ECal report

Mark Jones 7/7/2016

DOE 2015 Review recommendation

 The team should provide to DOE a report on the ECal annealing tests by February 16, 2016. This report should use the beam test data to validate the heat annealing model, and use the model to predict performance under expected operating conditions.

- **Response:** *Report was sent to DOE in March 2016.*

- The Laboratory is urged to evaluate the ECal project including the technical feasibility of the annealing solution, and ECal project cost and schedule, by summer 2016.
 - Response: Working on report comparing 3 options

Three options

Option	Existing BIGCAL	Existing BIGCAL	BNL SPACAL
	with UV curing	with thermal an-	
		nealing	
FOM	0.73	1.0	0.76
$\Delta E/E$	10%	5%	14%
Cost	\$54k	\$126K	\$142.5K

Shared cost of updated trigger and HV of \$100K.

- Written report comparing three options. Main consideration is difference in energy resolution and ECal trigger threshold of 90% of elastic max.
- Send out report on July 8th to three members of the SBS Annual review committee. Get response in one month.
- Send conclusions to DOE by August 15th.

Summary of technical cost and schedule risks

"BIGCAL with U	V curing"	
Technical Risk	HIGH	1) Extrapolation by factor of 13 from GEp3
		experience used to estimate rate of radiation
		damage. 2) Possible long-time constant radi-
		ation damage effects not seen in GEp3.
Cost Risk	LOW	The costs are understood.
Schedule Risk	LOW	The tasks are well understood.
"BIGCAL with the	ermal annealing"	
Technical Risk	MEDIUM	1) C200 work to test mechanical design for
		full scale implementation is ongoing. This risk
		will be mitigated when C200 test is complete.
		2) Possible long-time constant radiation dam-
		age effects not addressed by the C16 test.
Cost Risk	LOW	The technology is standard.
Schedule Risk	MEDIUM	C200 work to test mechanical design for full
		scale implementation is ongoing and is ex-
		pected to be done by August 2016. This risk
		will be mitigated when C200 test is complete.
"BNL SPACAL"		
Technical Risk	LOW	The SPACAL has been used previously and
		the modifications are straightforward.
Cost Risk	LOW	Quotes have been received from the vendors
		for parts and work.
Schedule Risk	LOW	The tasks are well understood.

Table 2: Summary of technical, cost and schedule risk

UV curing option Budget and schedule

Item	Subitem	Cost (\$K)
UV curing system		
	Osram UV lights	1
	Large housing to hold	25
	lights	
	Labor for UV light fix-	8
	ture installation	
Aluminum absorber		10
New legs for platform		10

Table 3: Budget for the UV curing option

Milestone	Date
Start preparing blocks	Sept 2016
Start preparing optical coupling cookies	Oct 2016
Complete wrapping of lead glass and cookies	Jan 2017
Design UV light fixture and aluminum absorber begins	Jan 2017
Lead glass installation started	Feb 2017
Order parts for light fixture	Mar 2017
Lead glass installation completed and cosmic tests started	May 2017
UV light fixture installed	July 2017
ECAL ready to install	Aug 2017

Table 4: Schedule for the UV curing option

Item	Group	Effort
New legs for platform	JLab engineers and de-	1 week engineer and 2
	signers	weeks designer
UV light box and alu-	JLab engineers and de-	3 weeks engineer and 5
minum absorber	signers	weeks designer
Making optical cookies	One JLab staff	8 weeks at 25% time
Clean and wrapping	One JLab staff and	4 months at 50% time
lead glass	postdoc	
Installation of lead	One JLab staff and	3 months at 50% time
glass	postdoc	

Table 5: Workforce estimate for the UV curing option. The JLab staff and/or postdoc could be replaced by faculty user and/or university postdoc.

Thermal annealing option Budget and schedule

Item	Subitem	Cost (\$K)
Oven		
	Thermalcouples and	2
	readout	
	Foamglass insulation	6
	Heating elements	16
	9-block supermodule	35
	parts	
Light guides	1200 (600 onhand)	12
BigCal Platform Modi-		
fications		
	New legs	10
	New enclosure	45

Table 6: Budget for the thermal annealing option

Milestone	Date
Conceptual design report for oven complete	Sept 2016
Order light guide rods	Sept 2016
Order the 9-block module parts	Oct 2016
Start gluing light guide rods to blocks	Dec 2016
Design of oven enclosure begins	Jan 2017
Receive the 9-block module parts	Feb 2017
Oven enclosure sent to procurement	May 2017
Completed gluing light guide rods to blocks	Aug 2017
Oven enclosure completed	Aug 2017
Installation of lead glass modules started	Sept 2017
Lead glass installation complete and cosmic tests started	April 2018
ECAL ready to install	May 2018

Table 7: Schedule for the thermal annealing option.

Item	Group	Effort
New legs for platform	JLab engineers and de-	1 week engineer and
	signers	two weeks designer
New oven and enclosure	JLab engineers and de-	4 weeks engineer and 12
	signers	weeks designer
Assembly of oven	2 JLab technicians	2 weeks
Gluing light guide rods	1 JLab staff and 1 post-	8 months at 50%
to blocks	doc	
Installation of lead	1 JLab staff and 1 post-	7 months at 50%
glass modules	doc	

Table 8: Workforce estimate for the thermal annealing option. The JLab staff and/or postdoc could be replaced by faculty user and/or university postdoc.

BNL SPACAL option Budget and schedule

Item	Subitem	Cost (\$K)
BNL SPACAL modules		
	Shipping from BNL	5
	Cutting and polishing	6
	(quote from Vision)	
Light guides		
	Material + machined	83
	and mechanical pol-	
	ished	
	Holder	2.5
	Optical glue	1
BigCal Platform Modi-		
fications		
	New legs	10
	New enclosure	35

Milestone	Date
Shipment of blocks from BNL to vendor	Sept 2016
Order light guides from vendor	Sept 2016
Order holders	Oct 2016
Start design of new enclosure and legs	Jan 2017
Vendor completes cutting and polishing blocks	Jan 2017
Holders completed	Feb 2017
Machining of light guides complete	April 2017
Begin assembly of light guides on modules	May 2017
New enclosure and legs sent to procurement	Mar 2017
Complete assembly of light guides on modules	Sept 2017
New enclosure and legs completed	Sept 2017
Installation of SPACAL started	Oct 2017
SPACAL installation compete and cosmic tests started	Mar 2018
ECAL ready to install	Apr 2018

 Table 9: Budget for the SPACAL option

Table 10: Schedule for the SPACAL option.

Item	Group	Effort
New legs for platform	JLab engineers and de-	1 week engineer and
	signers	two weeks designer
New enclosure	JLab engineers and de-	3 weeks engineer and 5
	signers	weeks designer
Assembly of light	1 JLab staff and 1 post-	4 months at 50%
guides on modules	doc	
Assembly of new enclo-	2 JLab technicians	1 week
sure		
Installation of modules	1 JLab staff and 1 post-	5 months at 50%
	doc	

Table 11: Workforce estimate for the SPACAL option. The JLab staff and/or postdoc could be replaced by faculty user and/or university postdoc.

Shared costs for trigger and HV

Item	Subitem	Cost (\$K)
Modified PMT bases		
and patch panels		
	2400 Connectors	17
	Patch Panels	5
Trigger electronics		
	31 4-channel linear	40
	FI/FO	
	800 LEMO cables	24
Replacement HV cables		
and patch panels		
	40 patch panels	15

Table 13: Cost for the trigger and HV update.

Item	Group	Effort
PMT modified bases and patch panel	JLab technician	8 weeks
Replacement patch panels	JLab technician	6 weeks

Table 14: Workforce estimate for the updated trigger.