sieve hole at the focal plane were observed. The
central sieve hole is smaller than the other holes and it is aligned with the optical axis
of the HMS. The position of the central sieve hole and the distance from the origin
to the central sieve hole are known to very high accuracy. For a point target such
as the thin carbon foil used for the study, the ray from the intersection of the beam
with the target to the central sieve hole provides a precise measurement of φtar for
electrons going through the central hole. If the position of the target with respect to
the sieve slit and the position of the beam with respect to the target are also known,
then the angle φtar is determined.
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In the first phase of the study, all the quadrupoles were turned off and “de-gaussed”
by first setting each magnet to a large positive (relative to the sign of the current
for the nominal tune) current, then ramping to zero, changing the polarity of the
magnet, ramping to a small negative current, and then back to zero, ensuring that no
residual fields remained in the quadrupoles. This setting is referred to as the “dipole
only” setting. Since the quadrupoles were all turned off, the displacement of yfp and
φfp could not be affected by any quadrupole offsets. By scanning the beam position
horizontally across the target, thus varying φtar for the ray going through the central
sieve hole, the observed displacements of yfp and φfp could be used to constrain the

offsets φfp0 and ytar0 , the zero offsets in, respectively, the angle φfp reconstructed by the
HMS drift chambers and the position of the target with respect to the HMS optical
axis.

The measurement of ytar0 using this technique is very precise because the dipole is
defocusing in the non-dispersive plane. The first-order COSY coupling between the
measured position in y at the focal plane and φtar is (yfp|φtar) = +25.6 mm/mrad
for the dipole-only setting. This large dispersive effect increases the sensitivity of yfp,
which is measured with a precision of σyfp ≈ 200 µm and an absolute accuracy2 of
(conservatively) ±1 mm, to φtar, which is given by φtar = yhole−ytar

zhole
. Since yhole and

zhole are known very precisely, the displacement of the image of the central sieve hole
at the focal plane serves as a precise measurement of ytar0 . Figure 5-1 shows how this
image moves as the beam position changes. The size of the spot corresponding to
the central hole is large because of the large defocusing effect and because of multiple
scattering in S0, which is more pronounced for the relatively low-momentum (1 GeV)
electrons used for the study.

In addition to the dipole-only setting and the nominal tune, six other tunings of
the quadrupoles were studied. These settings are shown in table 5.5. The dipole was
at its nominal, momentum-defining field for all settings of the quadrupoles. Each
quadrupole was set to its nominal current with the other two quadrupoles off, and
also set to 70% of its nominal current (which approximately corresponds to point-
to-parallel focusing) with the other two quadrupoles at their nominal settings. For
each setting, the first order optical couplings (y|y), (y|φ), (φ|y), and (φ|φ) were calcu-
lated in COSY. The isolation of the central sieve hole at the focal plane is relatively
straightforward. The central row of sieve holes is selected by plotting x′fp as a func-
tion of xfp. A series of stripes appears with each stripe corresponding to a different
row of sieve holes. The central row of holes corresponds to the stripe whose peak is
closest to (0, 0) in the (x, x′) phase space. This selection is illustrated in figure 5-2(a)
for the Q1R setting.

After selecting the central row, the location of the central hole is usually obvious
upon plotting yfp (or y′fp versus yfp), as illustrated in figure 5-2(b). Fewer events go
through the central hole than the other holes because it has half the diameter and
1/4th the area of the other holes. Once the events that went through the central
sieve hole are selected, yfp and y′fp are determined by Gaussian fits to these events,

2The accuracy of y0
fp is based on the surveyed position of the chambers and the fine-tuning of

this position in software during the fitting of the reconstruction matrix elements
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Figure 5-1: yfp versus y′fp for the dipole-only setting for xbeam = +4.6 mm(blue), -3.2
mm(red), and -0.28 mm (black). Beam positions are according to EPICS.

Setting name Q1/Q1nom. Q2/Q2nom. Q3/Q3nom.
Dipole 0 0 0

Q1 1 0 0
Q2 0 1 0
Q3 0 0 1

Q1R 0.7 1 1
Q2R 1 0.7 1
Q3R 1 1 0.7

Table 5.5: Quadrupole current settings relative to nominal tune for the various set-
tings.
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as shown in figure 5-3. The reason the analysis is restricted to the central hole is
to minimize deviations from the central ray, so that the modeling of the optics of
the different magnet settings within COSY to linear order is a good approximation,
making the analysis of the data much simpler.

(a) x′fp vs xfp for the Q1R setting. (b) y′fp vs yfp for the Q1R setting.

Figure 5-2: Procedure to isolate the image of the central sieve hole at the focal plane,
for the Q1R setting. In the x′fp versus xfp distribution (a), each stripe corresponds
to a different row of sieve holes, with a peak and a tail corresponding to elastic and
inelastic electron scattering from carbon. In the y′fp vs. yfp distribution (b) of the
selection of events in (a), the location of events that went through the central hole
becomes obvious.

The observed spatial and angular displacements of the central ray at the focal
plane are related to the quadrupole misalignments and the zero offsets y0

tar, y
0
fp, and

φ0
fp through the first order couplings as follows:

ytar = y0
tar − xbeam cos ΘHMS (5.21)

φtar =
yhole − ytar

zhole
(5.22)

yfp = y0
fp + (y|y)ytar + (y|φ)φtar +

3∑
i=1

(y|si)si (5.23)

φfp = φ0
fp + (φ|y)ytar + (φ|φ)φtar +

3∑
i=1

(φ|si)si (5.24)

where the +xbeam axis points toward beam right; i.e., toward the HMS or in the
−y direction in transport coordinates. The position yhole of the central hole and the
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Figure 5-3: Gaussian fits to determine yfp and y′fp.

distance zhole from the origin to the sieve slit are taken from survey results. With the
measured displacements in y and φ for all seven (non-standard) settings in addition
to the nominal tune of the HMS, with two different beam positions for the nominal
tune and five different beam positions for the dipole-only tune, there are twenty-four
linear equations in five “unknowns”3, so the offsets are overdetermined, and the goal
of the analysis is to find the set of offsets which minimizes the χ2 of all accepted data
points.

In principle, it is possible to determine the three quadrupole offsets, the target
position offset, and the focal plane angle and position offsets simultaneously. In
practice, however, it is more informative to fix y0

fp and use the dipole-only data to

determine y0
tar and φ0

fp, because the data do not determine yfp0 to any better accuracy
than it is already known. The extracted value of y0

tar, though very precise, is actually
only a determination of the beam position, since the beam position is only known to
within an overall accuracy of ±1 mm. For example, the value of y0

tar extracted using
the EPICS value of xbeam differs by approximately 1 mm from the value obtained
using the BPM ADCs in the data stream, reflecting the approximate 1 mm difference
between the EPICS beam position and the ADC beam position. This uncertainty does
not affect the results for the quadrupole offsets, however, since it is the determination
of ytar and φtar that matters for this purpose, and in this respect the dipole setting
still does the trick, regardless of which beam position is used in the analysis4.

3y0
fp, the zero offset of the measured position at the focal plane, is treated as known and is fixed

in the analysis.
4The position of the physical target foil with respect to the ideal origin and the mispointing

of the HMS do introduce uncertainty into the determination of ytar and φtar. These quantities
were also surveyed, and are assumed equal to their surveyed values. An error in the foil position is
equivalent to an error in zhole. The error in φtar due to an error in zhole − zfoil is dφ/φ = dz/z.
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y0
tar, mm φ0

fp, mrad χ2/d.f.

s1, mm s2, mm s3, mm
0.52 ± 0.10 -0.06 ± 0.11 0.68
0.51 ± 0.10 0.41 ± 0.46 0.15 ± 0.54

Table 5.6: Best fit quadrupole offsets s1, s2, s3, y0
tar, φ

0
fp and χ2. Preliminary.

The preliminary results of this study are shown in table 5.6. Uncertainties of 1
mm in y0

fp and 0.2 mm in xbeam (relative) are assumed, and the uncertainties in yhole,
zhole, the HMS pointing, and the physical location of the carbon foil relative to the
origin are neglected by comparison. The result of 0.1 mm uncertainty in ytar0 leads
to a 0.06 mrad uncertainty in φtar. Statistical uncertainties in the measured yfp and
y′fp positions of the central ray are included. The data point from the most extreme
beam position used during the dipole setting (xbeam = +4.6 mm) was omitted because
the observed yfp of the central ray was approximately 2 cm away from its expected
position (based on xbeam and the first-order optics). This point gave by far the worst
contribution to the χ2 of the any of the data points and it was deemed reasonable
to assume that higher-order terms in the HMS optics matrix have a non-negligible
effect on such an extreme ray. All other data points from all other settings were
included. After using the dipole-only data to solve for y0

tar and φ0
fp, the quadrupole

offsets were obtained by fixing these quantities and solving the simultaneous equations
(5.21)-(5.24) for s1, s2, and s3.

The quadrupole offsets resulting from this study are compatible with the stated
uncertainty in their positioning. Assuming the small deflections of the central ray
induced by the offsets are additive, the results of method 1 in table 5.6 result in
a non-dispersive bend angle ∆φs ≡

∑3
i=1(φ|si)si = −0.17 ± 0.20 mrad due to the

observed shifts and their uncertainties. Given the preliminary status of this analysis
and the neglect of other uncertainties such as the model uncertainties in the first-order
couplings, the small uncertainties in yhole and zhole, and any possible uncertainty in
the zero offset in the reconstructed φtar due to the fitted HMS reconstruction matrix
elements, a systematic uncertainty of ±0.5 mrad was assigned to ∆φ for the results
presented in this thesis. The effect of a ±0.5 mrad offset in ∆φ is approximated by
an offset in φtar of ±0.36 mrad, since the optics of the HMS give ∆φ ≈ −1.4φtar.

Uncertainties in the other reconstructed variables such as x′tar, ytar, and δ also
affect the form factor ratio, but none of these uncertainties are magnified to the same
extent as φtar. The momentum deviation δ and the out-of-plane angle x′tar determine
the difference of the main dispersive precession from the dominant 25◦ central bend,
which enters the expression for Pt/Pl through the term − sinχθP

fp
y /P fp

x , so the form
factor ratio is much less sensitive to small offsets in these variables compared to ∆φ.

Since zhole = 166.00 cm is large compared to any possible uncertainty in zfoil, errors of even several
mm in zfoil introduce only small relative errors in φtar, which are negligible in comparison to the
other uncertainties involved. Therefore, when combined with the determination of ytar using the
dipole setting, the uncertainty in φtar is really quite small.
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The ratio is somewhat more sensitive to ytar than to δ or x′tar, because a systematic
error in the value of ytar used as input to the calculation of the COSY precession
matrix is more or less equivalent to an unknown quadrupole offset from the optical
axis, which introduces a non-zero deflection of the central ray. The sensitivity of the
matrix element Syz ≈ sinχφ to a 1 mm offset in ytar is roughly a factor of five smaller
than its sensitivity to a 1 mrad offset in φtar, to first order in COSY, such that even
a conservative estimate of ±0.5 mm systematic uncertainty in ytar does not translate
to an uncertainty in R anywhere near as large as the dominant φtar contribution5. To
determine the systematic uncertainty in R = µpG

p
E/G

p
M , the shifts given in table 5.7

were applied in both directions to the reconstructed variables used to calculate the
precession matrix, and the observed shifts in R were recorded.

θtar(= arctanx′tar) ±2 mrad
φtar(= arctan y′tar) ±0.36 mrad

δ ±0.3%
ytar ±0.5 mm

Table 5.7: Offsets applied to reconstructed quantities involved in the precession cal-
culation for systematic error analysis.

Q2, GeV2 ∆R(∆φtar) ∆R(∆θtar) ∆R (∆δ) ∆R(∆ytar)
5.2 ±0.016 ±7.8× 10−4 ±6.0× 10−5 ±3.7× 10−3

6.7 ±0.020 ±3.36× 10−3 ±1.67× 10−3 ±4.9× 10−3

8.5 ±0.035 ±1.50× 10−3 ±8.55× 10−3 ±9.5× 10−3

Table 5.8: Absolute systematic uncertainty in R = µpG
p
E/G

p
M due to systematic

errors in reconstructed event kinematics.

The sensitivity of R to the systematic uncertainties in the reconstructed proton
kinematics is shown in table 5.8. If the spin precession is handled correctly, the
extracted form factor ratio does not depend on these variables. Depending on the
slope of GE/GM as a function of Q2, some variation of the form factor ratio with
Q2 within the finite Q2 acceptance of the HMS is possible, but since the ratio was
not determined with sufficient statistical precision for a meaningful measurement of
the Q2 dependence of R within the acceptance of a single data point, the results are
quoted as a single value of R at the acceptance-averaged value of Q2. Figures 5-4-5-6
show the dependence of R on the reconstructed proton kinematics for each of the data
points of E04-108. In all three cases, the χ2 per degree of freedom of a constant fit to
the data is at most 1.5, indicating that the precession calculation is well understood.

5Strictly speaking, a systematic uncertainty in ytar is part of the systematic uncertainty in ∆φ,
since the precession only depends on y indirectly through its effect on ∆φ, which in first order is
given by (φ|y) ≈ −.25 mrad/mm.
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Figure 5-4: Extracted form factor ratio as a function of reconstructed proton kine-
matics, Q2 = 5.2 GeV2.

The other source of precession-related systematic uncertainty in R comes from
the model of the HMS used to calculate the polynomial expansion of the integration
of the BMT equation in COSY. For the HMS, this uncertainty turns out to be quite
small. As a first estimate of this uncertainty, the results obtained using COSY are
compared to the results obtained using the model-independent geometric approxima-
tion. Notably, the geometric approximation agrees with the full COSY calculation for
all three kinematics of E04-108 at a level well below the statistical uncertainty. This
is a result of the simple QQQD structure of the HMS magnets for which the dipole
approximation is satisfied separately in the dispersive and non-dispersive planes, at
least when averaged over the full acceptance. This approximation depends only on
the accuracy of the reconstructed precession angles χθ and χφ, and differs from the

Q2, GeV2 R(geom.)−R(COSY )
5.2 0.022
6.7 0.036
8.5 0.030

Table 5.9: Difference in R between the geometric approximation and the full COSY
calculation.
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Figure 5-5: Extracted form factor ratio as a function of reconstructed proton kine-
matics, Q2 = 6.7 GeV2.

true precession only to the extent that the assumption of small, additive trajectory
rotations in the magnets is violated. Uncertainties in the full COSY calculation arise
due to differences between the assumed fields in the magnets and the true magnetic
fields present during the experiment, misalignment of the various elements and, to a
much lesser extent, the numerical accuracy of the calculation.

These uncertainties manifest themselves as differences in the HMS transport ma-
trix from the focal plane to the target and vice versa between COSY and the optimized
reconstruction matrix elements of the HMS (for the fp → tgt. case), which can be
regarded as most nearly representing its “true” optics. To account for all of these
possible COSY model uncertainties in a rigorous and self-consistent manner requires
shifting parameters of the models, re-fitting the forward transport and reconstruction
matrices with COSY, and re-optimizing the reconstruction matrix using optics data,
ultimately tuning the COSY model to reproduce the optics data “exactly”. The net
result of such efforts is that the COSY model of the HMS has been improved over
time to the point where the differences between the COSY transport matrices and the
optimized reconstruction matrix elements are quite small. For this reason, the un-
certainty in the precession calculation is dominated by how well or poorly the “true”
optics of the HMS in the non-dispersive plane is known, and the study described
above has effectively reduced this uncertainty by at least a factor of two.
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Figure 5-6: Extracted form factor ratio as a function of reconstructed proton kine-
matics, Q2 = 8.5 GeV2.

5.3.2 Scattering Angle Reconstruction

Systematic errors in the reconstruction of the scattering angles ϑfpp and ϕfpp have
been minimized by the alignment procedure of section 4.1.5, in which tracks recon-
structed in both sets of FPP chambers during straight-through runs (runs with both
FPP doors opened) were aligned with HMS tracks. The systematic error in the FPP
track slopes x′ and y′ is estimated at no more than ∆x′ = ∆y′ = 0.1 mrad. The
most important source of uncertainty due to angle reconstruction errors in the FPP
comes from the azimuthal angle ϕfpp. Errors in x′fpp and y′fpp are magnified in the

error in ϕfpp at small polar angles ϑfpp → 0, since ∆ϕfpp ≈ 1
sinϑfpp

√
(∆x′)2 + (∆y′)2.

To estimate the error in R due to an error in the reconstructed track slopes in this
manner, a ϑfpp-dependent shift was applied to ϕfpp in the analysis, and the change
in the result for R was recorded. The results are shown in table 5.10.

5.3.3 False Asymmetries

Helicity-independent false asymmetries are caused by misalignments of the drift
chambers and ϕ-dependent variations in acceptance and efficiency, where inefficiencies
may come from either the detection efficiency of individual wires or from φ-dependent
inefficiencies and/or biases in track reconstruction. Since the FPP chambers were new
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Q2, GeV2 ∆R(ϕ→ ϕ± .14 mrad/ sinϑfpp)
5.2 ±2.9× 10−4

6.7 ±5.6× 10−3

8.5 ±0.017

Table 5.10: Systematic uncertainty in R due to azimuthal angle reconstruction.

and very gas-tight, all wires were very close to 100% efficient, so the latter category
of false asymmetry is dominant. In elastic scattering, the induced polarization is
zero. Therefore, the only asymmetries present in the helicity sum spectrum fsum(ϕ)
are the false asymmetries. By fitting the sum spectrum, the terms a1, b1, . . . for λ0

are obtained, and can be subtracted on the left hand side of equation (4.158) in the
likelihood analysis. In general, this asymmetry changes as a function of the polar
angle ϑ, so the false asymmetry coefficients become functions of ϑ, ai → ai(ϑ) and
bi → bi(ϑ). Table 5.11 shows the false asymmetry coefficients averaged over the entire
range of ϑfpp and the change in R when ϑ-dependent false asymmetry coefficients are
included in the likelihood analysis.

Q2, GeV2 a1 b1 a2 b2 ∆R
5.2 2.3× 10−3 −7.3× 10−3 −3.7× 10−2 −6.7× 10−3 8.6× 10−3

6.7 6.6× 10−3 −1.4× 10−3 −3.7× 10−2 −9.2× 10−3 1.15× 10−2

8.5 5.9× 10−3 −1.0× 10−2 −4.4× 10−2 −6.7× 10−3 1.1× 10−2

Table 5.11: False asymmetry coefficients and their effect on the form factor ratio.

The false asymmetries are roughly independent of kinematics, indicating that
they are primarily determined by the geometry of the chambers and the azimuthal
dependence of track reconstruction inefficiencies and/or biases. Including the fitted
false asymmetry terms as λ0 in the analysis results in a positive shift in R with an
absolute magnitude of roughly .01, a result that is also roughly independent of the
kinematics. The nature of the asymmetry deserves a brief comment. The cosϕ and
sinϕ terms a1 and b1 are no more than one percent for any of the kinematics. These
terms are mainly determined by misalignment, but can also include the influence
of the helicity-independent induced polarization of the inelastic background, and for
the highest Q2 point in particular, the false asymmetry component is difficult to
separate from the background polarization component in the region dominated by
elastic scattering. The cos(2ϕ) and sin(2ϕ) terms a2 and b2, while relatively large
(approximately four percent for the cos(2ϕ) term), come from reconstruction biases
and inefficiencies. They should not contain geometric/acceptance effects because of
the cone test, but some residual acceptance effects may remain since the cone test is
calculated at the reconstructed value of zclose, assuming an sclose value of zero. Since
the zclose resolution is relatively poor, particularly at small angles, the cone test cannot
completely eliminate acceptance related false asymmetries. Though they can be large,
these and other, higher-order terms in the false asymmetry distribution should have
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no effect on the helicity-difference asymmetry, since
∫ 2π

0
cos(mϕ) cos(nϕ)dφ = 0 for

m 6= n.

5.3.4 Background Corrections

The procedure for estimating the inelastic contamination for a given set of cuts
was described in section 4.2.3. To determine the effect of this contamination on the
form factor ratio, the polarization of the background was measured. To obtain this
polarization, the methods of section 4.3 were applied to events failing the elastic event
selection cuts. To be more specific, events were required to fail both the coplanarity
cut and the inelasticity cut in the ∆x-∆y plot. Although such a cut certainly rejects
many inelastic events as well, it has the advantage of achieving a selection of inelastic
events which is free of elastic contamination, when compared to a simple anticut of
the elastic cut, which is satisfied by events in the elastic radiative tail rejected by this
cut, which appear along the +∆x axis for ∆y ≈ 0. The abundance of inelastic events
for the Q2 = 8.5 GeV 2 kinematics allows the measurement of the polarization of the
background with much greater precision than the polarization of the elastic events.
However, it cannot generally be assumed that the polarization of the background
in the region where it overlaps with the elastic peak is the same as the average
polarization of inelastic events over the full acceptance.

For a given elastic cut width, the contamination from inelastic background is a
function mainly of the proton inelasticity ∆p. From figure 4-47 it is clear that the
ratio of the background to the total number of events is small in the super-elastic
region, where only the target endcaps contribute, and rises rapidly for ∆p < 0, as the
Bremsstrahlung flux increases with Ebeam − Eγ and the available phase space for π0

photoproduction also increases. In the Monte Carlo calculation of the background,
the π0 contribution becomes larger than the elastic contribution at ∆p ≈ −0.4% or
approximately −2σ, a behavior which is confirmed in the data by examining the ∆x
vs. ∆y plot for different bins in ∆p.

The ratio of the background to the sum of signal and background is only large
enough to significantly impact the form factor ratio in the region where π0 produc-
tion dominates the background. One might therefore reasonably assume that the
polarization of the background can be assumed constant in the region of ∆p where it
overlaps with the elastic peak. However, this assumption is not even required, since
the background polarization can be measured in the overlap region in ∆p, albeit with
lower precision than the average over the whole inelastic region. In attempting to
measure the polarization of the background in the region close to the elastic peak,
it is very important to obtain a sample of inelastic events that is free of contamina-
tion from elastic events in order to avoid misinterpreting an increasing contamination
from elastic events as a variation of the polarization of inelastic events near the peak;
hence, the requirement that events fail ∆x and ∆y cuts significantly wider than those
used to select elastic events.

Figure 5-7 shows the results of the polarization analysis of events failing both
elastic cuts ∆φ and ∆e at Q2 = 8.5 GeV2 in the ∆p region of the elastic peak. The
assumption of constant background polarization holds up fairly well for the helicity-
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Figure 5-7: Measured background polarization components vs. ∆p, Q
2 = 8.5 GeV2.

dependent components Pt and Pl for ∆p ≤ 0, since π0 production is the dominant
background in this region. At ∆p ≈ 0, the primary reaction mechanism for the back-
ground changes from π0 production to quasi-elastic (e, e′p) from the target endcaps,
so a change in the polarization is expected. The polarization components shown in
figure 5-7 were extracted using the analyzing power curve of figure 4-53, which was
obtained from the measured polarization of elastic events using the 3σ cuts of table
5.1. The values of the helicity-independent induced polarization Pn shown in figure
5-7 have not been corrected for the false asymmetry, which is to be measured by
the elastic events. Such corrections are unimportant for this analysis, since only the
transferred polarization components Pt and Pl affect the determination of GE/GM .

The measured background polarization in the region of overlap with the elastic
peak was combined with estimates of the inelastic contamination as a function of ∆p

using the same binning as the polarization measurements. This information was then
used to construct a modified likelihood function using the following replacement of
the polarization components P in the expression for L:

Pj → (1− f)Pj + fP inel.
j (5.25)

With this replacement, the coefficients λj become

λ
(i)
j → (1− f)λ

(i)
j (5.26)
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and a new term λbg is added for the background asymmetry,

λbg ≡ fhεiA
(i)
y

(
S(i)
yx cosϕi − S(i)

xx sinϕi
)
P inel
x +

fA(i)
y

(
S(i)
yy cosϕi − S(i)

xy sinϕi
)
P inel
y +

fhεiA
(i)
y

(
S(i)
yz cosϕi − S(i)

xz sinϕi
)
P inel
z (5.27)

which modifies the left-hand side of equation (4.158) to

λ
(i)
j (1− λ0) → λ

(i)
j (1− λ0 − λbg) (5.28)

The inclusion of helicity-dependent background polarization terms in equation (5.28)
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Figure 5-8: Cut width dependence of the extracted form factor ratio for the Q2 = 5.2
and 6.7 GeV2 kinematics.

which are not cancelled by the reversal of the beam polarization is responsible for the
correction to R. The direct inclusion of the background subtraction in the likelihood
analysis gives results that are essentially identical to correcting the results after the
fact using equation (5.11), but it allows for the treatment of the inelastic contamina-
tion estimate with arbitrarily fine binning in ∆p in a straightforward manner, making
it preferable to the latter method.

Figure 5-8 shows the variation of the extracted form factor ratio as a function
of the estimated background accepted by the cuts for the two lower Q2 points of
E04-108. In both graphs, the black circles represent the results of the uncorrected
analysis, and the red squares represent the result of the background-subtracted likeli-
hood analysis. For both of these kinematics, the result for GE/GM is quite stable even
as the cuts are varied between 3σ and 6σ, and the size of the background correction is
small. The data for some of the different cut widths exhibit variations which are not
explained by the background correction alone; these variations are compatible with
purely statistical fluctuations within the extra events accepted by different cuts. The
fact that the correction brings the points with the highest accepted background into
very good agreement with the points with the lowest accepted background supports
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Figure 5-9: Cut width dependence of the extracted form factor ratio, Q2 = 8.5 GeV2.

Q2, GeV2 f , % ∆Pt ∆Pl ∆R
5.2 1.1 3.2× 10−4 5.7× 10−4 1.3× 10−3

6.7 0.8 3.1× 10−4 9.1× 10−4 1.3× 10−3

8.5 5.5 1.8× 10−3 3.6× 10−3 0.012

Table 5.12: Systematic uncertainty in R due to ±15% relative uncertainty in f .

this conclusion. Figure 5-9 shows the same dependence for the highest Q2 point. For
this setting, the background increases much more rapidly as a function of the cut
width, which is apparent in the rapid decrease of the uncorrected form factor ratio
as a function of f . The corrected form factor ratio in this case is still independent
of the background correction up to statistical fluctuations in the polarization of the
extra events accepted by wider cuts and the uncertainty in the background polar-
ization used for the correction (see figure 5-7), demonstrating that the background
subtraction is handled correctly.

In order to account for the uncertainties in the estimated background fraction
f and the extrapolation of the measured background polarization under the elastic
peak, a relative uncertainty of ±15% is assigned to f , which leads to the uncertainties
in Pt, Pl, and R shown in table 5.12. Note that the uncertainty in the correction to R
is significantly smaller than what would be implied by substitution of the uncertainty
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in the corrected Pt and Pl into the formula for the error in R. This is because of
partial cancellations occuring in the expression for the ratio:

P corr
t

P corr
l

=
P obs
t − fP inel

t

P obs
l − fP inel

l

(5.29)

∆

(
P corr
t

P corr
l

)
=

1

1− f

(
P inel
l

P corr
t

P corr
l

− P inel
t

P corr
l

)
∆f (5.30)

The results for the uncertainty in R related to the background correction show that
even with the relatively pessimistic assumption ∆f/f = 15%, the uncertainty in R
due to the inelastic background is relatively small.

5.3.5 Total Systematic Error Budget

Table 5.13 summarizes the contributions to the total systematic uncertainty and
reports the final systematic uncertainty as the quadrature sum of all the individual
contributions.

Uncertainty Q2 = 5.2 GeV2 Q2 = 6.7 GeV2 Q2 = 8.5 GeV2

∆R(∆φ) .016 .020 .035
∆R(∆θ) 7.8× 10−4 3.4× 10−3 1.5× 10−3

∆R(∆δ) 6.0× 10−5 1.67× 10−3 8.55× 10−3

∆R(∆ytar) 3.7× 10−3 4.9× 10−3 9.5× 10−3

∆R(ϕfpp) 2.9× 10−4 5.6× 10−3 0.017
∆R(background) 1.3× 10−3 1.3× 10−3 0.012

Total ∆Rsyst 0.0165 0.022 0.043

Table 5.13: Total systematic uncertainty in µpG
p
E/G

p
M for the results of E04-108.

5.4 Discussion of the Results

Table 5.14 shows the results of experiment E04-108, together with the acceptance
averaged Q2, the total accepted range of Q2, and the statistical and systematic un-
certainties. E04-108 represents the first high Q2 recoil polarization data for Gp

E/G
p
M

< Q2 > Q2
min Q2

max R±∆Rstat ±∆Rsyst

5.171 4.904 5.476 0.436 ± 0.067 ± 0.0165
6.703 6.451 7.255 0.389 ± 0.114 ± 0.022
8.488 8.135 8.868 0.205 ± 0.181 ± 0.043

Table 5.14: Results of experiment E04-108.
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other than the Hall A experiments[32, 33, 31]. It is a very similar experiment, study-
ing the coincidence 1H(~e, e′~p) reaction using a magnetic spectrometer and a proton
polarimeter to detect and reconstruct scattered protons and measure their polariza-
tion. However, it is different in important ways. First and most importantly, it used a
completely different magnetic system than the Hall A High Resolution Spectrometers
(HRSs). Secondly, it used a polarimeter of substantially different design. Finally, the
character of the cuts used to select elastic events differs between E04-108 and the
Hall A experiments because of a difference in the dominant sources of experimental
resolution.

For the three highest Q2 points from Hall A, the electron was detected with a
calorimeter similar to BigCal, but with a larger block size of 15×15 cm2, almost four
times the transverse size of the lead-glass bars of BigCal. This important difference
leads to significantly worse coordinate resolution for the calorimeter used in the Hall
A experiments compared to BigCal. On the other hand, the momentum, angular
and vertex resolution of the HRSs is significantly better than that of the HMS. The
momentum resolution in particular is almost an order of magnitude better than that of
the HMS. This means that the dominant (worst) resolution in the cuts used to select
elastic events was different between the two experiments. In Hall A, the electron
angle resolution was dominant, while the proton momentum resolution was small by
comparison. In Hall C, on the other hand, the proton momentum resolution was
dominant, while the electron angle resolution was small by comparison, at least when
expressed in terms of the “missing momentum” ∆e, which is measured by BigCal with
excellent resolution when the large Jacobian of the reaction is taken into account.

Because it is the first recoil polarization experiment to use a completely different
apparatus in a Q2 range where direct comparison with the Hall A recoil polarization
results is possible, it provides an important test of the reproducibility of the recoil
polarization technique. Figure 5-10 shows the results of E04-108 (black squares)
together with the results of the Hall A experiments [32, 33](blue triangles) and [31](red
circles). The error bars shown are statistical. The systematic uncertainty is displayed
as the black band at the top of the figure. The overlap point at 5.2 GeV2 is in
reasonably good agreement with the two surrounding points from [31], and confirms
the continuing decrease of Gp

E/G
p
M with Q2. The two new data points extend the

knowledge of Gp
E/G

p
M to yet higher Q2.

The first interesting feature of the results is that the linearly decreasing trend
observed in the previous data appears to be slowing in the Hall C data. Although R
still decreases with Q2, all of the new data points come in higher than the linear fit
to the Hall A data. The statistical errors of the new data points are such that it is
difficult to draw strong conclusions with respect to a change in the behavior of R with
Q2, but the new data, when combined with planned future experiments to measure
R to Q2 of 15 GeV2 following the upcoming 12 GeV upgrade of Jefferson Lab, will
answer the question definitively.

One may reasonably ask whether the new Hall C data are in disagreement with the
published data. To answer this question in terms of the probability of obtaining the
value of R measured at 5.2 GeV2, a simple Monte Carlo calculation was performed
assuming a linear Q2 dependence of R in the region from 3.0 to 6.0 GeV2. The
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Figure 5-10: Results of experiment E04-108 shown as µpG
p
E/G

p
M . The results of

experiments E93-027 and E99-007 are shown for comparison. The error bars on the
data points are statistical, while the systematic errors are displayed as the band at
the top of the figure.

data points of [31] were randomly sampled from a Gaussian distribution centered
at the published values with a σ equal to the published errors. Then, a straight-
line fit was performed to the randomized Hall A data points. A new data point
at Q2 = 5.17 GeV2 was then sampled from a Gaussian distribution centered at the
expected value from the linear fit to the randomized Hall A data points, with a σ
equal to the error of the new Hall C data point. By performing a large number of
such trials, it was determined that a value of R greater than or equal to the new Hall
C result occured in approximately 8% of trials, indicating that while the new result is
somewhat improbable, the disagreement is certainly not significant enough to imply
a fundamental disagreement between the measurements, particularly given the crude
assumption of linear Q2 dependence of the form factor ratio used to calculate the
probability. If the same analysis were performed with respect to different possible Q2

dependences of the form factor ratio, such as the VMD model of Lomon[72] or the
GPD model of Guidal et al.[99], or any model in which the rate of decrease of R with
Q2 is slower than linear, the probability of the new result would be higher.

Additionally, the preliminary results of the high-statistics survey of the ε-dependence
of Gp

E/G
p
M at Q2 = 2.5 GeV2 (experiment E04-019) are in excellent agreement with

the Hall A results[33] at Q2 = 2.47 GeV2, as shown in table 5.15. Since experiments
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Experiment Q2, GeV2 R±∆Rstat

E93-027 2.47 0.703 ± 0.023
E04-019 2.5 0.694 ± 0.004

Table 5.15: Preliminary result of E04-019 compared to the published result of E93-
027 at similar Q2. Errors are statistical only. The E04-019 result is the weighted
average of the data taken at three different values of ε for a fixed Q2. The variation
of R with ε was found to be very small.

E04-019 and E04-108 were performed using identical apparatus and the data were
analyzed in exactly the same way, a neglected systematic error in the experiment is
all but ruled out.

5.4.1 Comparison to Theoretical Predictions

The slowing decrease of Gp
E/G

p
M with Q2 apparent in the new results was correctly

anticipated by the VMD-type models of Lomon[72] and Iachello and Bijker[73], as
shown in figure 5-11. In[73], the slowing decrease of Rp with Q2 is a consequence of
the inclusion of a direct coupling term in the isovector Pauli form factor in addition to
the ρ meson pole term. This direct coupling term is attributed to an intrinsic three-
quark structure of the nucleon and its inclusion results in a much better prediction for
the neutron spacelike form factors compared to the 1973 model[66], which predicted
a faster decrease of Rp with Q2. Both of the VMD models shown, and particularly
the model of Lomon[72], achieve quite reasonable fits to the data for all four nucleon
form factors over the entire Q2 range in which they are known.

While these models are somewhat phenomenological in nature, involving a num-
ber of free parameters which can be adjusted to fit the data, the values of the best
fit parameters provide important insight into the contribution of various mesons to
the spectral functions presented in chapter 2 and the transition from meson dynamics
known to be important at low Q2 to the dimensional scaling behavior expected from
perturbative QCD at high Q2. The model of Lomon, for example, uses five vector
mesons to fit all four nucleon form factors6. The model achieves a sufficiently accurate
description of all nucleon form factor data in the whole available Q2 range that it can
reasonably be applied where the form factors are required as input to the interpre-
tation of other experiments, and the new results for Gp

E/G
p
M should not significantly

alter the parameters of the model[72]. In the context of this model, the data for all
four nucleon form factors taken together suggest a relatively slow approach to the
asymptotic behavior required by perturbative QCD, as characterized by the param-
eter Λ2 ≈ 2.8 GeV which controls the suppression of spin-flip; i.e., the suppression of
F2 relative to F1.

The dimensional scaling law[88] for nucleons consisting of three valence quarks

6In addition to the usual ρ, ω, and φ mesons, the ρ′(1450) and ω′(1420) mesons were added to
the fit.
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Figure 5-11: Comparison of the results of E04-108, together with E93-027 and E99-
007, to the VMD models of Lomon(dashed curve) and Iachello and Bijker (dot-dashed
curve). See text for references.

predicts that F2 should scale as F1/Q
2 for Q2 →∞. The ratio Q2 F

p
2

F p1
is shown for the

results of E04-108 in figure 5-14. Although the new data do show hints of a flattening
of the ratio Q2F2/F1, the onset of dimensional scaling cannot be conclusively inferred
from the new data. If, on the other hand, the flattening trend is confirmed by future
experiments at higher Q2, one may begin to discuss the onset of perturbative behavior
of the proton form factors.

Miller’s light-front cloudy bag model(LFCBM) [84] predicts a violation of hadron
helicity conservation due to the relativistic effect of the Melosh rotations required to
boost the nucleon wave function to the light-front, which appears in the form factor

ratio as a constant scaling of the ratio Q
F p2
F p1

. Such a scaling behavior was observed in

the Hall A recoil polarization data (although the LFCBM significantly overpredicts
the value of QF p

2 /F
p
1 ). The results of E04-108, on the other hand, appear to diverge

from this behavior, as they exhibit a sagging of QF p
2 /F

p
1 at higher Q2.

Figure 5-14 shows that the new recoil polarization data are also compatible with
the modified logarithmic perturbative QCD scaling of F2/F1 found by Belitsky et
al.[91] with the value Λ = 226±25 MeV giving the best fit to the data. In the context
of perturbative QCD, the measurement of Gp

E/G
p
M to higher Q2 can be interpreted as

an experimental determination of the fundamental scale parameter of QCD Λ through
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Figure 5-12: Q2F p
2 /F

p
1 from recoil polarization data.

asymptotic scaling relations such as [91]. However, the question of the minimum
momentum transfer for which a pQCD analysis of the nucleon form factors is valid
is far from settled, and awaits further advances in both theory and experiment. The
GPD model of Guidal et al.[99] also predicts a continued decrease of Gp

E/G
p
M with

Q2 which is slower than linear, and a zero crossing at approximately 9 GeV 2. The
results of E04-108 are certainly compatible with this model within uncertainties, and
it will be interesting to determine the consequences for this and other GPD models
when the results of E04-108 are included in the form factor data used to constrain
the zeroth x moments of the GPDs H and E. Figure 5-15 shows the predictions of
several models for the ratio µpG

p
E/G

p
M in the higher Q2 region that will be explored

following the 12 GeV upgrade of Jefferson Lab.

5.4.2 Conclusion

Experiments E04-108 and E04-019, respectively, extended the recoil polarization
measurements of the proton electromagnetic form factor ratio Gp

E/G
p
M to Q2 = 8.5

GeV2 and measured the ε dependence of Gp
E/G

p
M at a fixed Q2 of 2.5 GeV2. As the

first such measurements at high Q2 to take place outside of Jefferson Lab Hall A, these
results are an important test of the reproducibility of the recoil polarization technique,
and they are in reasonable agreement with the Hall A results where they overlap,
particularly at Q2 = 2.5 GeV2. The preliminary results of experiment E04-019 show
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LFCBM prediction for this ratio.
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no significant ε-dependence of the proton Gp
E/G

p
M ratio at fixed Q2. Various models of

the effect of two-photon exchange on the extraction of the proton form factors from
Rosenbluth separation and double-polarization experiments predict a significant ε-
dependence of this ratio. The absence of such a dependence in the recoil polarization
results is interpreted as a strong validation of the method, as the true form factors
entering the Born-approximation expression for the nucleon electromagnetic current
depend only on Q2. The results are also expected to provide severe constraints on
models attempting to explain the discrepancy between cross section and polarization
experiments in terms of TPEX effects.

The new data at higher Q2 show a slowing decrease of Gp
E/G

p
M with Q2 relative

to the linear decrease observed in the Hall A data for Q2 ≤ 5.6 GeV2. Vector meson
dominance (VMD) models correctly predicted this behavior. Although the statistical
significance of this change in behavior is somewhat marginal, its physical implications
are interesting to consider. A constant ratio Gp

E/G
p
M at asymptotically large Q2 is a

signature of the onset of the dimensional scaling expected from perturbative QCD for
a nucleon consisting of three quarks interacting weakly through gluon exchange. The
planned experiments covering the Q2 range from 10-15 GeV2 following the 12 GeV
upgrade of the CEBAF accelerator will answer the question of whether the flattening
hinted at by the E04-108 results is real or whether Gp

E/G
p
M will continue to decrease

and eventually cross zero. The results presented in this thesis are the most precise
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Figure 5-15: Results of E04-108 with a sampling of theoretical predictions projected
to the Q2 region of the JLab 12 GeV upgrade. The theory curves are the VMD model
of Iachello and Bijker (green dot-dashed), the Lomon VMD model (black dashed),
the pQCD prediction of Belitsky et al. (red double dot-dashed), the GPD model of
Guidal et al. (blue triple dot-dashed), and Miller’s LFCBM (burgundy solid).

measurements to date of the proton electric form factor Gp
E in this range of Q2, and

as such they represent a significant advancement of the experimental knowledge of
the structure of the nucleon.
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Appendix A

Details of Cross Section and
Polarization Transfer Derivations

A.1 Conventions for Dirac Algebra, γ-matrices and

Spinors

The convention used throughout the derivations in chapter 1 for Dirac spinors and
γ-matrices is the same as that of [11], the so-called Dirac-Pauli representation. In
this representation, the γ-matrices are given by

γ0 =

(
1 0
0 −1

)
(A.1)

~γ =

(
0 ~σ
−~σ 0

)
(A.2)

γ5 ≡ iγ0γ1γ2γ3 =

(
0 1
1 0

)
(A.3)

where each block represents a 2×2 matrix. These matrices obey the anti-commutation
relations

{γµ, γν} = 2gµν (A.4)

{γ5, γµ} = 0 (A.5)

It is useful to write down some identities involving the Pauli matrices that will be
helpful when deriving the polarized scattering amplitude:

[σi, σj] = 2iεijkσk (A.6)

{σi, σj} = 2δij (A.7)

σiσj = δij + iεijkσk (A.8)

From the commutation and anticommutation relations of the Pauli matrices, some
useful relations for inner products of Pauli matrices and arbitrary vectors immediately
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follow:

(~σ · a)(~σ · b) = a · b + i~σ · (a× b) (A.9)

(~σ · a)(~σ · b)(~σ · c) = (b · c)(~σ · a)− (a · c)(~σ · b) + (a · b)(~σ · c) +

ia · (b× c)

⇒ (~σ · a)(~σ · b)(~σ · a) = 2(a · b)(~σ · a)− a2(~σ · b) (A.10)

The following identities involving the γ-matrices are useful in deriving the polarized
scattering amplitude:

(γ0)2 = 1 (A.11)

γ5γ0 =

(
0 −1
1 0

)
(A.12)

γ0~γ ≡ ~α =

(
0 ~σ
~σ 0

)
(A.13)

γ5γ0~γ =

(
~σ 0
0 ~σ

)
(A.14)

~γγ5 =

(
~σ 0
0 −~σ

)
(A.15)

1

2
γ5(1 + γ0)~γ =

(
0 0
0 ~σ

)
(A.16)

To derive the elastic electron-nucleon scattering amplitude in the Born approximation,
only free-particle spinors are needed (no antiparticles), so it suffices to write down
the free-particle solutions of the Dirac equation with positive energy:

[6 p−M ]u(p) = 0 (A.17)

u(s)(p) =
√
E +M

(
χ(s)

~σ·p
E+M

χ(s)

)
(A.18)

ū ≡ u†γ0 (A.19)

The normalization constant for the spinors reflects the covariant normalization con-
vention in which

u†(s1)u(s2) = 2Eδs1s2 (A.20)

ū(s1)u(s2) = 2Mδs1s2 (A.21)

A.2 Polarized and Unpolarized Spin Sums

For unpolarized spins, the completeness relation for the spin states χ is
∑

s χ
(s)χ†(s) =

1, while for polarized spins the completeness relation is given by (1.51),
∑

s χ
(s)χ†(s) =

1
2

(1 + ~σ · h), where h is the polarization vector. Therefore, the relevant completeness
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relation for Dirac spinors is

∑
s

u(s)(p)ū(s)(p) = (E +M)

(
1 − ~σ·p

E+M
~σ·p
E+M

− p2

(E+M)2

)

=

(
E +M −~σ · p
~σ · p −E +M

)
= γµpµ +M =6 p+M (A.22)

for unpolarized spins. For polarized spins, things get a bit more complicated. The
first term in the completeness relation

∑
s χ

(s)χ†(s) = 1
2

(1 + ~σ · h) just gives the usual
6 p + M term above, with a factor of 1/2. The ~σ · h term contains the polarization
effects. This term evaluates to∑

s

u(s)(p)ū(s)(p) =
1

2

(
(E +M)(~σ · h) −(~σ · h)(~σ · p)

(~σ · p)(~σ · h) − 1
E+M

(~σ · p)(~σ · h)(~σ · p)

)
Using identities (A.9) and (A.10) allows the following rearrangements of the various
terms:

(~σ · h)(~σ · p) = h · p + i~σ · (h× p)

(~σ · p)(~σ · h) = p · h + i~σ · (p× h)

− 1

E +M
(~σ · p)(~σ · h)(~σ · p) = − 2

E +M
(p · h)(~σ · p) +

p2

E +M
(~σ · h)

= − 2

E +M
(p · h)(~σ · p) +

(E −M)(~σ · h)

With these relations in hand, the spin sum can be grouped into several terms which
can be reduced to a more convenient form:∑

s

uū =
1

2

[
Eh ·

(
~σ 0
0 ~σ

)
+Mh ·

(
~σ 0
0 −~σ

)
+ (p · h)

(
0 −1
1 0

)
+

i(p× h) ·
(

0 ~σ
~σ 0

)
− 2

(p · h)

E +M
p ·
(

0 0
0 ~σ

)]
(A.23)

Using the identities (A.11)-(A.16), the polarized spin sum can be expressed entirely
in terms of γ-matrices, which will come in handy for the calculation of the polarized
electron and nucleon current tensors:

2
∑
s

uū = Eγ5γ0(~γ · h) +M(~γ · h)γ5 + (p · h)γ5γ0 +

iγ0(~γ · (p× h))− (p · h)

E +M
γ5(1 + γ0)(~γ · p) (A.24)
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A.3 Trace Identities and the Evaluation of Current

Tensors

When evaluating the electron and nucleon tensors Lµνe and W µν
N , one is essentially

forming the outer product of a four-vector and its complex conjugate. For the nucleon
tensor, this is given by:

J µ
N ≡ ū(p′)Γµu(p)

W µν
N ≡ J µ

NJ
ν∗
N

J ν∗
N = [ū(p′)Γνu(p)]

∗
= [ū(p′)Γνu(p)]

†

J ν∗
N = u†(p)(Γν)†ū†(p′)

= u†(p)γ0γ0(Γν)†γ0u(p′)

= ū(p)γ0(Γν)†γ0u(p′)

Γν is a linear combination of γν and pν + p′ν . The latter is self-adjoint, while the
former satisfies γ0(γν)†γ0 = γν , so that γ0(Γν)†γ0 = Γν . This leaves

J ν∗
N = ū(p)Γνu(p′)

⇒ W µν
N = ū(p′)Γµu(p)ū(p)Γνu(p′)

=
3∑
i=0

ūi(p
′)

3∑
j=0

Qµν
ij uj(p

′)

Qµν ≡ Γµu(p)ū(p)Γν

W µν
N =

3∑
i=0

3∑
j=0

Qµν
ij uj(p

′)ūi(p
′)

W µν
N = Tr [Γµu(p)ū(p)Γνu(p′)ū(p′)] (A.25)

Finally, the following trace theorems will help in evaluating the lengthy expression
for the polarized and unpolarized tensors encountered in the derivations of chapter 1.
These relations follow from the anti-commutation relation for γ-matrices:

Tr(γµ) = 0

Tr 1 = 4

Tr(γµγν) = 4gµν

Tr(γµγνγαγβ) = 4
[
gµνgαβ − gµαgνβ + gµβgνα

]
Tr(γ5) = 0

Tr(γ5γµγν) = 0

Tr(γ5γµγνγαγβ) = 4iεµναβ

The trace of the product of an odd number of γ-matrices is zero.
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Appendix B

Nucleon Current in the Breit
Frame

The general expression for the nucleon current was given in equation 1.13:

J µ
N = ū(p′)

[
GMγ

µ +
GE −GM

2M(1 + τ)
(p+ p′)µ

]
u(p) (B.1)

The explicit Dirac free-particle spinors for the nucleon in its initial and final state are
as follows:

ū(p′) =
√
E ′ +M

(
χ′†, χ′†

σ · p′

E ′ +M

)
γ0 (B.2)

u(p) =
√
E +M

(
χ

σ·p
E+M

χ

)
(B.3)

The defining properties of the Breit frame simplify the spinor products:

(p+ p′)µ = 2M
√

1 + τgµ0 (B.4)

E ′ = E = M
√

1 + τ (B.5)

p′ = −p (B.6)

There are two spinor products required, ū(p′)γµu(p), and ū(p′)u(p). For µ = 0, one
finds:

ū(p′)γ0u(p) = (E +M)

[
χ′†χ− χ′† (σ · p)2

(E +M)2
χ

]
(B.7)

= (E +M)χ′†χ

[
1− p2

(E +M)2

]
(B.8)

= χ′†χ [(E +M)− (E −M)] = 2Mχ′†χ (B.9)
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For µ ≡ k 6= 0 one finds:

ū(p′)γku(p) = (E +M)

(
χ′†,−χ′† σ · p

E +M

)
γ0γk

(
χ

σ·p
E+M

χ

)
(B.10)

= (E +M)

(
χ′†,−χ′† σ · p

E +M

)(
0 σk

σk 0

)(
χ

σ·p
E+M

χ

)
(B.11)

= (E +M)

(
χ′†,−χ′† σ · p

E +M

)(
σk σ·p

E+M
χ

σkχ

)
(B.12)

= χ′†
(
σkσ · p− σ · pσk

)
χ (B.13)

= χ′†pi [σk, σi]χ (B.14)

= 2iχ′†εijkpiσjχ (B.15)

= 2iχ′†p× σχ (B.16)

Finally, ū(p′)u(p) is given by:

ū(p′)u(p) = (E +M)

(
χ′†,−χ′† σ · p

E +M

)(
χ

− σ·p
E+M

χ

)
(B.17)

= χ′†χ [(E +M) + (E −M)] = 2Eχ′†χ (B.18)

The timelike component of the current reduces to:

J 0
N =

[
2MGM +

GE −GM

2M(1 + τ)
4M2(1 + τ)

]
χ′†χ (B.19)

= 2MGEχ
′†χ (B.20)

while the spacelike components become:

~JN = 2iGMχ
′†(p× σ)χ (B.21)
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Appendix C

F1 TDC Decoding

In order to measure the drift times for signals from the FPP drift chambers using
the F1 TDCs, one must determine the amount of time elapsed between the time
of a hit from the given wire and the time at which a particle passed through the
drift chamber. The latter is of course determined by the scintillators. Each F1
TDC module records the time of the stop signal that triggers it to read out its data,
attaching this time to its header word. However, this “trigger” time is recorded with 7
bits fewer resolution. Whereas the individual TDC channels have approximately 125
ps/count, the stop/trigger time has approximately 16 ns/count, which is insufficiently
precise to determine the time difference needed for the drift time. The solution, of
course, was to take a copy of the HMS trigger signal and record its time in the F1
TDCs as well, once per VME crate. Then the relevant time difference is the difference
between the wire hit time and the measured trigger time. However, since the F1 TDCs
are free-running counters, one must carefully account for the possibility of rollover
when the TDC count reaches the full-scale range of the TDC. Though the trigger
TDC is recorded with 7 bits lower resolution, it does roll over at the same time as
the signal TDC, so it can be used to detect rollover unambiguously.

The signal delays are configured so that the hit signals always arrive earlier than
the trigger/stop signals. This means that if the TDC does not roll over between the
hit and the stop, the raw TDC value of the hit is smaller than that of the stop signal.
If the TDC rolls over between the arrival of the hit and the stop, then the hit TDC
value will be larger than that of the stop signal. Since the seven most significant bits
of the trigger signal are not recorded, the trigger time must be scaled to the full count
resolution. This is accomplished by multiplying the trigger TDC value by 27 = 128
and adding 27 − 1 = 127. The reason for setting all of the seven most significant
(unknown) bits to 1 is to preserve the chronological ordering of the signal and trigger
TDCs (early signal, late trigger) for time differences smaller than the 16 ns resolution
difference. Once the trigger TDC has been scaled to the same resolution as the signal
TDC in this fashion, the detection of rollover is straightforward. If the rollover occurs
between the arrival of the signal and the arrival of the trigger, then the raw signal
TDC value will be larger than the trigger TDC value. In the analysis, the full size
of the programmed TDC window is added to the signal when the signal TDC is less
than the trigger TDC, so that in practice, the TDC value is always corrected unless
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the rollover occurs between the arrival of the signal and the trigger. Alternatively, one
could subtract the full window size when the signal TDC exceeds the trigger TDC.
The choice is irrelevant as the only thing that matters is for all TDC hits to be in
correct chronological order.
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Appendix D

SIMC: Hall C Monte Carlo

The standard Hall C Monte Carlo package SIMC[136] is designed to calculate ac-
ceptance functions for the Hall C spectrometers (HMS and SOS) for cross section
measurements of coincidence (e, e′p) and inclusive (e, e′) or (e, p) reactions. It con-
tains detailed models of the magnetic optics (COSY) and physical apertures of the
HMS, including those of the collimator, the magnets, the vacuum enclosure, and
lastly, the detectors. SIMC is well suited to simulation of elastic scattering from
hydrogen, with BigCal replacing the SOS in the role of the electron arm.

Since measuring the scattering cross section with any significant accuracy was not
the goal of this experiment, a detailed calculation of the acceptance for this purpose
was not needed. On the other hand, a realistic simulation of the experiment including
elastic scattering and the background processes of π0 photoproduction, quasi-elastic
(e, e′p) from the target endcaps, and Compton scattering was needed to understand
the detailed shape of the signal and background in the space of variables to which
elastic event selection cuts were applied, including the proton inelasticity ∆p and the
position differences (∆x,∆y) at BigCal. The SIMC background estimate provided
an independent check on the methods used to estimate the background directly from
the data and helped to determine the uncertainty in the estimated background by
comparing the results obtained using different methods.

SIMC does not simulate the response or efficiency of individual detector channels.
SIMC does simulate the effects of energy loss and multiple scattering in all materials
traversed by the scattered particles, as well as radiation and the decay of unstable
particles. It also simulates the finite resolution of the detectors. Relevant properties
of the electron beam are also simulated, including the rastered spot size, the energy
spread, and energy loss and multiple scattering in the target up to the scattering
vertex. In SIMC, all unique kinematic variables that define an event are generated
uniformly within limits calculated to exceed the experimental acceptances. For all
events, the position of the interaction vertex is generated uniformly along the target
length and within the size of the (rastered) beam spot. For elastic ep scattering,
the angles of the electron are generated, and all other quantities are calculated from
the two-body reaction kinematics. In the case of quasi-elastic (e, e′p) scattering from
heavy nuclei, the electron and proton angles and momenta are all generated. For
pion photoproduction and Compton scattering, the proton angles and the energy of
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the Bremsstrahlung photon radiated from the incident beam are generated, and the
scattering angles and momentum of the π0 (for photoproduction) or the Compton-
scattered γ are calculated from the two-body reaction kinematics.

For each event, a weight is assigned which takes into account the cross section
of the reaction in question as a function of the relevant kinematic variables, the
luminosity, and the phase-space volume of the generation region. In the case of elastic
ep scattering and quasi-elastic (e, e′p) scattering from the target endcaps, internal and
external radiative corrections to the cross section are calculated[137, 138] based on
the formalism of Mo and Tsai[139] by randomly generating the energy of the radiated
photon from each of the incident and scattered particles, and then adjusting the
kinematics of the particles from which radiation occured accordingly. The weight of
each radiated event is then adjusted according to the cross section for radiation at
the generated energy. For pion photoproduction and Compton scattering, the flux of
incident Bremsstrahlung photons at the generated photon energy as a function of the
position along the target and the current and energy of the incident electron beam is
calculated and included in the event weight along with the reaction cross section. No
radiative corrections are applied to the pion photoproduction and Compton scattering
cross sections.

The cross section model for elastic ep scattering in SIMC uses the Bosted fit to
the proton electromagnetic form factors[140] together with the Rosenbluth formula to
calculate the (unradiated) cross section. For the target endcaps, the spectral function
for carbon built into SIMC is used to calculate the 12C(e, e′p) cross section1. Although
data were taken with the dummy target to measure the aluminum contribution at
Q2 = 8.5 GeV2, the data were insufficient to determine the detailed shape of the
background, as only ≈ 50 events from the dummy target passed all the elastic cuts.
For pion photoproduction, the cross section was parametrized in terms of Mandelstam
s and the production angle ΘCM of the π0 in the photon-proton center-of-mass frame
as

dσ

dt
= C(1 + cos ΘCM)−4(1− cos ΘCM)−5

(s0

s

)7

(D.1)

with parameters C and s0 determined by the data of [129]. For Compton scattering,
an even simpler approximation to the cross section was used. Since there is no
way to reliably separate Compton scattering from elastic ep scattering in the data
of this experiment, and since the Compton scattering cross section is reasonably
assumed to be quite small compared to the photoproduction cross section, a very
rough extrapolation from the data of [130] to the kinematics of this experiment was
performed assuming no t-dependence over the range of extrapolation in t and an s−8

scaling of dσ/dt in order to obtain an order-of-magnitude estimate of the Compton
contribution to the data, which was indeed found to be quite small.

1Since the goal of the simulation was not to understand the detailed nuclear physics of the the
target endcap background but merely to obtain the lineshape of this background, and since the well-
known carbon-12 cross section is already built in to SIMC, it was deemed sufficient to use carbon
instead of aluminum for this study.
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After generating and “radiating” an event, the scattered proton is transported
forward through the HMS to the detector hut, checking all physical and detector
apertures along the way. The forward and reverse transport matrices used in SIMC are
those of the HMS COSY model described above for use as the starting point in fitting
the true optics matrices and for calculating the proton spin precession. The role of S0
in the trigger and as a source of multiple scattering is accounted for. The trajectory of
the scattered electron (elastic/quasi-elastic) or photon(s) (photoproduction/Compton
scattering) is projected to BigCal. In π0 photoproduction events, the angle of the
back-to-back decay photons is generated isotropically in the π0 rest frame and both
photons are subsequently boosted to the lab frame.

If the proton passes through the HMS and hits all the detectors required in the
trigger (S1X, S1Y and S0) and the electron (or at least one photon) hits BigCal
with an energy exceeding the trigger threshold, the event is considered successful. In
order to save computing time, SIMC calculates the cross section weight only after
determining whether an event will contribute. Events detected in both the electron
arm (BigCal) and the proton arm (HMS) are then reconstructed, taking detector
resolution and multiple scattering into account, and the target quantities x′tar, y

′
tar,

ytar, and δ are reconstructed using the reverse COSY matrix elements. Just as in the
reconstruction of the data, the variables are reconstructed a second time to correct
for the xtar effect discussed in section 4.1.4. More detailed documentation of SIMC
can be found in [136, 137] and references therein.
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