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Inclusive electron scattering of either unpolarized or polarized electrons, (e, e’) or (6, e’), 
from polarized nuclei is considered. General formulas are given for arbitrary nuclear trans- 
itions and polarizations, in the extreme relativistic limit for the electron, and examples where 
the nuclear states involved have specific angular momenta and parities are discussed in some 
detail. cj 1986 Academic Press, Inc. 

1. INTRODUCTION 

One of the fundamental problems of nuclear physics has been to develop a com- 
plete understanding of the electromagnetic structure of the nucleus. Specifically, it is 
of interest to have all of the individual electromagnetic form factors for a given 
nuclear transition at our disposal, for these quantities provide the most complete 
characterization of the electromagnetic structure of that transition. 

For many years, the use of inclusive electron scattering from nuclei has been a 
fruitful approach to the experimental determination of nuclear electromagnetic form 
factors. Underlying such studies is the fundamental theory of quantum elec- 
trodynamics describing the electromagnetic interaction of spin-4 leptons, which has 
led to theoretical predictions that are in unprecedented agreement with experiment. 
Thus, in considering lepton scattering from hadrons (i.e., semi-leptonic processes), 
the leptonic part of the reaction can be presumed to be well known. Specifically, 
electron scattering allows us to investigate the electromagnetic structure of the 
relevant nuclear (hadronic) states with confidence, since certain properties of the 
electromagnetic interaction make electron scattering especially well suited to 
analysis. In particular, the electromagnetic coupling, characterized by the line-struc- 
ture constant c( = e*/!ic z l/137.036, is relatively small, and thus we only need to 
consider the lowest order processes involved in order to achieve results which are 
quite accurate and relatively easy to interpret. Since higher-order processes are sup- 
pressed relative to the lowest order ones, the single-photon-exchange process for 
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electron scattering is usually dominant. In fact, in this work we shall consider only 
the one-photon-exchange contributions together with plane-wave electrons (the 
plane-wave Born approximation, PWBA). Of course, distorted electron waves can 
also be handled (leading to the distorted-wave Born approximation, DWBA), but 
this goes beyond the more limited focus of the present developments. Within the 
context of the PWBA, the electromagnetic form factors are directly related to the 
Fourier transforms of the electromagnetic current matrix elements; by fixing the 
energy transferred to the nucleus (to pick out a transition between specific nuclear 
states) and varying the momentum transfer, it is possible to learn about the spatial 
distributions of the nuclear electromagnetic current. This provides the basic inter- 
face for comparison with predictions obtained using some specific model for the 
nuclear states involved. 

Alternatively, one might imagine performing similar types of experiments in 
which the weak or strong interactions are used as a probe of nuclear structure; 
these experiments could involve, for example, neutrino scattering in the former case 
or meson or nucleon scattering in the latter. As far as the weak interaction is con- 
cerned, the corresponding analysis of the scattering process is completely analogous 
to that for the electromagnetic interaction, except that the resulting cross sections 
are much smaller [l, 2, 31; this limits the applicability of such experiments. On the 
other hand, hadron scattering, which is characterized by a large coupling strength, 
involves correspondingly larger cross sections; however, this increased strength 
(compared to the electroweak coupling) is also a drawback since the effects of the 
reaction mechanism (namely, the hadron scattering process itself) are difficult to 
separate from those of the underlying nuclear structure. Thus, electron scattering 
can be seen to play a special role when studying nuclear structure. Of course, 
whenever possible, it is desirable to have information from all three (elec- 
tromagnetic, weak, and strong) types of probes. 

Electron scattering studies may be undertaken in principle with or without 
polarization degrees of freedom being specified for the electrons and/or for the 
nucleus. Up to the present, the technology required in practice to achieve useful 
polarized electron beams and nuclear targets has not been readily available. On the 
other hand, a considerable amount of information has been obtained using 
unpolarized beams and targets, although there are certain limitations inherent in 
this class of experiments. Under these conditions, it is only possible to extract from 
measurements of the inclusive differential scattering cross section two form factors, 
corresponding to the longitudinal and transverse polarizations of the exchanged vir- 
tual photon. This separation, which is made by varying the kinematic factors of the 
incident and scattered electrons (such as the initial energy and scattering angle) 
while keeping the energy and momentum transferred constant, is known as the 
Rosenbluth decomposition [4]. However, for the case of electron scattering from 
discrete nuclear states which have definite parities and angular momenta, the 
longitudinal form factor in general consists of an incoherent superposition of the 
squares of a number of Coulomb (i.e., charge) form factors with various mul- 
tipolarities. Similarly, the transverse form factor in general is an incoherent super- 
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position of the squares of a series of electric and magnetic form factors, again with 
varying multipolarity (in the case of elastic scattering, the eiectric form factors can 
be shown to be identically zero, if time-reversal invariance is applied). Thus, in the 
general case it can be seen that it is not possible to extract all of the individual elec- 
tromagnetic form factors from experimental cross section measurements, and this 
puts important restrictions on the amount of nuclear information which may be 
extracted from experiments involving inclusive electron scattering. Indeed, even 
when there are only two possible form factors (e.g., in elastic scattering from spin-i 
nuclei, where one has only a single Coulomb and a single magnetic multipole), 
there are frequently cases where one form factor dominates over the other and it is 
difficult to extract the small quantity using the Rosenbluth technique. 

These limitations have led a number of people to investigate the possibility of 
extracting additional information through the use of polarized electron beams 
and/or targets (see especially [S]). The essential point is that new combinations of 
the form factors (other than incoherent sums of squares) can be obtained by vary- 
ing the polarization direction, or the polarization itself, of the nucleus; also, the 
presence of polarization results in additional independent kinematic factors in a 
sort of super-Rosenbluth formula [6] which can be used to the same purpose. 
Previously, the only nuclei which had been considered in detail for polarization 
studies were the nucleon [7-141, the deuteron [14-171, and ‘65H~ [lS, 191. At 
present, the prospects for having intense, polarized electron beams are very good 
[20], as is the possibility of being able to polarize a variety of nuclei, as discussed 
below (see also Refs. [21, 22, 23]), and so a general treatment of the problem of 
inclusive electron scattering from polarized nuclei is called for; in particular, in the 
present article we generalize the formalism (building on the work of Weigert and 
Rose [IS]), casting the basic polarization cross sections in forms which should 
prove to be useful in the future in discussing experimental results. Anticipating such 
experimental studies, we apply our general formalism to a selection of specific 
nuclear transitions which serve to illustrate the high degree of sensitivity inherent in 
using polarization measurements as a tool to probe nuclear structure. 

There are two technical developments which make electron polarization 
experiments of increasing importance in nuclear physics. First, the construction of 
high duty factor facilities with high beam intensities makes coincidence experiments 
involving the analysis of recoil nuclear polarization much easier than in the past. 
Second, the construction of stretcher rings [22,23, 241 will allow experiments to be 
undertaken using internal (e.g., gas jet) targets of polarized nuclei; because of the 
high intensity of the resulting internal circulating electron beam, the luminosity will 
approach the point where it will be possible to perform electron scattering 
experiments over extended ranges of the momentum transfer, even though the 
targets themselves are relatively thin [22]. In contrast, polarized-target experiments 
using an external electron beam have not been practical except in a few very special 
cases, such as hydrogen or holmium; however, even in these cases, the development 
of targets with both high polarizations and a tolerance to high beam intensities 
remains a largely unsolved problem [22]. 
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The focus of this paper is on the nuclear structure information which may be 
extracted from the analysis of inclusive electron scattering from polarized nuclei. 
The basic formalism is presented in Section 2 and Appendices A and B, and the 
accompanying tables given in Appendix C. We consider the situation in which the 
incident electron beam is polarized in an arbitrary direction, and then specialize the 
resulting formalism to the case in which the beam is longitudinally polarized. The 
approach which we have taken here is a straightforward extension of familiar 
analyses of the (e, e’) reaction which have been previously developed [ 1, 25, 261, 
and also parallels other treatments of electron and nuclear polarization [S]. In 
addition to treating polarized target situations, our formalism turns out to be very 
well suited to the situation in which the recoil polarization of the nucleus is 
measured, regardless of whether or not the initial target was itself polarized; this 
will be useful since it may be more practical in some cases to measure the recoil 
polarization of the nucleus than it would be to maintain a polarized target with a 
high intensity electron beam. In order to complete our analysis of polarization in 
electron scattering from nuclei, we indicate the equivalence of our results to those 
obtained previously for the nucleon and the deuteron, and in Section 3 give results 
for a selection of other nuclei which are of interest, indicating the nuclear structure 
information which may be accessible from polarization experiments. Some of the 
basic results of our analysis have been reported in abbreviated forms in various 
conference proceedings [6, 21, 24, 27, 28, 291, and interested readers may wish to 
consult them for an overview of our results. 

2. FORMALISM 

We begin by considering the problem of scattering polarized electrons from 
nuclei whose polarizations are specified. The incident and/or scattered electrons 
may be polarized and the initial and/or final nuclear states may have specific 
polarizations in this general case. The Feynman diagram corresponding to the 
lowest order (one-photon-exchange) process, together with the appropriate factors 
which are associated with the lines and vertices, is given in Fig. 1. The four- 

FIG. 1. Feynman diagram and rules for the electron-nucleus scattering process in the one-photon- 
exchange or first-order Born approximation. 
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momenta of the incident and scattered electrons are labeled K and K’, respectively 
(see Appendix A for details concerning our conventions); in particular, K= (E, k) 
and K’ = (E’, k’), where k and k’ are the three-momenta of the electrons and E and E’ 
are their corresponding energies. Note that we are using the space-time metric gP,, 
of Bjorken and Drell [30], and are taking h = c = 1 (see Appendix A). Then, the 
four-momentum transfer is given by Q = K- K’ = P,- P,, and satisfies the 
requirement that Q’ = (E - E’)~ - (k-k’)’ < 0. Here Pi and P, are the initial and 
final four-momenta, respectively, of the nucleus. Also, Q = (0, q), where the three- 
momentum transfer q = k - k’ = pr - p, and the energy transfer o = E - E’ = Er - E,. 
The incoming and outgoing electron Dirac spinors U, and U, are labeled with the 
corresponding four-momenta K and K’ and spins S and S’. The electric charge e is 
taken to be positive, and the virtual photon is represented by the propagator 
D,(Q),,. = -g,v/Q'. 

Following Bjorken and Drell [30], we obtain the differential scattering cross sec- 
tion in the laboratory frame (i.e., with pi = 0 and Pp = E, = Mtarget): 

(2~)46’4’( K + Pi - K’ - P,), (2.1) 

- 
where B = lkl/e = Iv, 1 and where C,r corresponds to the appropriate average over 
initial states and sum over final states as discussed below. Throughout this paper, 
we will be dealing with the laboratory system only, and so we will not explicitly 
label any of the cross sections as such. The invariant matrix element J?‘~ 
corresponding to the given process is 

“;#C, S’; K, S), Y(P,, Pi)ci, 

where the electromagnetic current for the electron is equal to 

j,(K’, S’; K, S), = -e 

(2.2) 

(2.3) 

and where .P( Pf, Pi)n = J”( Q)a is the nuclear electromagnetic transition current in 
momentum space. If we assume that the momentum of the scattered nucleus is not 
measured, while that of the electron is (i.e., we consider inclusive electron scat- 
tering), then the integration over pr must be performed, and so we have that 

where the nuclear recoil correction factor f,,, is given by 

(2.4) 

fm = 1 + 
Ek’ - Elk cos 6, 

k,M 
target 

(2.5) 
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Consider now the invariant matrix element Eli = -i(e’/Q’) &(K’, S’) y,u,(K, S) 
Jp(Q)fi; then, 

where the electron tensor v],(K’, S’; K, S),,, is defined by 

rjJK', S'; K, S),, SE [QK', S') y,~,W, S)I*C&(~, S’) y,u,(K S)l, (2.7) 
If 

and the nuclear tensor 

It then follows that the cross section can be expressed as 

da c-1 a2 4&k’ 

dsZ e a=(e2,2 
zf ,,’ tle(K’, s’; K S)/a WYQhi. 

k 
(2.9) 

We now consider the electron tensor in more detail, beginning with the case in 
which both the initial and final electron spins are known. Under these circumstan- 
ces, it follows that there is no sum/average to be performed. To evaluate the elec- 
tron tensor easily, we use the standard technique of inserting positive energy (elec- 
tron) and spin projection operators into the proper places in the expression for u], 
so as to allow the summation over all four components of the Dirac spinors [30]. 
Then, using the completeness relation for the Dirac spinors, we have that 

~.(R’,S’;K,S),,=~Trace/y,,(l +~,$‘)(iY’+m,)y,,(l +r5S)(K+m,)), (2.10) 
e 

where A E y,AP and ys = iy”y’y2~~3. It then follows from the well-known trace iden- 
tities involving the y-matrices that 

q,(K', S'; K, S);t=&(P,,P,(l -SS’)+Q2gP,,(1 +S.S’-2C.C’) 
e 

+ Q’(CJ:, + CL .Z,,) + (P/, U,. + U,, P,) 

+ 2im,~,,,~(S + S’)‘Q”), (2.11) 

where we have defined the quantities P,, = K,, + KP and U, = (Q. S’) C, - 
(Q . s) CL, where by construction L’:,, z S, - ((Q . S)/Q’) Q, and LL = S; - 
((Q . W/Q2) Q, satisfy Q. ,Y= Q. C’ = 0. Note that we have eliminated terms 
proportional to Q, or Q,,, since they would vanish when the electron tensor is con- 



POLARIZATION IN ELECTRON SCATTERING 253 

tracted with the nuclear tensor, due to the current conservation condition 
Q,P( Q)s = 0 (this is indicated by the superscript “eff’ in Eq. (2.11)). 

Now, consider the electron spin four-vector S, which must satisfy the 
requirements that S. S = -1 and K. S = 0 [30]. For the case of general electron 
polarization, the spin three-vector s can be written as s= hs(cos [u,, + sin [u,), 
where u,, and u, are unit vectors parallel and perpendicular to the electron momen- 
tum k, respectively, Iz = + 1, < is the angle between the spin s and the momentum k, 
and where s is taken to be a positive quantity. Then, it follows from the properties 
of S that 

(2.12) 

and So = lz@s cos [, where y = ( I - 8”) “’ = E/M, is the usual relativistic factor. For 
the case of longitudinal polarization, i = 0 and so S = hy(/?, uJ, where uL = u,, , 
while for transverse polarization, < = 742 and S = h(0, u.). Also, to completely 
specify the orientation of the spin vector relative to k, we require an additional 
angle v; uI = cos vu, + sin vu,, where u,,, is a unit vector along k x k’ (normal to 
the scattering plane) and us = uN x u,. (“sideways”; see Fig. 2). 

The general cross section for the scattering of arbitrarily polarized electrons from 
nuclei can then be seen to contain terms of the following types: 

(A) terms with neither h nor h’, which occur even if no electron polarizations 
are involved; 

(B) terms with h but not h’, which occur when only the incident electron 
beam is polarized; 

(C) terms with h’ but not h, which occur if only the polarization of the scat- 
tered electrons is measured; and, 

(D) terms with the product hh’, which can occur only if the incident beam is 
polarized and the polarization of the scattered electrons is measured. 

FIG. 2. Kinematics and coordinate systems for the scattering of polarized electrons from polarized 
nuclear targets. 
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As it is more difficult to measure the polarization of the scattered electron than it 
is to prepare a polarized electron beam, we will usually consider only the situation 
in which the final electron polarization is unmeasured (although see Eq. (2.35)). 
Then, terms of types (C) and (D) listed above are absent from the cross section, 
and so the remaining terms yield an electron scattering cross section of the form 

(2.13) 

where li refers to a transition from an initial nuclear state labelled i to a final 
nuclear state labelled f. The term .Z, contains the electron dependence of type (A), 
while the term A, contains the dependence of type (B). In fact, Z, is just the elec- 
tron-spin-averaged cross section 

and A, is the electron polarization cross section 

(2.14) 

(2.15) 

If the final electron polarization is not measured, then the previous expression for 
the electron tensor reduces to 

~~,~~,(R;K,S)~~=K,K:+K~K,-~,,(K.K’-~,Z)-~~,E,,,~Q”S~ (2.16a) 

= xAK’; K S),m (2.16b) 

where K. K’ - WI: = -$Q’, and so 

(2.17) 

where .9& = xJK’; K, S),, W”‘( Q)fi. 
In general, we have that the contraction of the electron tensor with that of the 

nucleus can be expressed in the form 

where the label K takes on the values L, T, TT, TL, T’, TL’, TT, TL, and z. The 
labels L and T refer to the longitudinal and transverse components of the virtual 
photon polarization, respectively, and hence correspond to the nuclear elec- 
tromagnetic current components with respect to the direction q. The unprimed terms 
result from the product of the symmetric parts of the electron and nuclear tensors, 
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and so enter in Ce, while the primed terms involve the antisymmetric parts of the 
tensors, and so enter in AR ; the symmetric-antisymmetric cross terms vanish. The 
significance of the underlining will become apparent in due course. The various A”;i 
are nuclear response functions which contain all of the nuclear structure infor- 
mation; u0 and the VK are electron kinematic and polarization factors, and in the 
absence of any final electron polarization are given by 

ug = (E + E’y - q2, (2.19a) 

(2.19b) 

(2.19~) 

(2.19d) 

(2.19e) 

VT. = 
2hm F 
---&[(q’fi-w(k-k ‘cos6J,))~os~+wk’sin8,sin~~0~~], (2.19f) 

v ’ sin 8, cos [ + (k - k’ cos 8,) sin [ cos ~1, (2.1%) 

v sin [ sin I?, (2.19h) 

Note that V, = Vu, = 0; these two terms enter only when both the initial and the 
final electron polarizations are specified. 

By examining the detailed form of the kinematic factors V, for this special case 
where the sum over the final electron spin has been performed, it can be seen that 
A, has the form 

A,=SLA~o’+A”’ Ii 2 (2.20) 

where SL = 1 for longitudinal electron polarization and S, =0 for transverse 
polarizations (these ideas will be discussed in greater detail in [ 311). The term A:,‘) 
is of order y-l relative to A{,‘) (see Eqs. (2.11) and (2.19)), and so we may safely 
assume that At’) may be dropped at electron energies of interest in most nuclear 
physics experiments. Thus, one has arrived at the conclusion that only 
longitudinally polarized electrons are of practical interest, in which case h becomes 
the electron helicity. 

We will now consider the case of the scattering of purely longitudinally polarized 
electrons from polarized nuclei in much greater detail. We will be assuming 
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throughout this paper that y $1 (the extreme relativistic limit (ERL) for the elec- 
trons); again, this fact will generally not be explicitly indicated in the formalism. As 
explained previously, these special cases of the general problem will be the most 
useful ones for nuclear physics experiments; the results for general lepton 
polarizations and kinematics, which may for example be useful for muon scattering 
experiments, will be given in [ 3 11. Since [ = 0 for longitudinally polarized electrons 
and %H 1 in the ERL, it follows that S= hK/m, in this limit. Then, 

and 

xe(K’; K, S),,, ERL = K, K: + Ki, K, + fQ2g,,, - ihE,,,, K”KP (2.21) 

where 

.LK = 1 + 
2~ sin” %,I2 

M 
target 

(2.22) 

(2.23) 

is the nuclear recoil correction in the ERL. Also, Q’= -4sa’sin’ %,/2 and 
u,=~EE’ cos’ 8,/2 in the ERL, and so 

(2.24) 

the Mott cross section in the ERL. The electron kinematic factors V, take on sim- 
ple forms for longitudinal polarization in the ERL; V, I+ uk for the unprimed 
terms, while V,, H hoKr for the primed terms and V, H 0, where 

Q 2 2 

l!L= 2 , ( > 4 
(2.25a I 

(2.25b) 

(2.25~) 

VTL = (l/J% $ ( ) J- (Q2/q2) + tan2(%,/2h (2.25d) 

VT’ = J- (Q2/q2) + tan2(%,/2) tan :, (2.25e) 

and 

vTL. = (l/d) ($) tan 2. (2.25f) 
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Note that uL and uT are the usual kinematic factors which occur in the Rosenbluth 
formula for the scattering of unpolarized electrons from unpolarized nuclei, while 

vTT and vTL occur in the analysis of (e, e’x) coincidence reactions [32]. Also, the 
kinematic factors t+ and vTL., which are peculiar to polarized electron scattering, 
are proportional to tan 0,/2 and so dfi will be suppressed relative to C, at small 
scattering angles. An alternative parametrization of the kinematic factors which is 
in common use is in terms of T = -Q2/4Mzarget > 0 and the scattering angle 0,; then 
for elastic scattering the energy transfer o = 2Mtarget r the three-momentum transfer , 
is given by q2 = 4i1tf&~ ~(1 +z), and so Q*/q*= -l/(1 +t). 

Now, we must consider contracting the nuclear tensor WPy(Q)fi with the electron 
tensor x,(K’; K, S),,. Again, we let P = K + K’, and so 

% = IP,,JWw12 + Q’J,*(sh J’(qh - 2hi&,,,BK”K’“J~*(q),J”(q)f,, (2.26) 

where we have used current conservation. However, we have that P(q)fi = p(q), is 
the Fourier transform of the transition charge density, while 

Jhh = c Jk mh+*(q; 1, ~1 (2.27) 
Wl=O.&l 

is the expansion of the Fourier transform of the transition three-current dis- 
tributions (convection and magnetization) [25, 32, 331 in terms of the standard 
unit spherical vectors e(q; 1, WI) defined by [34]: 

e(q; LO) = 5, 

4q; 1, + 1) = T (l/J5)(u, f &,I. 

(2.28a) 

(2.28b) 

Throughout this paper, we employ the coordinate system in which the z axis is 
along the direction of the three-momentum transfer q, and the y axis, which lies 
along k x k’, is perpendicular to the scattering plane; the xz plane is then defined by 
k and k’ (see Fig. 2). From current conservation, 

Q”J%Li -q. J(clhi = wdqhi - qJ(q; Ohi = 0, 

so that 4% Oh = b/d &A. 

(2.29) 

Then, eliminating J(q; 0), from the expression for 3, results in 

(qyPO = IP”J”(s)fi-P~ J(qM’+ (Q2)2(If?q)fi12 - J*(qh. J(qM WOa) 

where the nuclear response functions S?,K are then defined by 

9; = Idai I*> 
%T=IJ(q; +1)ti12+IJ(q; -1),12, 

KT = 2qJ*(q; + 1 Mq; - 1 hi}, 

(2.31a) 

(2.31b) 

(2.31~) 
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and 

9;” = -2w*oIMJh; + 1 )a - J(q; - 1 hi,>. (2.31d) 

Consider now the polarized part of gfi: 

(92fp = - 2hi&,,,pK”K’BJ~*(q)e~(q)~ 

= hvo( v,A?~’ + VTL’ Lq”‘), 

(2.32a) 

(2.32b) 

as can be shown by a straightforward calculation, where the quantities 3:’ and 
&‘zL’ are defined by 

and 

~‘;iT’=IJ(q; +M2-Mq; -1),12, (2.33a) 

91L’= -2~b*mivh; + l)fi+J(q; -1hi)). 

Then, the differential cross section is equal to 

(2.33b) 

Mott.frecl{(~L~k+~T~% + o,,.L%F + o,,9qL) + h(v,diq’ + u,,&iqL’)) 

(2.34a) 

=Zfi+hd,, (2.34b) 

and all of the nuclear structure physics is contained in the six nuclear response 
functions .!?A?:. In the somewhat more general case in which the helicity of the 
incident beam is known and the final electron helicity h’ is measured, we have that 

(2.35) 

and so the cross section for an experiment in which only the final electron helicity is 
measured is the same as that for an experiment in which only the initial helicity is 
known, except that huh’ and we have an additional factor of 4 due to the required 
average over the initial helicities. Note that if h’ = -h, then 1 + hh’ = h + h’ = 0 and 
the cross section vanishes; thus, the electron helicity is conserved in the scattering 
process in the extreme relativistic limit for the electron. 

We have seen that there are three independent components of the nuclear four- 
current, since one of the components can be eliminated using current conservation. 
Then, because 9& is bilinear in these components, we expect there to be nine 
independent nuclear response functions. For longitudinal electron polarization, we 
have seen only six functions; the other three functions will be evident for the case of 
general electron spin [31], since their corresponding kinematic factors either 
require both initial and final electron polarization or are of order y - ’ relative to the 
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six kinematic factors defined previously. However, since we are considering only the 
case of a longitudinally polarized electron beam and the extreme relativistic limit in 
detail in this paper, we shall have no further use for these extra quantities. In fact, it 
turns out that these three response functions do not contain any new nuclear struc- 
ture information beyond that obtainable with the six previously defined response 
functions. For the sake of completeness, the remaining three nuclear structure 
functions are given here in terms of the current components: 

and 

~F=2s(J*(q; +lhiJ(q; -ai>, 
gi? = -25{P*wfivh~ + 1 hi + 4% - 1 hi,>, 

(2.36a) 

(2.36b) 

9F = -zY{P*blhiv(q; + 1 )e - 4% - 1 hi)>. (2.36~) 

What now remains to be done is to determine the functional dependence of the 
nuclear structure functions B?,K in terms of the usual nuclear electromagnetic mul- 
tipole form factors. We define auxiliary (real) nuclear response functions as follows: 

qy = J*(q; m’), 4% m)ti + 4% m’),J*(q; m)fi (2.37a) 

= .!qy’. (2.37b) 

Then, we can write 

(2.38a) 

(2.38b) 

(2.38~) 

(2.38d) 

9;’ = f(sy - 9; ‘. - l ), 
(2.38e) 

and 
g$fTL’ = 

Ii -piy+.“R$-1). (2.38f) 

The current components J(q; RZ)~ are given by J(q; RZ)~ = e(q; 1, m). J(q)e, where 
we have that J(q)fi=Jd3xe’q’“(flJ(x)ji); note that the caret in the term J(x) 
denotes that we are dealing with a second-quantization operator acting in the 
nuclear Hilbert space. Hence, we must consider the expansions [34] 

--i& 1 [J] if d V(M:(qx)) ifm=O 
e(q; 1, m) eiq.%= 

J,O 

-$G C [J] if mW’Aqx) + i V x M,“,(qx) ifm= 21, 
J,,l 

(2.39) 



260 DONNELLY AND RASKIN 

where [J] = dm and 

Mxqx) -jJ(qx) Yiv?Y), (2.40a) 

w3qx) ‘jL(4X) %(QxL (2.40b) 

and the vector spherical harmonics are given by 

%WL) = C YAK) 0 e(q; 1 )lIT. (2.41) 

We now define the transverse electric and magnetic multipole operators by 
CL 25, 321, 

c!(q)+ d3xt (VxMy’(qx)) .3(x), (2.42a) 

eGg(q) = [ d3x M[;,(qx) . J(x), (2.42b) 

and the longitudinal multipole operator by 

LJ,,,(q) = !- d3x f (VMl;(qx)). J(x). (2.43) 

From current conservation, we have that V.J(x) = -8fi(x)/k?t= -i[k, p(x)]. It 
then follows that 

V. J(x), = -i(fl [fi, /I?(X)] Ii) = -iup(x (2.44) 

and so (flLJm(q) 1 i) = - (w/q)(f Q,(q) I i), where the Coulomb multipole 
operator is defined by 

&r,(q) = j- d3x Ml;(qx) P(x). (2.45) 

Thus, 

(2.46) 

and 

J(q; flhi= -+ c CJl~“~(fl~+~(~)l~)~(fl~“,p,(q)l~)~~ (2.47) 
J>I 

and hence, 

9~‘“=87c~ CJ’ICJI %{(-i)“‘iJ(fI f.,%(q)li>*<fl fJm(q)ii)}, (2.48) 
J’J 
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where 

1 

TJm = 
- mmLdq) if nz = 0, 

(l/Jz)(P$Jq) + mPJ$yq)) if m=+l. 
(2.49) 

Let us now focus on a transition i H f between discrete nuclear states with good 
angular momenta Ji and Jr, respectively, as well as parities rc, and rrr, respectively. 
Furthermore, let us also assume that the target nucleus is polarized, i.e., the target 
is prepared with its magnetic substates (labeled by M,) populated in a nonuniform 
manner with probabilities p,i,(M,~). The multipole operators FJm(q) apply to a 
system whose axis of quantization is the z axis defined by the three-momentum 
transfer q; however, the nuclear states themselves are quantized with respect to 
some as yet arbitrary quantization axis, which is taken to be specified by the 
spherical cordinates O* and c$* with respect to q (see Fig. 2). Thus, we must express 
the nucleus’ quantum state vectors in terms of state vectors defined with respect to 
the z axis; explicitly, we have that 

where the eigenkets IJiM,*) and jJiM’J refer to the systems with axes of quan- 
tization along (O*, 4*) and q, respectively, and where CS$!1MJ,(8*. c#*) is the rotation 

matrix corresponding to the transformation to the starred system. Then, 

where we have assumed for simplicity that the final nuclear polarization is 
measured with respect to the same axis of quantization as the target. While this 
assumption is not necessarily very useful as far as experiments are concerned, it will 
allow us to do the calculations for the two cases of interest (i.e., when either the 
initial or the final nuclear polarization, but not both, is known) simultaneously (for 
the general case, see Ref. [ 311). 

Then, we wish to evaluate the quantities 

giT’” = (2JC+ l 1 C P(i,t”J,) P[f,t”Jf) 9F’“~ (2.52) 
MM 4 Jr 

where the factor (2JI+ 1) takes into account the proper average over initial 
states-sum over final states required for the cross section. It turns out that it is con- 
venient to express the nuclear polarizations in terms of the spherical Fano statistical 
tensors defined by (see, e.g., Ref. [26] ) 

5Y5/169/2-2 
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For the inverse we then have 

similar relationships are valid for the final state polarization. In particular, we have 
that ft) = l/Jm, regardless of the detailed population of the magnetic sub- 
states. In the case of an unpolarized target, phi, = 1/(2Ji + 1) andf$) =f$) 6,,,,. 
Frequently, we will be interested in the situation for which P~i,(M,~) = 6,,,,, which 
we will refer to as 100% polarization, in which case the general formula reduces to 

fp (2Ji)! ~~ 
J(2Ji+Zi+ 1)!(25i-Ii)!’ 

(2.55) 

Furthermore, we note that if the nucleus is aligned (i.e., if p,i,(M,,) =pci,( -M,) for 
all M,), then it can be shown that f 2) = 0 for Ii odd. 

We now wish to evaluate the real part of ( -i)“‘?‘( f 1 fymj(q) ( i)* (f 1 fJ,Jq) 1 i). 
It can easily be shown that ( --i)/iJ = (- 1)(“‘PJ)‘2P:+J+ i(- l)‘YPJ+‘)‘2 Ps+~, 
with projections P’ = &( 1 k ( - 1)“) where IZ is an integer. Define the real quantities 
A’$” and Br;t>Y’ by 

and let 

where M= m -m’, and the 8$,,,.;,(8*, b*) and Y&,,;J,,, (O*, $*) are real functions. 
Then, w  will in general involve both of the functions %$,,,,;J,,,(8*, 1+3*) and 
%d;,(e*, #*I. 

However, the terms involving 9J$m,:Jm(B*, Q*) can be eliminated by considering 
the parity properties of the multipole operators, since we are considering parity to 
be a good quantum number for the nuclear states under consideration. Define the 
electromagnetic matrix elements tcJ (Coulomb), rEJ (electric), and t,, (magnetic) 
as follows: 

and 

[c.,(q) E < Jf lI~Aq)ll Ji >> (2.58a) 

f&q) E (Jf II P(q)11 Ji>v (2.58b) 

t&q) E (J, II $Xq)ll Ji); (2.58~) 

it can be shown, as a result of parity conservation and time-reversal invariance, that 
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these may all be chosen to be real quantities [35]. Let rc = rrinr; then, the matrix 
elements tcJ and tEJ vanish unless rc = (- l)‘, while the tMJ vanish unless 
7c=(-1) Jf ’ if parity is conserved in the electron-nucleus interaction. Since we are 
ignoring the’effects of the weak interaction in our treatment, the assumption of 
parity conservation applies, and it can then be shown that all of the terms of the 
form t,,~,, contained in the various A’J!>‘J have rC* = ( - l)J’+J = +l, i.e., there is an 
implied factor of Pjr, J. Similarly, the terms in BFim have 7c2 = ( - l)J’+J + ’ = +l, 
and so there is an implied factor of PJ+ J. Then, 

P A”‘“‘=P~T+~(PJ’+~A$!!)=O; J’+J JJ 

similar results hold true for P$+ JB;t’jm. Then, if we consider the explicit form for the 
5i?f’m in terms of the A’$” and BTim, it can be shown that the terms involving 
9$m,.,(8*, d*) vanish. 

Thus, we have that 

x I(-1) I~+J)/~P~+JA~;~+(-~)(~+J+~)IZP~ 
Y+J4?% (2.59) 

where 

2Ff Jh’;Jm(~*~ 4*) 
= (- l)M J(Y - M)!/(f + M)! (L, -“, $) pgcos e*) cos ikfqh*, 

(2.60) 

with A4 = m - m'. The term @AYJ summarizes all of the nuclear polarization infor- 
mation; for the three special cases of interest, @lYJ is given by 

(2.61a) 

(2.61b) 

and 

where the slash indicates that the corresponding nuclear polarization (initial and/or 
final) is undetermined. Explicitly, 6 means that the initial polarization is known and 
the final nuclear polarization is not measured, while U indicates that the nuclear 
target is unpolarized and the polarization of the recoiling nucleus is measured. 
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Then, fl refers to an experiment in which neither the initial nor the final nuclear 
polarizations are known. 

It then follows from the properties of the R=$~C:J,,,(B*, #*) and the A?? and By;” 
that 

~(~~‘m~~~~‘.~m’=*~~~~~m~ [f] 1 [J’] ~gJ’J~~~‘:Jm(e*,~*)P:+m,~m 
./ J’J 

x {(-1)‘J’+J)‘2P;+JA~;m+(-1)(J’+J+1)’2P~+JB~;”}, 

(2.62) 

for use in Eq. (2.38). 
Making use of these results, we have that the nuclear response functions in the 

case of an experiment involving a polarized target for which the final polarization is 
undetected can be written as 

9; = 471 c P,(cos e*)fy W>(q),, (2.63a 

9; = 47L c P,(cos e*) f$‘w;(q)fi, 
,f>O 
eYen 

(2.63b 

L%;= = 47c c P$(cos e*) cos 2~*f~w~(q),, (2.63~) 

.!-2TiL = 477 1 P>(cos e*) cos qd* j-y w-Y(q),, 
,f>2 
even 

(2.63d 

9?\,T’=47l c P,(cos e*)f$) Wly-:‘(q)fi, (2.63e 1 

and 

9jy’=4lL 1 P>(cos e*) cos ~*f~‘w~‘(q),, 
921 

odd 

(2.63f) 

where the nuclear information is contained in the various reduced response 
functions W>(q)fi as follows: 

ydq)fi=(-1) Jt+Jr[f] 1 ( -~)CJ~J)P[J’][J] 

J’J 2 0 

(2.64a) 
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w  yqhi = - I - 11” ““‘L.YJ t LUCJI 
J’J>, (T “1 gi;: ; {I 

x C(-1) (J’-J’12P;+J(tEJ’tEJ+ tMJ’tMJ) 

+(-1yJ+lv2 PF+AfEJ’tMJ- tMJ’tw)lr 

~phi= -C-l) J’+“‘(CfllJ(f-l)f(f+l)(f+2)) 

x C(-1) (J’pJ’12P;+J(tEJ’tEJ- fMYfMJ) 

-(-1)(J’~J+1)‘2P~+J(tEJ’tMJ+t~vlJ’tE,)]r 

(2.64b) 

(2.64~) 

xC(-1) (J’-JK~P,~,, t,,- (- l)(J’-J+l)/2p- 
J’CJ th4f 19 (264d) 

(2.64e) 

and 

where the T and TL terms have fl even, while the T’ and TL’ terms have the same 
forms as for the T and TL terms, respectively, except that now f is odd (see 
Appendix C for a tabulation of the numerical coeflicients required for these reduced 
response functions for a variety of nuclear transitions). It should be noted that only 
the Fano tensors of even rank occur in the terms which contribute to C,, while 
only the odd-rank tensors contribute to d,. Thus, it follows that, if the target is 
aligned (as defined previously), then d, vanishes, since it only involves the odd 
Fano tensors. This is a general statement which is valid for arbitrary values of Ji 
and Jr; thus, an unaligned target will provide more information than will an aligned 
one, but only if the incident electron beam is polarized. For completeness, we have 
that the three nuclear response functions which involve a l/y supression due to their 
corresponding kinematic factors are given by 

9’f = 471 1 P>(cos t9*) sin 2d*f>)WF(q)fi, 
as2 
fS”-Z” 

(2.65a) 
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&?p = -471 C P$(cos 6*) sin #* f $’ WT,“(qh, (2.65b) 
%>2 
eve” 

By = -471 1 P$(cos I!?*) sin f$* f$) Wy’(q)fi; 
,921 

odd 

(2.65~) 

again, we note that no new nuclear structure information is accessible from a 
measurement of these quantities (i.e., the same reduced response functions are 
already present in Eq. (2.63)). 

Then, Eqs. (2.23), (2.24), (2.25), (2.34), (2.53), (2.63), and (2.64) contain all of 
the formalism required for electron scattering from polarized nuclei. These results 
are equivalent to those obtained by Weigert and Rose [S] in the extreme 
relativistic limit for the electron, except that they do not include the effects of 
nuclear recoil as contained in fr,, and their Eq. (4.16~) has a typographical error; 
the vector-coupling coefficient in their definition of the function F’,o”(LL’J,Ji) 
should be C(LL’v; 0, I), as is evident from their notation. 

Similar results hold true for the case in which the target is unpolarized but the 
final nuclear polarization is measured. It can be seen from the expressions for @{J’J 
and from the formulas for the W>(q), that there exist simple relationships between 
the reduced response functions W”>(q)li and W:(q)@: 

(2.66) 

where the plus sign occurs for K = L, T, TT, and TL’ and the minus sign occurs for 
K = TL and T’. Note that the interchange of the initial and final states implied by 
this “turn-around” relation has also been performed in the multipole matrix 
elements tcJ, t,,, and t,,; it follows from the properties of these matrix elements 
that 

(2.67) 

where q = 0 for the Coulomb operator and q = 1 for the transverse multipole 
operators [25, 331. Also, we must of course replace the f $’ with the f $) in the 
expressions for the $8:. 

The reduced response functions can now be seen to contain all of the nuclear 
structure information in the form of bilinear products of the various Coulomb, elec- 
tric, and magnetic multipole matrix elements for the nuclear transition i H f. In par- 
ticular, %‘$ contains only Coulomb matrix elements, in general with interferences 
between different multipolarities CJ/CS. Similarly, -ly>, YV$?, and -I1T> contain 
only transverse multipoles which interfere as EJ/EJ’, MJ/MJ’, and EJ/MJ’ in 
general. Finally, “7 and YVF”’ have only Coulomb-transverse interferences of the 
general form CJ/EJ’ and CJ/MJ’. Furthermore, only those values of # satisfying 
the constraint 0 ~2 < 2J,,, are allowed, where Jpo, is equal to either Ji or Jr, 
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depending on whether the initial or the final nuclear polarization is known, respec- 
tively. In all cases, the interfering multipoles must satisfy ) J’ - JJ 6 f 6 .I’ + J. 

The rank-zero (3 = 0) reduced response functions are especially simple (see Eq. 
(2.64)): 

“llr,L(q)fi = JJ,+lmq)” = (1&5X) 1 t&(q), 
J>O 

(2.68a) 

and 

~i#hi =&i-=%(q)” = (l/J%% 1 (t;J(q) + thJ(q)), (2.68b) 
J>l 

where FL(q)’ and P=(q)’ are the usual longitudinal and transverse form factors, 
respectively. These are the quantities which enter in the familiar unpolarized cross 
section, 

cj - 4m,.,,f,,’ P(q, e,T, (2.69) 

where the (unpolarized) form factor is given by 

F2k7, e,T =“f&k “Iy-,L(q), + w@“;f(q)fi) (2.70a) 

= u,F,(qy + u&(q)“. (2.70b) 

It is useful to rewrite the expressions for Zfi and A, separating out the above 
$ = 0 (unpolarized) contribution so as to display the complete (0*, d*) dependence 
of the cross sections and to separate this dependence from their (q, 0,) behavior. 
Explicitly, we then have that 

COS 8*) $(g, 8,), + p;(COS @*) COS (b*R;(q, e,), 

+ P;(cos O*) cos 2c$*R;(q, O,),) , 
1 

(2.71) 

and 

A, e 2; 1 (PJcos O*) RP,(q, O,), + P>(cos O*) cos 4*R;(q, O,),) . 1 (2.72) 

% 

The quantities R$(q, Be&, which are related to the usual vector and tensor 
polarizations, are then given by 

% =even: RO,(q, e,h =f$VuL+(q)fi + uT -W$(q)JF*(q, O,)“, (2.73a) 

R;(q, ~ehi =fJ% ~$Vdfi/~*(q, tie)‘, (2.73b) 

R:(q, Q&i =f~~~n~$WP’*(q, e,T, (2.73~) 
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B = odd: R;(q, 0, J6 =f $‘I+’ “w’j’(q)ri~2(q, 0, Ifi, (2.73d) 

R;(% eeh =f$’ “TL’ w~‘(d,/~2(% k)‘, (2.73e) 

where the above f = 0 results imply that Rg(q, e,), = 1. Furthermore, we can 
remove all of the dependence on the Fano tensors by defining the polarization ten- 
sors 

q%l> e&i =fb” R$%Y ui/Y~)~ (2.74) 

where SO,(q, 8,), = 1; finally, we have that the relationship between the S$(q, k?,), 
and the familiar tensor polarizations f$,& is 

(2.75) 

where 

and the analyzing powers T2M for the scattering process satisfy 
T;,=(-1) / -A T9,- A [36]. To determine the analogous polarization tensors 
for the case that the final nuclear polarization is known (instead of the initial 
polarization), we must make use of the “turn-around” relation (2.66); then, it 
follows that the R$, ST, and tdVK all transform like (Z$?), = ( - 1)” ~ .“(Z$?),. 

The basic quantities of interest are the W’$(q)fi, since they contain all of the 
nuclear structure information involved in the electromagnetic transition i H f. The 
complete set of reduced response functions may in principle be determined 
experimentally, for example, by performing the following steps: 

(1) By controlling the helicity of the incident electron beam, C, may be 
separated from A, (see Eq. (2.13)). 

(2) For each of these contributions, controlling the polarization angles 
(Q*, d*) then allows the various polarization tensors (R$ in Eqs. (2.71), (2.72), and 
(2.73), Ss in Eq. (2.74) or tf.# in Eq. (2.75) depending on one’s preference) to be 
separately determined. 

(3) Knowing the quantities R$, and using the standard Rosenbluth 
separation techniques to decompose R> = even into L and T contributions, all of the 
reduced response functions W> may be extracted. 

It can be seen that the number of possible reduced response functions which are 
present is given by 65,,, + A, where 1= 1 or 2 for half-integral or integral values of 
J P0l, respectively, where Jpol is as specified previously. However, if the incident elec- 
tron beam is not polarized, i.e., if dfi is not measured, then this number is reduced 
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to 4J,,, + 2(1- 1); in both cases, one must remember that the various We>(q)fi need 
not be independent. 

Several special cases deserve a bit more attention. First, for Ji = 0 or f, we have 
that Zfi = .ZE ; this is just the usual unpolarized (e, e’) cross section. Thus, new infor- 
mation in C, is obtained only for those nuclei with J, 3 1. Second, for J, = 0 we 
have that A, = 0, whereas for Ji = 4 we obtain 

A, = C~(cos %*Ry(q, 6,), + sin %* cos d*Rl(q, %,),), (2.76) 

which contains new nuclear information (i.e., beyond the usual unpolarized result). 
Let us now conclude this section by considering the special case of elastic scatter- 

ing (see also Ref. [37]). Then, the preceding equations for the reduced response 
functions ,W>(q), simplify to closed-form expressions. If time-reversal-invariance is 
assumed, along with parity, it then follows that the electric multipoles are all iden- 
tically zero, and only the even Coulomb and odd magnetic multipoles occur 
[25, 33, 371. If we define the elastic form factors by 

FJ(q)= 
1/[Jol <Jo II fi’,bd II Jo), if J = even, 

1/CJol (Jo II @=%d II Jo), if J= odd, 
(2.77) 

then we can write 

“Il“>(q)fi = C A :,..(Jd FAq) F,(q). (2.78) 
J'J 

The coefficients AT,:,(J,) are given by 

A:J:,y (Jo) = 

I 

zJ’J;p(J,) 

B?J,~XYJ;/(JO) 

(2 a/&%?=)) /%,;a x,.,;.(Jo) 

ifK=L, J’, J= even 

ifK=TorT’, J’, J=odd 

if K = TL or TL’, J’ = even, J= odd’ 

J’, J= odd, 

where 
(2.79) 

and 

~,,;,~(J,)=(-~)2Jo~J,12~J,l~J~~~1 {; ; ;}3 
0 0 0 

ayJcd E (- 1)(J’+J”2 JYY ( 1 00 0’ 
(2.80b) 

(2.80~) 
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Note that XJJ;/(J,,) is totally symmetric with respect to the interchange of any two 
of the indices J’, J, and f. The coefficients AF,.,(J,) for Jo < 2 are tabulated in 
Appendix C along with the more general results required for inelastic scattering. In 
particular, it can be shown that 

(2.81) 

for elastic scattering. 
We now turn in the following section to detailed discussions of specific JF H Jf”’ 

transitions, where particular nuclei are chosen to illustrate the general formalism 
summarized in the present section. 

3. DISCUSSION AND SPECIFIC EXAMPLES 

Let us now turn from the preceding general discussion and consider electron scat- 
tering from some illustrative nuclei. These nuclei will involve values of J, in the 
range from l/2 to 9/2, and will be discussed in ascending order with respect to their 
spins. In each case, we will first consider elastic scattering after which we will dis- 
cuss inelastic scattering to low-lying discrete excited states with selected values of Jr 
and drr. For the most part, we emphasize low-Z nuclei where the plane-wave Born 
approximation (PWBA) is reasonable; as will be discussed when we encounter 
Z = 27 ( 59Co), for high-Z nuclei the distorted-wave Born approximation (DWBA) 
should be used (especially for elastic scattering), and this goes beyond the context 
of the present work. 

As part of our discussion of these representative nuclei, we will examine the 
behaviour of several quantities of interest. The first of these quantities consists of 
the various asymmetries of the form 

A,= (&-q/&, (3.1) 

where i and j here refer to a given choice of the target polarization direction as 
specified by the angles (Q*, #*), corresponding to the directions L (along the direc- 
tion of the electron beam), N (normal to the scattering plane), and S (sideways), 
and where z, is the unpolarized cross section; also, we will restrict ourselves to 
targets which are 100% polarized in the given direction. The three particular direc- 
tions which we will be considering are shown in Fig. 2; as can be seen, they are 
defined relative to the incident electron beam (i.e., they are fixed in the lab system), 
and so 8* and b* vary as the momentum transfer q changes. Explicitly, the angles 
corresponding to the three directions are given by 

L: cos e*=(&-&'COS 8,)/q, (3.2a) 

fp*=o; (3.2b) 
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N: COS e* = 0, 

$4 * = n/2; 

s: ~0~ e* = -I cos e,, 
4 

qs*=o. 

(3.2~) 

(3.2d) 

(3.2e) 

(3.2f) 

Note that, for JPO, < 2, it can be shown that C,= (C, +C, + Z,)/3. Because the 
asymmetries are defined with a factor of C, in the denominator, rather than 
,Zi + Cj, the resulting asymmetries need not have magnitudes of less than 100%; the 
advantage of this definition is that all of the polarization dependence is contained in 
the numerator, and not in the denominator as well, thereby making it easier to 
interpret the effects of polarization on the A,. Other quantities which are of interest 
are the (electron) polarization ratios (d/Z); for the L and S directions mentioned 
previously; because of the behaviour of the associated Legendre polynomials 
P$(cos e*) for f odd and 8* = n/2, we have that (d/C), is identically zero. 

Since we will be displaying the momentum dependence of the asymmetries and 
polarization ratios for a large variety of nuclei and nuclear transitions, it will be 
useful to have a standard method for differentiating between the various curves 
which will be shown on the same graph. The asymmetries A, will be indicated by 
solid, dashed, and dotted lines as follows: 

A,,: -> (3.3a) 

A,,: ---, (3.3b) 

A,,: . . . . (3.3c) 

where A,, + A,, = A,,; the polarization ratios will be denoted by solid and 
dashed lines: 

(A/Z),: -1 

(A/C),: ---; 

(3.4a) 

(3.4b) 

as stated previously, (d/C), = 0. 
Throughout most of this section, we consider a variety of complex nuclei (i.e., 

with A > 4), and so we have to make some choices concerning the assumed nuclear 
model to illustrate the qualitative behaviour of the polarization asymmetries and 
ratios. Our descriptions of the various selected nuclei involve the extreme-single- 
particle model, the shell model in some restricted model-space, or deformed Nilsson 
models, and we will occasionally compare the results obtained with these different 
models for the same nuclear transition; note, however, that the formulas for the R$f 
are completely general, and do not depend on the choice of the model. In addition, 
we will include the effects of core polarization and meson-exchange currents in our 
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calculations for some nuclei in order to illustrate the sensitivity of the various 
polarization quantities to differences in the details of the underlying nuclear struc- 
ture. For our present purposes, we are really only interested in the qualitative 
aspects of nuclear and electron polarizations, since we lack any experimental data, 
and so we will use harmonic oscillator wavefunctions to describe the single-particle 
states of complex nuclei [37, 381; however, this simplification is not necessary as far 
as the formalism is concerned, and other single-particle wavefunctions (such as a 
Hartree-Fock basis or perhaps from a Woods-Saxon well, for example) can be 
used if desired [39]. 

(i) Elastic Scattering: Ji = Jr= + 

In this case, only the CO and Ml multipole form factors are possible: 

F,(q) - (lifi) (4 llQo(q) II f), co 

and 

(3Sa) 

f’=(q)= (l/&)<f IIif’F(q)II $>, Ml (3Sb) 

where we are using the standard notation for the longitudinal and transverse form 
factors, respectively. Then, we have that C, = Cz, as stated in Section 2, where the 
unpolarized cross section is 

with 

2: =4n~ottf,e: F2'2(q, Ofi> (3.6a) 

F2n-(q, fL)” = M’3q) + u&(q)“, (3.6b) 

and, using Table C6 in Appendix C, 

A, = -g f j”{&PT(q) cos 8*uTf + 2 &F,(q) F-,-(q) sin 8* cos d*uTL,)/F2(q, 0,)‘. 

(3.7) 

Note that, for a completely polarized nucleus with pci,( l/2) = 1 and pJ - l/2) = 0, 
the rank-l Fano tensor f y) = l/,,/‘?. 

With a polarized target but without any electron polarization, one does not learn 
anything beyond the usual unpolarized (e, e’) cross section. In cases where the 
magnitudes of the two form factors are very disparate, it is difficult to separate the 
smaller form factor from the larger one using the usual Rosenbluth separation 
method of keeping q and w  fixed while varying 8, (i.e., fixing uL and varying v,), 
because the form factors occur as their squares. However, if one has both a 
polarized target and a polarized electron beam, then one may determine d, which 
involves the interference term FL(q) F,(q) and hence is a much more sensitive 
probe of the smaller form factor. Furthermore, in such a complete polarization 
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experiment, it is possible to determine the relative sign between the two form fac- 
tors, something which is not possible for the simple Rosenbluth analysis. 

The fundamental example of a nucleus exhibiting this behaviour is provided by 
the nucleon itself, for which the transverse form factor dominates over the 
longitudinal one at high momentum transfer [14,40]. The electric (actually, 
charge) and magnetic form factors, GE(q) and G,(q), respectively, used by these 
authors are related to the FL(q) and F,(q) defined above by 

&FL=(l+~)GE, (3.8a) 

and 

AFT= -J-G,, (3.8b) 

where the quantity z = -Q2/4M2 was defined in Section 2. It should be noted that 
our analysis of the electron-nucleus scattering process involved only the con- 
tribution of the leading-order term in the relativistic expansion for the nuclear 
current, and we assume that the frames of reference for the initial and final nuclear 
states are the same; neither of these assumptions is rigorously applicable for the 
nucleon or other low-A nuclei, although corrections to our simpler analysis occur 
only at order r2. 

For the case of a polarized nucleon target, the usual vector polarizations p, and 
p2 are related to the taA and RI defined in Section 2 as follows: 

P,= - ,bt,, = Wb) &If, (3.9a) 

and 

(3.9b) 

where we have that Ry(q)fi= -vTsPT/F2 and R;(q),= -2vTLrFLFT/F2, assuming 
100% polarization. The fact that py is identically zero is due to the use of the one- 
photon-exchange approximation in evaluating the cross section. If we now consider 
the case of a recoil polarization experiment, we have the substitutions 
R’S&+ -RW, and R%h, H Ri(q)$ which follow from the “turn-around’ 
relation discussed previously (see Eq. (2.66)); for elastic scattering, the initial and 
final nuclear states are the same (i = f). Thus, FT can be determined up to a sign by 
measuring pz, while px is directly proportional to FL FT and so can be used to deter- 
mine FL and its sign relative to FT; as noted above, in the absence of electron 
polarization, the usual Rosenbluth separation will not allow the determination of 
this relative sign. 

For the proton, G, dominates over G,, at low momentum transfer; on the 
other hand, for -Q” exceeding 1 (GeV/c)‘, G,, dominates the cross section, and 
we lack any information concerning the longitudinal (charge) form factor G, 
beyond 4 (GeV/c)2 [4145], whereas G,, has been measured out to 
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-Q* = 22 (GeV/c)* [4146]. Likewise, for the case of the neutron, the magnetic 
form factor is best known, and has been determined using a Rosenbluth decom- 
position of the quasi-free scattering of electrons from the deuteron for -Q* below 
10 (GeV/c)* [45, 47,483. However, G,, is very small and so is in general very 
poorly known; it is usually determined from elastic and quasi-elastic electron- 
deuteron scattering, and what knowledge we have extends out to 
- Q’z 10 (GeV/c)* [45,47,48-J. The electric form factor is directly related to the 
charge distribution of the neutrai neutron, and clearly is one of the fundamental 
pieces of information involved in our understanding of the structure of the nucleon 
(and hence of complex nuclei to some degree as well). Again, the disparity in 
magnitude between the electric and magnetic form factors for the proton and 
neutron make polarized-nucleon experiments useful if one wishes to measure more 
precisely GE,, (and to a lesser extent G,) [49, 501. 

Similar considerations are valid for 3H [Sl, 52,53 J and 3He 154, 551, which are 
also spin-t nuclei for which the above formulas apply. Again, our understanding of 
the nuclear structure inherent in the three-nucleon systems will be greatly enhanced 
by a determination of F, and FT over an extended range of the momentum transfer. 
If we restrict ourselves to descriptions of these nuclei which involve only nucleonic 
degrees of freedom, then the three-body system is special in that it can be calculated 
exactly given a specific choice of the nucleon-nucleon interaction, thereby allowing 
quantitative tests of the validity of the various models of the strong force. 3H and 
3He are almost-stable mirror nuclei, and so a comparison of the (e, e’) results for 
these nuclei will allow the separation of the scattering process into its isoscalar and 
isovector pieces; then, for example, it may be possible to separate the effect of the 
isovector meson-exchange currents from the less well understood isoscalar meson- 
exchange effects. At present, a number of experiments (without polarization) have 
been performed for 3He, over an extended range of the momentum transfer 
[54, 551; furthermore, data for tritium at the higher momentum transfers will also 
soon become available [53]. While these unpolarized measurements will go a long 
way in defining the electromagnetic structure of the A = 3 ground states, there may 
in future experiments be advantages in also determining the interference FL FT using 
polarized electrons and targets as discussed above for the nucleon. 

To conclude our discussion of elastic scattering from polarized spin-t nuclei, let 
us turn to one illustrative example of a complex nucleus; namely, let us consider the 
case of elastic scattering from i3C, where we use Cohen and Kurath wavefunctions 
[56], with an harmonic oscillator basis having b = 1.59 fm. As a result of dis- 
cussions of the luminosities and techniques available with targets internal to a 
stretcher ring, it is estimated that a reasonable lower bound for the cross section for 
which experiments are feasible is about 1O-33 cm*/sr (i.e., for a luminosity of 
lO33 cm-* set’) [22]. For the 13C case, this limiting value is reached for a 
momentum transfer of about 500 MeV/c at an electron energy of 500 MeV; as the 
energy is increased, the limit is attained at a steadily increasing value of the momen- 
tum transfer. It should be noted that, for a given target mass and excitation energy, 
there exists a relationship between the momentum transfer q and the scattering 
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angle I!$, at a fixed electron energy. Typical curves showing 8, as a function of q for 
a variety of electron energies are displayed in Fig. 3; while these curves actually 
correspond to elastic scattering from a nucleus with a mass of 6535 MeV/c2 (‘Li, in 
fact), they are approximately valid for all of the other complex nuclei being con- 
sidered, including i3C, since the target masses are all much greater than the electron 
energies under consideration. 

The coherent Coulomb monopole form factor dominates out to about 
300 MeV/c, beyond which the magnetic dipole form factor becomes comparable in 
magnitude. As can be seen from Fig. 4, the zero in the Coulomb form factor at 
qz365 MeV/c results in the variation observed in the values of the polarization 
ratios at this momentum transfer; (d/C), reaches its maximum of 75% at this value 
of q, while (d/C), passes through a zero as it goes from its maximum of 25% to its 
minimum of -60%. Thus, the use of a polarized 13C target can be seen to lead to 
reasonably large effects (i.e., of more than a few percent). 

(ii) Inelastic Scattering: J, = 4, Jr = 2, An = no 

In this case, the possible multipoles are 

J',,(q) = (l/a) (1 Ilif'YYq) II $), Ml 

F,,(q) = (l/J% <t /I A,(q) II t>3 c2 

200 400 
q (MeV/c) 

600 

(3.10a) 

(3.10b) 

FIG. 3. Scattering angle as a function of the momentum transfer for elastic electron scattering from ‘Li. 
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FIG. 4. Elastic electron scattering from polarized 13C (f-). The two polarization ratios defined at the 
beginning of the section are shown using the convention of (3.4): (d/C),(-), and (d/Z), (- - -); (d/C), 
is identically zero. 

and 

F&q) = U/&) <$ II f?(q)11 i), E2 (3.1Oc) 

with E?,(q)” = f&(q) and P=(q)” = FMl(q) + P,,(q). The usual Rosenbluth 
separation would only allow the determination of FL and P=; however, the latter 
form factor contains two pieces P’,, and Fz,, which cannot be separated in the 
absence of any polarization. Again, Z;, = Cff , and d, has the same form as for the 
case of elastic scattering from a spin-4 nucleus (see Eqs. (3.6) and (3.7)), except that, 
using Table C8 in Appendix C, we obtain 

m4> eeLi = tUTuL - 62 - 2 &%4,&21/~*(4,&2, (3.11a) 

and 

R:(q, ee), = - uTL’ Fc,(F,, + ~FEz)lF*(q~ ‘A)‘. (3.11b) 

An example of such a transition is the N(939)~d( 1232) transition, where the d 
is the lowest (J = t, T= 3) spin-isospin excitation of the nucleon. In this case, the 
magnetic dipole form factor dominates over the two quadrupole form factors, and 
so a Rosenbluth separation into the transverse and longitudinal pieces is very dif- 
ficult to achieve. However, in a situation with a polarized nucleon target and with a 
polarized electron beam [22], the Rf term will permit a measurement of the C2/Ml 
interference piece (and, to a lesser extent, the C2/E2 piece), thereby providing 
greater sensitivity to the small, but interesting, quadrupole matrix elements. Within 
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the context of the spherically symmetric quark model, the d resonance is treated as 
a spin-excitation of the nucleon: the NH d transition is just a pure Ml spin-flip of 
a 1s quark, and the quadrupole form factors would then be identically zero. 
However, L = 2 contributions could be significant if the A has nonspherical 
admixtures, resulting from a tensor quark-quark interaction (due to the color 
hyperline interaction), which would cause S- and D-wave mixing. 

The quantities which are usually considered for this transition are the amplitudes 
labelled by the orbital angular momentum I of the pion in the nN resonance and by 
the signs + or -, where the total angular momentum j = /i 4. Then, the 
amplitudes involved here (S, + , E, + , and M i + ) are related to our form factors 
[57, 581. Experimentally, it is known from pion photoproduction that 
E,+/M,+ = -0.014 f0.016 at Q’= 0, while the momentum dependence of the 
E l+ and Ml+ amplitudes is found from inclusive p(e, e’)A and coincidence 
p(e, e’p) rc” reactions [57-611: E,, is close to zero except for -Q’ < 0.3 (GeV/c)‘, 
while S, + is definitely nonzero, being on the order of 5510% of the M, + amplitude 
[58]. The merits of using inclusive electron scattering with polarizations (when 
feasible) to complement the exclusive (coincidence) reactions with their accompany- 
ing final-state interactions should be clear. 

For the purposes of illustrating these ideas for complex nuclei, we now consider a 
second example of a + H 5 transition as provided by the electro-excitation of 13C to 
its i- excited state at 3.68 MeV; again, we employ Cohen and Kurath 
wavefunctions [56] to describe the three form factors, just as we did for elastic 
scattering as discussed above. In this case, the C2 form factor dominates over the 
Ml and E2 ones beyond 100 MeV/c, while the Ml form factor is greater than the 
E2 one up to 300 MeV/c. Again, C, exceeds 1OP33 cm’/sr up to 450 MeV/c for an 
energy of 400 MeV; as the incident energy is increased, so does the corresponding 
limiting value of q. As can be seen from Fig. 5, the absence of the coherent 
Coulomb monopole form factor eliminates the rapid variations in the polarization 
ratios seen for elastic scattering from 13C; instead, we observe generally small effects 

s 
‘3C(;,e’)INELASTIC: t/2--3/2-(368MeV) 

2 E=400 Mev 
50 I 

/ 
lz / / 

/ 
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.- 
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:: .- 
k 
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n 0 200 400 600 

q (MeV/c) 

FIG. 5. Inelastic electron scattering from polarized 13C(jm ~3~). The two polarization ratios defined 
at the beginning of the section are shown using the convention of (3.4): (d/Z),(-), and (d/L’), (- - -); 
(d/Z), is identically zero. 

595116912.3 
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for momentum transfers below 400 MeV/c, although one cannot generalize this 
statement to all inelastic cases (see below for examples where larger effects are 
seen). 

An alternative method for studying nuclear structure using unpolarized or 
polarized electrons involves the inelastic (e, e’y) reaction. In such experiments, the 
target nucleus is not polarized, but the photon resulting from the de-excitation of 
the excited state is detected in coincidence with the scattered electron (if polarized 
electrons are used, then the polarization of the photon must also be measured for 
new information to be obtained). The analysis for this process is very similar to the 
formalism developed in Section 2 for electron scattering from polarized nuclei [62], 
and (e, e’y) studies may complement (e, e’) experiments for inelastic transitions for 
which only small effects are observed. This particular transition for “C happens to 
be such a case. 

(iii) Elastic Scattering: J, = Jf= 1 

The possible multipoles are now given by 

F,(q)=WJi;) (1 lI&dq)ll I>, co (3.12a) 

F,(q) = (l/&I (1 llif’?“g(~)ll I>, Ml (3.12b) 

Ji2(9) = U/,:5)( 1 II &(d II I>, (2 (3.12~) 

and we have that L’E is given by Eq. (3.3) with Ft(q)“=Po(q)+~(q) and 
F??(q)” = q(q). Thus, with unpolarized scattering, only the sum of the squares of 
the CO and C2 contributions can be determined, rather than the individual 
Coulomb form factors themselves. With polarized targets, however, we have that 

and 

zfi = cg{ 1 + P,(cos e*) R;(q, O,), + Pi(cos e*) cos #*R;(q, O,), 

+ P:(cos e*) cos 2d*R;(q, &)fi}, (3.13a) 

dfi = ~W,(cos e*) qtq, e,), + Fq(cos e*) cos d*R:(q, e,),), (3.13b) 

where 

(3.14a) 

Mq, e,h = M-P){(~IJZ) w-,W(q, e2, (3.14b) 

w, e,), = ~,,fwJ@ cvi%h ufi, (3.14c) 

mh e,h = - +m(3 d/4) q:mq, e,)fi, (3.14d) 
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and 

Rfkh e&i = -vTL’ fl”(2 JMF, + (d/4) F2)}lF2(9, Kx (3.14e) 

using Table Cl2 in Appendix C. Again, if we assume 100% polarization, then the 
rank-f and -2 Fano tensors are f ii)= l,/fi and f $) = I/J%, respectively. 

First, let us consider the information which may be determined in the absence of 
polarized electrons. As can be seen, a measurement of Rt, either as here with a 
polarized target or by measuring the recoil polarization, together with the 
longitudinal and transverse form factors as determined without having any nuclear 
polarization, will allow the extraction of the CO and C2 form factors separately. The 
usual Rosenbluth separation will give us F,(q) (up to an arbitrary sign), and the 
relative sign between the Ml and the CO and C2 multipoles can be determined by 
measuring Ri. Thus, it follows that it is in general not necessary to have knowledge 
of dfi to determine all of the multipoles (see the general discussion in Sect. 2 and in 
Appendix B). Note that Ri (and also Ry) only involves (F,)2, and so just provides a 
test of the consistency of the measurement; alternatively, some fitting procedure 
involving all of the reduced response functions O‘:(q) could be used to determine 
the entire set of form factors. 

The fundamental example of a spin-l nucleus is of course the deuteron (2H). The 
usual definitions of the charge, magnetic, and quadrupole form factors G,(q), 
G,(q), and G,(q) prevalent in previous papers are related to our definitions by 

$cF,,=(l+r)G,, (3.15a) 

&F, = - (2/d) Jm GM, (3.15b) 

and 
&rFz=(2fi/3)r(l +z)Go, (3.15c) 

where again we note that our form factors only involve the contribution from the 
leading-order term in the nonrelativistic expansion for the nuclear current (see the 
discussion above in subsection (i) for the nucleon). Then, the nonvanishing vector 
and tensor polarizations which are accessible from elastic electron scattering from a 
polarized target are given in the Madison convention by [36] 

(3.16a) 

(3.16b) 

(3.16~) 

(3.16d) 
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and 

(3.16e) 

Note that the expression for pZZ in terms of t,, ( T20 in their notation) as given in 
[14] is off by a sign; also, [63] should have a factor of fiN rather than $N in 
their Eq. (4b). 

The three form factors depend directly on the detailed behaviour of the deuteron 
wavefunction, and thus a measurement of their values over an extended range of 
momentum transfer may place some restrictions on possible models for the 
nucleon-nucleon interaction. Also, the effects of relativistic corrections and meson- 
exchange currents can be probed at high momentum transfer, where they are 
expected to be important; in addition, the transition from the meson-baryon 
description of the nucleus to the quark-gluon description may be observable at 
such momentum transfers. An experiment measuring the recoil t,, tensor 
polarization of the deuteron has recently been performed at the Bates Laboratory 
with an unpolarized low duty-factor electron beam using a water target and a con- 
ventional 3He(d, p) polarimeter; the first results from this experiment are shown in 
Fig. 6 [64]. It is hoped that the development of improved techniques, especially 
higher energy polarimeters [22] and higher duty-factor beams, will make it 
possible to extend such measurements out to the interesting higher momentum 
transfer region where the different state-of-the-art NN potentials lead to values of 
t,, which differ significantly from one another. 

‘H (e, e’d 1 

FIG. 6. Recoil tzO tensor polarization for elastic electron scattering from the deuteron (from [64]). 



POLARIZATION IN ELECTRON SCATTERING 281 

-SOL-----J 
0 200 400 600 

q (MeV/c) 

FIG. 7. Elastic electron scattering from polarized “Li (1 + ). The three asymmetries defined in Eq. 
(3.1) are shown using the convention of (3.3): ANS (-). A,,(---), and A,,( ‘.’ ). 

Turning now to approaches involving polarized targets, an experiment which 
would be suitable for an electron stretcher ring [23] involves an internal target 
consisting of tensor-polarized deuterium nuclei. A target thickness of approximately 
lOI atoms/cm2 would be required for this type of experiment, making use of the 
long beam lifetime (about 8 h) in such a facility; in fact, even greater thicknesses of 
about 4 x 10” atoms/cm’ look feasible. Such a high density of polarized deuterium 
nuclei can be achieved using optically pumped polarized alkali atoms which trans- 
fer polarization to deuterium atoms via an atomic spinexchange interaction [65]. 
Looking somewhat further into the future, with the 40 mA circulating current of 
1 GeV electrons expected at the proposed Bates stretcher ring [22] luminosities of 
order 1 033 cm ’ set - ’ will be possible, and so it will be possible to measure the 
target polarization t,, out to a momentum transfer of about 1 GeV/c. 

In addition to the deuteron, other examples of nuclei with ground states having 
J” = 1 + are provided by 6Li and 14N. For the case of 6Li, some of the results 
obtained using phenomenological wavefunctions [3, 351 are displayed in Figs. 7 
and 8. As stated previously, we will restrict ourselves to the situation in which the 
target nucleus is completely polarized along some direction relative to the momen- 
tum transfer q. For 6Li, a plot of C, versus q indicates that one can only hope to 
perform experiments out to the maximum momentum transfer of approximately 
375 MeV/c for electron energies of less than 1 GeV; however, the interesting high-q 
region (beyond 400 MeV/c) will be inaccessible in such experiments, unless prac- 
tical luminosities exceeding 1O33 cm -’ set -’ can be reached. 

To illustrate the sensitivity of the cross section C to the choice of the nuclear 
polarization direction, we consider the asymmetries A, as shown in Fig. 7 for an 
electron energy of 400 MeV. As can be seen, large asymmetries are present only in 
those regions where the cross sections are less than the limit of 1O-33 cm2/sr; for 
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smaller momentum transfers, lAiil < 10%. This result is due in part to the 
dominance of the coherent Coulomb monopole form factor at low momentum 
transfer for the case of elastic scattering, since the monopole involves a factor of Z; 
however, this effect is also related to the qualitative similarity of the C2 and Ml 
form factors over the entire range of momentum transfer and to the fact that the 
ground state of 6Li has T = 0, resulting in a relatively suppressed isoscalar M 1 form 
factor. Thus, in this case the magnitudes of the asymmetries exceed 10% only for 
momentum transfers near 415 MeV/c, which corresponds to a zero of the CO form 
factor; note that in general the dominance of the coherent CO form factor applies 
only for q below about 100 MeV/c. It should also be noted that the rapid variation 
in the asymmetries observed in this case is in fact a general feature of elastic scat- 
tering, and results from the interferences between the other form factors weighted 
with the various kinematic and polarization factors. At higher electron energies, we 
obtain similar results; there are not any significant differences over the range of 
useful momentum transfer. 

For completeness, we show in Fig. 8 the polarization ratios (d/C), for 
E = 400 MeV, which would be obtained only if both a polarized electron beam and 
a polarized target are available. Again, we observe rapid variations in this ratio in 
the vicinity of the zero of the Coulomb monopole; however, in this case there are 
also regions of q below 375 MeV/c for which the ratio differs significantly from zero. 
For q < 300 MeV/c, that is, for small f3,, the leading factor of tan 8,/2 in the 
kinematic factors uTLS and uTS (see Eq. (2.25)) tends to suppress the magnitude of d. 
At higher energies, the behaviour of the ratio remains essentially unchanged, except 
for the fact that the size of the peaks at 92415 MeV/c decreases as the energy 

q (MeV/c) 

FIG. 8. Elastic electron scattering from polarized 6Li (1 + ). The two polarization ratios defined at the 
beginning of the section are shown using the convention of (3.4): (d/Z),(-), and (d/Z), (- - -); (d/Z), 
is identically zero. 
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FIG. 9. Elastic electron scattering from polarized “‘N( 1 + ). The three asymmetries defined in Eq. 
(3.1) are shown using the convention of (3.3): A,, (-), ALN(---), and A,,( ‘.. ). 

increases. Finally, the large magnitude for the ratio at high momentum transfers is 
due to the behaviour of tan tI,/2 as 0, goes to 180”. 

One aspect of the functional form of A for elastic scattering from 1 + nuclei which 
should be emphasized is the fact that the magnetic dipole form factor F,,(q) can be 
factored out; thus, A will vanish at momentum transfers which correspond to the 
zeros of this form factor. For the case of 6Li, and using our model wavefunctions, 
F,,(q) has a zero at about 250 MeV/c, but since 1 A/Cl is very small at low momen- 
tum transfers, this effect is completely suppressed. Furthermore, it can be seen that 
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FIG. 10. Inelastic electron scattering from polarized 6Li (1 + H 2 + ). The three asymmetries defined in 
Eq. (3.1) are shown using the convention of (3.3): A&-), A,,(- - -), and A,,( .. ). 
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A can also have zeros other than those which correspond to the magnetic dipole 
zeros; these zeros, which result from the interferences between the various form fac- 
tors, the nuclear polarizations, and the electron kinematic factors, can be shifted 
out to different momentum transfers by varying E and 0,. 

We now consider the case of elastic scattering from 14N where we are again using 
Cohen and Kurath wavefunctions [56], now with h = 1.60 fm for the harmonic 
oscillator lp-shell basis. In this case, Z, is greater than 10 -33 cm’/sr for 
q < 550 MeV/c for an energy of 300 MeV; thus, this case will be somewhat more 
interesting, since the (coherent) Coulomb monopole has a zero at qz 355 MeV/c. 
In fact, for the wavefunctions that we are using, the magnetic dipole form factor has 
no zero, and so the zeros observed for A/C are entirely due to interference effects. 
Now, consider the three asymmetries A, at E = 400 MeV as shown in Fig. 9; again, 
we can see a rapid (and large) variation in the vicinity of the zero at 355 MeV/c. 
Note that ALS and A,s differ significantly from zero for momentum transfers 
exceeding 200 MeV/c; thus, it should be possible to extract the form factors for a 
wide range of momentum transfer from 200 MeV/c to about 500 MeV/c, where Z, 
drops below 1OP33 cm”/sr. Also, as the energy increases, the behaviour of the asym- 
metries exhibits a significant change in value only for q > 355 MeV/c, although the 
basic shape of the curves remains the same. 

Finally, we consider the polarization ratios (A/E), at an energy of 400 MeV. 
Again, the ratios tend to be relatively small at low momentum transfers until the 
zero of the charge form factor is approached. Beyond qz400 MeV/c, the ratios 
tend to remain nearly constant, due to the effect of tan 8,/2 at large angles. The 
main effect of increasing the electron energy is to decrease the magnitude of the 
minimum of A/Z at q z 355 MeV/c. 

(iv) Inelastic Scattering: J, = 1, Jf = 2 and 3, Ax = no 

As examples of these nuclear transitions, we now consider the case of inelastic 
scattering from 6Li; the two transitions discussed are from the 1’ ground state to 
the 2’(4.31 MeV) and the 3+ (2.185 MeV) excited states. For both cases, we are 
using phenomenological one-body density matrix elements [3]. Due to the absence 
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FIG. 11. Inelastic electron scattering from polarized 6Li (l+ H 2+). The two polarization ratios 
defined at the beginning of the section are shown using the convention of (3.4): (d/Z), (-), and (d/Z), 
(---); (d/Z), is identically zero. 
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FIG. 12. Inelastic electron scattering from polarized 6Li(l + H 3 + ). The three asymmetries defined in 
Eq. (3.1) are shown using the convention of (3.3): ANS(-). ALN (---), and A,,( ‘. ). 

of the coherent Coulomb monopole form factor for inelastic scattering, we expect to 
observe relatively large asymmetries and polarization ratios over an extended range 
of the momentum transfer. Also, because the polarization tensors S$? are rather 
complicated functions of the possible form factors, we are not writing them out 
explicitly; interested readers should consult Table Cl4 in Appendix C for .I,= 2 and 
Eqs. (2.63) and (2.64) for Jf= 3. 

The first transition is characterized by the C2, E2, Ml, and M3 form factors; for 
our phenomenological model, the Coulomb form factor is much larger than the 
other three, and the form factors employed here lack any zeros (other than the one 
at zero momentum transfer), since we are again dealing with an isoscalar transition. 
The cross section C, exceeds the practical limit of 1OP33 cm’jsr for the momentum 
transfer range q < 425 MeV/c for an energy of 350 MeV; at higher energies, this 
limit on q is relaxed. Because all of the form factors have the same basic shape, i.e., 
they are zero at zero momentum transfer, reach their maximum magnitude at about 
250 MeV/c, and return to zero at large q, the A, and the (d/C), tend to lack very 
much structure (see Figs. 10 and 11). Also, note that the asymmetries A,, and A,, 
are very large in magnitude (-75%) over the entire range of useful momentum 
transfers, while (A/,!$ tends to be significant only for q between 300 and 
600 MeVJc. 

E.400 Me” 
0 0 .- 

Li 

z .- 
+ -5o- 
0 
.N 
z I 1 I I I 
0 0 200 400 600 
a. q (MeV/c) 

FIG. 13. Inelastic electron scattering from polarized 6Li (I+ +-+ 3 ‘). The two polarization ratios 
defined at the beginning of the section are shown using the convention of (3.4): (d/Z)L (-), and (d/Z), 
(- - -); (d/C), is identically zero. 
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Similar results are true for the transition 1 + H 3 +. The C2, E2, and Ml form fac- 
tors which are possible (we do not have C4 and E4 contributions if we consider 
only one-body operators in a lp model space) all have the same basic shape as for 
the previous transition, since again ri = T,= 0, and the Coulomb quadrupole 
dominates over the entire momentum range. Also, Z:, > 1OP33 cm’/sr for 
q < 425 MeV/c just as for the previous transition, and the asymmetries ALs and A,, 
are approximately equal to 20% for q < 600 MeV/c (see Figs. 12 and 13). 

(v) Elastic Scattering: Ji = J,= 2 

We now turn to a more complicated example of elastic scattering, where we have 
the following multipoles: 

&(q)=t(wb(q)II i>, co 
F,(q)=t($ ll~fY’%dII 1>, Ml 

F*(q) = f (2 llfih?) II ;>* c2 

(3.17a) 

(3.17b) 

(3.17c) 

and 

F,(q) = i<$ II @F=(q) II t>, M3 (3.17d) 

and F,(q)” = I;?(q) + q(q) and P=(q)” = q(q) + e(q). The cross section C, takes 
the same form as for the spin-l case (see Eq. (3.13a)), except that we have, using 
Table Cl8 in Appendix C, 

and 

@(a e,h = -f:“{4~L(FoF,) + uT(#‘, + fi F,)*)}/F*Z(q, e,)‘, (3.18a) 

R:(% ee), = uTL 2 f’“‘{(4/JIJ) F*(F, -gQ ~3)p2(q, @A (3.18b) 

R:(q, e,), = OTTf$){ ;(F: - fi + ( l/d) F, F3;3)}/j?q, 0,)“. (3.18~) 

The polarization cross section now includes rank-3 tensors: 

4 = ,W~COS e*) R:(q, e,), + P;(COS e*) cos #*R;(q, Qelfi + P,(COS e*) zgq, e,), 

+ fws e*) cos d*w, edd, (3.19) 

where, again using Table C18, 

(3.20a) 

(3.20b) 

(3.20~) 
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and 

For 100% polarization, the Fano tensors are given by fiil = 3 $/lo, ft) = i, and 
f p = &o. 

Because we are only considering elastic scattering, the electric multipole form fac- 
tors are all identically zero, and this reduction in the number of form factors implies 
that, for .I, = $, it is not necessary to have a polarized electron beam to determine 
all four of the form factors (up to the arbitrary overall sign). Explicitly, we have 
from Eq. (3.18) that the various reduced response functions accessible in such an 
experiment are given by 

W,L=2(F7++), (3.21a) 

TV;= -4FoFz, (3.21b) 

w-z = 2(f5j + 6,. (3.21~) 

W-‘T= -;(F, +&F,)', (3.21d) 

7V-;T=;(F,+fiFI)(FI-@F,), (3.21e) 

and 

W-TL = (4/J5) F2(F,-,,@ F,). (3.21f) 

Then, the magnitudes of the form factors Fi are given by 

(3.22a) 

(3.22b) 

and 

where 

Jr= @Y+ 12CTJ2/3)- (F,/F,)2 
3w; 1 + WF,)2 ' 

(3.22~) 

(3.22d ) 

(3.23) 
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while the corresponding signs Ai are given by 

and 

where 

1, = AnA,, (3.24~) 

I*,3 = @ (“w;’ - TV; - 2Wf)/{ “w; J( 1 + X)(f - X) ). (3.25) 

Thus, we see that it is possible to determine all four of the form factors (up to the 
arbitrary overall sign) even without having any electron polarization. Note that the 
quantity X involves only the ratio I F,/F, I and so may be sensitive to the different 
effects of meson-exchange currents or core polarization on the two transverse form 
factors. 

c 7- 
Li (e,e’) ELASTIC: 3/Z- 

100 E=400 MeV 

0 200 400 600 

q (MeV/c) 

FIG. 14. Elastic electron scattering from polarized ‘Li($-). The three asymmetries 
(3.1) are shown using the convention of (3.3): A,, (-), A,, (---), and A,, (.'. ). 

defined in Eq. 
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As specific examples of ground states of nuclei with spin-t, we consider ‘Li and 
39K. being alkalis, these have the added advantage of being practical for the 
production of polarized targets [23]. For this reason, we shall consider the ‘Li case 
in some detail. Again, Cohen and Kurath wave functions are used, with an har- 
monic oscillator basis having b = 1.65 fm [56]. In this case, C, decreases 
monotonically as q increases, and the limit of 1OP33 cm”/sr is reached at 
4% 500 MeV/c. The asymmetries A, for an electron energy of 400 MeV are dis- 
played in Fig. 14. Note that A,, and A,, differ significantly from zero over essen- 
tially the entire range of momentum transfer, while A,, has this property only 
beyond 300 MeV/c. This is a very interesting feature for elastic scattering and is due 
to the fact that the nucleus has a relatively low value of Z, since otherwise one 
would expect the coherent Coulomb monopole to be the dominant form factor up 
to its zero (at about qzz 510 MeV/c, in this case). However, for ‘Li, the CO form fac- 
tor drops to the level of the C2, Ml, and M3 form factors at about 300 MeV/c, and 
so this effect is suppressed. In addition, one should note that there is a significant 
difference between the behaviour of the asymmetries for different electron energies 
at the same momentum transfer: these variations are due to variations in the 
kinematic factors uK, since all of the other quantities are held constant. Again, this 
relates to the fact that the coherent Coulomb monopole does not overwhelm the 
other form factors except at small momentum transfers, so that there can be a great 
deal of interference between the various polarization tensors; thus, this effect is not 
as pronounced for elastic scattering from nuclei with large Z. 

Now, consider the polarization ratios (d/C), for E = 400 MeV as shown in Fig. 
15. Note that the ratios are small except for q > 400 MeV/c due to the fact that the 
kinematic factors for A have a leading term of tan 8,/2 which tends to suppress d 
for a given incident electron energy; this effect is enhanced by the dominance of the 

7- - 
LI (e.e’l ELASTIC’ 3/2- 

t=400tdev 
-\ 

/ 

-1001 I I I I I I 
0 200 400 600 

q (MeV/c) 

FIG. 15. Elastic electron scattering from polarized ‘Li(i-). The two polarization ratios defined at the 
beginning of the section are shown using the convention of (3.4): (d/z),(-), and (d/Z), (-- -); (d/z), 
is identically zero. 
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CO form factor at low momentum transfers, since C goes as Pc, while A is only 
linear in F,,. Thus, A/Z goes as l/Z, which clearly results in a suppression in the 
values of the polarization ratios for heavy nuclei. On the other hand, it should be 
noted that the figure of merit for an experiment in which C and A are separated by 
switching the electron helicity is given by PpC/( 1 -b), where 9 = (d/C)‘; then, 
since C goes as Z’ while A goes as Z, the figure of merit varies approximately as 
(Z/Z2)2Z” N 1. Thus, it is possible that an accurate measurement of A/Z may be 
much easier than it would appear on first sight to be, even though A/C goes as l/Z. 
In contrast, the determination of the transverse form factor F’, through a Rosen- 
bluth separation or magnetic electron scattering (at 180”) would have a figure of 
merit which goes as l/Z’ at low momentum transfer, making such experiments dif- 
ficult to perform when Z is large. 

Another way to display the ratios A/C is to consider the scattering angle 8, to be 
fixed and vary the electron energy. As shown in Fig. 16, once the leading behavior 
of A as contained in the kinematic factors is removed, one sees that there can be a 
great deal of variation in the ratios and, in fact, the ratios can be appreciable for 
small momentum transfers; for example, if 0, = 135”, then (A/C), reaches -25% at 
q z 300 MeV/c, while (A/C), reaches - 30% at q = 200 MeVjc and increases 
through zero near 320 MeV/c until it attains the value of +25% at 400 MeV/c. The 
difference in the low-q dependence of the polarization ratios for the constant energy 
and constant scattering angle cases arises because the tan 0,/2 dependence in the 

7-- 
Li (ce’) Elastic : 3/2- 

-4 

I ti , e I I I 
0 200 400 600 

q (MeV/c) 

FIG. 16. Elastic electron scattering from polarized ‘Li (t-). The two polarization ratios defined at 
the beginning of this section are shown; (d/Z), is identically zero. Note that the scattering angle 0, is 
being held fixed. The dashed lines indicate that the cross sections are below 10-33cm/sr; the numbers 
give the corresponding energies E in MeV. 
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@+ (degrees) 

FIG. 17. Elastic electron scattering from polarized ‘Li(j- ). The cross section z and the polarization 
ratio A/C are displayed as functions of the polarization direction of the nucleus (0*. d*) for given elec- 
tron scattering kinematics. 

-05- 

-1.01 I I I , 215OMsV 

0 200 400 t 

q (MeV/c) 

. 

-I 
50 0 

FIG. 18. Elastic electron scattering from polarized ‘Li($-). The polarization tensors Sk” are dis- 
played as functions of the momentum transfer for a fixed scattering angle of 15”. 
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FIG. 19. Elastic electron scattering from polarized ‘Li({-). The polarization tensors .S$ are dis 
played as functions of the momentum transfer for a fixed scattering angle of 45”. 
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FIG. 20. Elastic electron scattering from polarized ‘Li(j-). The polarization tensors ST are dis- 
played as functions of the momentum transfer for a fixed scattering angle of 90”. 
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kinematic factors contained in d compensates for the l/Z suppression in the ratio 
A/C. Finally, we display the dependence of C and A/C on the polarization angles f3* 
and 4* in Fig. 17; as can be seen, significant differences result when the polarization 
direction is changed, and so this dependence may provide a very useful way to 
isolate the various ST. For instance, Si is not associated with any #* dependence, 
while the terms Si and S$ involve cos $* and cos 24*, respectively; thus, it follows 
that Si can be separated by taking the combination C(4* = 0’) - JY(d* = lSO’), 
while Sg can be determined by considering C(#* =O”)- 2C(d* = 90”) + 
,Z(q5* = 180’). 

At this point, we would like to emphasize that, while we have only discussed the 
behaviours of the various asymmetries and polarization ratios, the quantities of 
actual interest are the S$!(q, 0,) defined by Eq. (2.74), which involve the form fac- 
tors and the kinematic factors uK, but not the Fano tensors fl;‘; the polarization 
tensors are displayed in Figs. 18 through 21 for a variety of scattering angles. The 
dashed curves indicate that C, has fallen below the practical limit of 1OP33 cm2/sr 
for these momentum transfers, and the electron energy corresponding to the critical 
value of L’, is displayed at the bottom of the graphs. Note that the S:F exhibit a 
strong dependence on the scattering angle due to the kinematic factors u,; at large 
angles, the effect of the Coulomb form factors has been suppressed relative to the 
transverse ones. 

0 2ou 400 600 

q (MeV/c) 

FIG. 21. EIastic electron scattering from polarized ‘Li($- ). The polarization tensors .S; are dis- 
played as functions of the momentum transfer for a fixed scattering angle of 165”. 

595/169/2-4 
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To investigate the sensitivity of the various quantities of experimental interest to 
changes in the nuclear structure, we will now consider the cases for which the 
magnetic form factors have been suppressed and enhanced by 50% from the values 
obtained using our shell-model wavefunctions (which, in fact, yield form factors FL 
and PT in substantial agreement with experiment for q < 400 MeV/c). First, let us 
examine the effects of suppressing the Ml and M3 form factors; for the most part, 
the basic shapes of the various curves remain unaffected by the suppression, 
although the actual values can vary significantly. First, let us consider the asym- 
metries A,. Then, the only significant change in A,, occurs for momentum trans- 
fers between 300 and 550 MeV/c; the asymmetry is lower in value beyond 
300 MeV/c, and reaches its local minimum of about - 105% at 370 MeV/c before 
passing through zero at 475 MeV/c (the fact that lAiil can exceed 100% is due to 
our definition of the asymmetries; see the beginning of this section). Similar 
behaviour is observed for A,,, except that in this case the asymmetry is greater in 
value beyond 350 MeV/c, reaching its local maximum of 35% at about 400 MeV/c 
and becoming zero at about 460 MeV/c; the effects of the suppression of the 

i 2 

qeff (fm-‘1 

FIG. 22. Ml form factor for elastic scattering from 39K as calculated by Suzuki ef al. 1661; result for 
the extreme-single-particle model ( ’ ); results when the effects of core-polarization (- -), and core- 
polarization plus meson-exchange currents (-) are included. 
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magnetic form factors is small beyond 570 MeV/c. Finally, A,, displays significant 
differences between 325 and 525 MeV/c in that it is lower in value when the Ml 
and M3 multipoles are suppressed; the asymmetry attains its local minimum of 
-80% at 350 MeV/c and its maximum value of -2% at 500 MeV/c. As far as the 
polarization ratios are concerned, (d/C), is increased in value by about 25 percen- 
tage points beyond 360 MeV/c. However, (d/C), displays larger differences, as the 
effect seen beyond 400 MeV/c is almost completely eliminated when the form fac- 
tors are suppressed; (d/L’), reaches its maximum value of about 5% at 475 MeV/c 
and then decreases steadily until it attains the value of - 12% at 600 MeV/c. 

Similarly, if the magnetic form factors are enhanced by 50% relative to their 
usual values, then A,, is increased in value by about 10 percentage points between 
300 and 500 MeVJc; ALN is decreased by 5 percentage points between 350 and 475 
MeV/c, while A,, is increased by about 10 percentage points for 
320 < q < 520 MeV/c. Also, we have that (d/C), is decreased in value by about 5 
percentage points between 350 and 475 MeV/c, while (d/C), is increased by about 
50% from its usual value at momentum transfers above 400 MeV/c. 

‘o-3 z 3gK ELASTIC’ 3/2’ 

10-7 ' I I I I I 
0 1 2 

qeff (fin-‘1 

FIG. 23. M3 form factor for elastic scattering from 39K as calculated by Suzuki ef al. [66]; result for 
the extreme-single-particle model ( ); results when the effects of core-polarization (- - -), and core- 
polarization plus meson-exchange currents (-) are included. 
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Now, consider elastic electron scattering from another spin-5 nucleus, 39K (as 
noted above, this case, along with 7Li, is an alkali, and so is also known to be 
advantageous when it comes to producing practical polarized targets [23]). We 
describe the ground state of 39K in terms of the extreme-single-particle model as a 
Id,,, proton hole relative to 40Ca, where again we use harmonic oscillator 
wavefunctions (with b= 2.0 fm). In this case, we include the effects of core 
polarization and meson-exchange currents on the transverse Ml and M3 form fac- 
tors as calculated by Suzuki et al. [66]; the transverse form factors are displayed in 
Figs. 22 and 23. In particular, the Ml multipole is suppressed for momentum trans- 
fers between 200 and 375 MeV/c and enhanced between 400 and 500 MeV/c; 
similarly, the M3 form factor is suppressed between 150 and 500 MeV/c, with a 
reduction to 70% of the single-particle value at its maximum at 320 MeV/c. In this 
case, C, exceeds 1O-33 cm*/sr at an energy E = 300 MeV for q < 500 MeV/c; as the 
energy is increased, the limiting value of q also increases. The coherent Coulomb 
monopole has zeros at about 235 and 370 MeV/c; the existence of two such zeros 
will greatly increase the range of momentum transfer for which the asymmetries and 
polarization ratios will be significant, because the large magnitudes for the A, and 
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FIG. 24. Elastic electron scattering from polarized ‘9K(j+ ). The three asymmetries defined in Eq. 
(3.1) are shown using the convention of (3.3): ANS(-), ALN(---). and A,, ( ... ). 
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FIG. 25. Elastic electron scattering from polarized ‘9K(f+). The two polarization ratios defined at 

the beginning of the section are shown using the convention of (3.4): (d/T), (-). and (d/Z), (---); 
(d/Z), is identically zero. 

A/C will persist over the region between these zeros. The asymmetries A, differ 
significantly from zero for momentum transfers between 150 and 500 MeV/c. Again, 
rapid variations can be seen near the zeros of the charge form factor, as shown in 
Fig. 24. For the polarization ratios (A/lJi, the effects of the zeros are not as large, 
as can be seen from Fig. 25. Again, there is a rapid variation near these two points, 
but the ratios tend to be smaller in magnitude, except for the sharp peak at 
235 MeV/c for (A/L’),. For completeness, we display the dependence of the cross 
section and polarization ratio on the choice of the polarization direction (0*, d*) in 
Fig. 26; as can be seen, these quantities have a significant effect on the C and A. 

When we compare these results to those obtained from the extreme-single-par- 
ticle model, we find observable differences in the asymmetries beyond 300 MeV/c, 
where the Coulomb monopole form factor no longer overwhelms the others (note 
that the extremely large differences reported in a preliminary discussion of 39K 
[21, 221 stemmed from the use of different wavefunctions for the calculations with 
and without the inclusion of meson-exchange and core-polarization effects, and are 
superceded by the present results). The fact that the effects of core polarization and 
meson-exchange currents on the asymmetries are not as significant as the 
corresponding effects on the individual form factors is a result of the complicated 
dependence of the A, on the form factors; because the asymmetries involve com- 
binations of interferences between all of the possible form factors, the large effects 
seen in the form factors (Figs. 22 and 23) tend to be suppressed. However, these 
large differences would become evident after an analysis of the experimentally 
measured reduced response functions along the lines of Eqs. (3.21) through (3.25), 
since one is in principle able to extract all of the individual form factors from 
measurements of the cross section Z alone. 
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FIG. 26. Elastic electron scattering from polarized 39K($+ ). The cross section C and the polarization 
ratio A/Z are displayed as functions of the polarization direction (O*, i*) for given electron scattering 
kinematics. 

(vi) Inelastic Scattering: J, = 2, Jr= i, AZ = no 

For this nuclear transition, we have the Ml, C2, and E2 electromagnetic mul- 
tipoles 

and 

FM,(q) = f <i Il@‘Tq)ll $>, Ml (3.26a) 

Fc2(q) = t (4 Il&(q)II 1>, c2 (3.26b) 

FEZ(q) = t <+ II f’fkdll f>, E2 (3.26~) 

and so P=(q)” = F?,,(q) and pT(q)’ = P,,(q) + FE,(q). The cross section then takes 
the same form as was the case for elastic scattering from a J, = 3 nucleus (see Eqs. 
(3.13a) and (3.19)), except that from Table Cl6 we have 

@(q, fl,h, = -f$‘{2%E$ + UT(~%, - FM, -2 ,,h FE2 FM,)}/F2(q, f3,)“, (3.27a) 

%(a @elfi = ~d-~‘~2F&‘,, + U/$6 Fd)lF*(q, eel’, (3.27b) 
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W% @d,=~TTf:1)MF2E2-~1 +w~)~,*~,,)~/~*(q? 622 

R%l> eeLi = -UTd-li){fi(%I + 9%2 + $ Jk2&41)p%~ e2, 

R:(q, e,), = -“TL’ fwkh k2vMI + 3 Jsh2w*(~, ufi, 

Rxq, a = ~:i)i (4/d) I;,,(F,, - $fh, ) w*(q, ufi, 

and 

299 

(3.27~) 

(3.27d) 

(3.27e) 

(3.27f) 

R:(% a, = UTL4y(4/~) &2(b2 - ,,h &d}/~*(% u”. (3.2W 

As an example of such a transition, we consider the case of inelastic scattering 
from ‘Li for the transition 3- t-+-(0.478 MeV), where we are again using Cohen 
and Kurath wavefunctions [56] with an harmonic oscillator basis with b = 1.65 fm; 
then, we find that Z, > IO - 33 cm’/sr for q < 450 MeV/c at an energy of 400 MeV. 
As can be seen from Fig. 27, the asymmetries vary from - 150 to + 150% over the 
range of useful momentum transfers, and in fact A,, and A,, tend to be very large 
even for low momentum transfers. Thus, measurements of these quantities could be 
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FIG. 27. Inelastic electron scattering from polarized ‘Li (3- t-+-). The three asymmetries defined in 
Eq. (3.1) are shown using the convention of (3.3): A,, (-), A,, (- --), and A,s ( ‘.’ ). 
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FIG. 28. Inelastic electron scattering from polarized ‘Li($- H$- ). The two polarization ratios 
defined at the beginning of the section are shown using the convention of (3.4): (d/Z),(-), and (d/C), 
(- - -); (d/,Q is identically zero. 
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FIG. 29. Inelastic electron scattering from polarized ‘Li(t- H f- ). The polarization tensors S,: are 
displayed as functions of the momentum transfer for a fixed scattering angle of 45”. 
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performed over the entire range of q out to 450 MeV/c. Note that this is a general 
property for inelastic scattering, since, in contrast to elastic scattering, the absence 
of the typically overwhelmingly large coherent Coulomb monopole form factor 
implies that there can be considerable interference between the other form factors 
even at low momentum transfers. 

Also, consider the polarization ratios (d/C), as displayed in Fig. 28; as can be 
seen, the ratios are quite large up to 450 MeV/c. This is true even at small scatter- 
ing angles for (d/C),, and is due to the peak of the C2 form factor near 200 MeV/c. 
When 8, is held fixed rather than E, relatively little variation can be seen for (d/C), 
as the energy (and thus the momentum transfer) is increased, and the ratio differs 
significantly from zero as long as the scattering angle is not near zero. However, 
this is not true for (d/C),, which exhibits a very large variation and quite large 
magnitudes unless we are dealing with rather forward or backward scattering. For 
completeness, the polarization tensors Sk” for this transition are shown in Fig. 29 
for 8, =45”; note that the inelastic nature of the transition results in a large 
variation in the behaviour of these quantities over the entire range of useful 
momentum transfers. 

If we now consider the dependence of C and A/C on the polarization direction as 
defined by 8* and d*, then, as shown in Figs. 30 and 31, there is again quite a lot of 
structure evident in these functions. In both cases, there is a very strong dependence 
on 4*, and A/Z varies over the entire range of possible values (from - 100 to 
+ 100%); thus, it can be seen that varying the polarization direction can provide a 
useful way to separate the various polarization tensors. 
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FIG. 30. Inelastic electron scattering from polarized ‘Li ($- t-+f- ). The cross section C is displayed 
as a function of the polarization direction of the nucleus (O*, qS*) for given electron scattering kinematics. 
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FIG. 31. Inelastic electron scattering from polarized ‘Li(g- ++t- ), The polarization ratio A/Z is dis- 
played as a function of the polarization direction of the nucleus (Q*, d*) for given electron scattering 
kinematics. 

Let us now discuss the sensitivity of our results to changes in the nuclear struc- 
ture input being used. Again, we will examine the effect of suppressing and enhanc- 
ing the magnetic Ml form factor by 50%. For the most part, the basic shapes of the 
various curves are unaffected by these changes, because the magnetic dipole has 
zeros at 0 and 315 MeV/c; thus, the curves are constrained to intersect their “nor- 
mal” values at these momentum transfers, and this limits the variations which are 
possible with this ansatz. For example, the maximum value of about 150% reached 
by all of the asymmetries is completely unaffected by the change in the dipole form 
factor, since the maxima are attained in the vicinity of 0 and-275 MeV/c where the 
Ml multipole is close to zero. However, the A,, and A,s curves become broadened 
when the form factor is suppressed, and these asymmetries are significantly 
increased in value away from the peaks; A,, is zero at 75 MeV/c (rather than 
115 MeV/c) and attains the value of 75% at 600 MeV/c, while ALs increases twice 
as fast as usual near q = 0, is zero at about 560 MeV/c, and has the value of about 
-25% at 600 MeV/c. Finally, A,, decreases much faster from its maximum at zero 
momentum transfer, passing through zero at 225 MeV/c; however, no significant 
differences are evident beyond about 300 MeV/c. Similarly, (d/C), is essentially 
unchanged over the entire range of the momentum transfer, while the locations of 
the peaks in (A/C), near 250 MeVJc are decreased by about 30 MeV/c, although 
the magnitude of the peaks is increased by less than 5 percentage points; however, 
this polarization ratio increases beyond 300 MeV/c until it reaches the value of 
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FIG. 32. Inelastic electron scattering from polarized 39K(t+ H 4’ ). The three asymmetries delined in 
Eq. (3.1) are shown using the convention of (3.3): A,, (-), A,, (---), and A,,( ... ). 

- 10% at 600 MeV/c, and the positive results which are observed in the absence of 
the suppression never appear. 

If we now enhance the Ml factor, then the peaks in A,s and A,, become 
noticably narrower, although the sizes of the peaks are again unchanged. A,, is 
now reduced in value away from the peaks, reaching zero at the higher momentum 
transfer of 150 MeV/c and attaining the value of 5% at 600 MeV/c; similar results 
apply to A,,, except that a zero occurs at 480 MeV/c (rather than 510 MeV/c as 
was the case in the absence of the enhancement) and A,, has the value of - 75% at 
600 MeV/c. However, the only changes in A,, are the increase in value of the 
asymmetry by about 15 percentage points between 100 and 250 MeV/c and beyond 
500 MeV/c. Again, (A/L’), is unaffected by the change in the dipole form factor, 
while (A/C), is increased by about 25 percentage points beyond 400 MeV/c. 

Next, we consider the transition $’ H i’(2.523 MeV) for the nucleus 39K, where 
we are describing the excited state as a 2s ,,Z proton hole below 40Ca in the extreme- 
single-particle model with an harmonic oscillator basis with b = 2.0 fm. In this case, 
the C2, E2, and Ml form factors exhibit much more structure than was the case for 
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FIG. 33. Inelastic electron scattering from polarized 39K (3 + H f + ). The two polarization ratios 

defined at the beginning of the section are shown using the convention of (3.4): (A/L)L (-), and 

(dP)s (- - - -); (d/Z), is identically zero. 

38~(e.d)INELASTlC. 3/24-l/2+(2.53 MeV) 

E= 328.3 MeV 

q= 250 MeV/c 

8*(degrees) 

FIG. 34. Inelastic electron scattering from polarized 39K($ + t+ 4 + ). The cross section C is displayed 

as a function of the polarization direction of the nucleus (O*, rj*) for given electron scattering kinematics. 
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‘Li; the Coulomb quadrupole dominates only for q < 200 MeV/c. Then, we find 
that 2, > 1OP33 cm2/sr for q < 450 MeV/c at E = 300 MeV/c; as the energy 
increases, so does this limiting value of q. The asymmetries A, are shown in Fig. 32 
for an electron energy of 400 MeV; note that they are very large over essentially the 
entire momentum range. The extremely large and rapid variations observed at 
about 280 MeV/c are due to the fact that both the C2 and Ml form factors have 
zeros near that value of the momentum transfer; in addition, the electric 
quadrupole form factor has a zero at about 255 MeV/c, and so also contributes to 
this effect. 

A similar rapid variation at the same momentum transfer can be seen for the 
(d/Z)i (see Fig. 33). Note that (d/C), is significant over an extended range of q, 
while (d/C), tends to be quite small beyond the peak at 280 MeV/c. Finally, we 
consider the variation of C and A/C as the polarization direction varies. As a result 
of the absence of the coherent Coulomb monopoie for inelastic scattering, C is very 
sensitive to the value of 9*, since the unpolarized part of the cross section, which is 
independent of the choice of the polarization direction, is no longer dominant; also, 
Z can be seen to have a significant dependence on $*. In addition, A/Z tends to be 
small under the same kinematic conditions except for values of 8* within 30” of 0 
and 180” (see Figs. 34 and 35). 

FIG. 35. Inelastic electron scattering from polarized 39K($+ ++f+ ). The polarization ratio A/Z is dis- 
played as a function of the polarization direction of the nucleus (e*, d*) for given electron scattering 
kinematics. 
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FIG. 36. Inelastic electron scattering from polarized 7Li(im H I- ). The three asymmetries defined in 

Eq. (3.1) are shown using the convention of (3.3): ANs(-), A,, (---), and ALS ( ... ). 

(vii) Inelastic Scattering:Ji = +, Jr= -& Arc = no 

In general, the electromagnetic form factors which are possible for this transition 
include the C2, C4, E2, E4, M3, and M5 multipoles. If we restrict ourselves to a 
1~lp model space and one-body electromagnetic current operators, then only the 
C2, E2, and M3 form factors are nonvanishing for the resulting shell-model 
calculations. However, if we include the effects of the two-body meson-exchange 
currents, then the transverse E4 and MS multipoles can be nonzero [67]; similarly, 
extending our model space to include single-particle admixtures beyond the lp shell 
would result in nonzero contributions to the C4, E4, M3, and M5 form factors. 
Then, we can see that the use of electron and nuclear polarizations as a “multipole 

-100’ I I I I I I 
0 200 400 600 

q (MeV/c) 

FIG. 37. Inelastic electron scattering from polarized ‘Li(i H J- ). The two polarization ratios 
defined at the beginning of the section are shown using the convention of (3.4): (d/Z)L(-), and (d/C), 
(- - -); (d/Z), is identically zero. 
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meter” to separate the various form factors from each other may be a very nice way 
to demonstrate the effects of meson-exchange currents and/or configuration 
admixtures on the electromagnetic structure of the ‘Li nucleus. 

In particular, certain combinations of the reduced response functions W-3 which 
eliminate the F&, F&, and FMj terms can be considered in order to see the 
presence of any additional effects. For instance, it follows from Eq. (2.64) that, for 
this transition, 

and 

“IyoL+qW‘4=4F,,(F,,-(3J5/2)F,,) (3.28a) 

+72 ~~~~~~~ - (888 fil5) F~Zrv,s,, 

IO-’ 
I- - LI k.e’l INELASTIC 3/z--7/2- 

10-3 r 

0 

; 

10-5 r 

to-6 F 

10-7 z- 

10-e 
0 200 400 

q (MeV/c) 

600 

(3.28b) 

FIG. 38. Inelastic electron scattering from polarized 7Li(2- H$- ). The response function W-l is dis- 
played for the shell model, while the function W’ defined in Eq. (3.28b) is displayed when the meson- 
exchange-current effects are taken into account. 



308 DONNELLY AND RASKIN 

and so both of these combinations would vanish identically in the absence of 
meson-exchange currents and configuration admixtures beyond the IS-lp shell. 

An example of this nuclear transition consists of the electro-excitation of the j- 
ground state of ‘Li to the iP (4.63 MeV) excited state. In this case, we will be com- 
paring the results of a Cohen and Kurath IS-lp shell-model description when the 
effects of meson-exchange currents are or are not included [56]. In both cases, C, 
exceeds the practical limit of 10e3’ cm’jsr for momentum transfers below 
450 MeV/c at an energy of 400 MeV. As can be seen in Fig. 36, the asymmetries A, 
for the shell-model case are significant even if they do not display very much 
variation over the entire range of q, and similar results are valid for the polarization 
ratios (d/Z)i, as can be seen from Fig. 37. To examine the effects of meson- 
exchange currents (MEC), we consider the usual transverse form factor 
U-i = 2(Fi, + FzE4 + FM3 + P,,), in the absence of any MEC effects, and the quan- 
tity #“‘, including these effects. As can be seen from Fig. 38, W’ is about two orders 
of magnitude below W”:, indicating the roughly 10% effect of the meson-exchange 
currents on the various transverse form factors. Since W’ would be identically zero 
in the absence of the MEC or extended-model-space effects, one could hope that a 
measurement of the various reduced response functions contained in W’ would 
provide an indication of the existence of the E4, M3, and M5 multipoles for the 
transition, thereby revealing important nuclear structure information about ‘Li. 

t 
*5& (s,e’l ELASTIC’ 5/Z+ 

6.=90* 

- 1.01 I I , 320MeV4 , 

0 200 400 600 
q (MeV/c) 

FIG. 39. Elastic electron scattering from polarized 2sMg (2 + ). The polarization tensors S> with even 
2 are displayed as functions of the momentum transfer for a fixed scattering angle of 90”. 



POLARIZATION IN ELECTRON SCATTERING 309 

(viii) Elastic Scattering: Ji = Jf = 5 

For this case, we will consider elastic scattering from the ground states of “Mg 
and 27A1. Again, it will not be very useful to write out the explicit forms for the 
S$(q, 0,) in terms of the multipole form factors; anyone interested in the expan- 
sions should consult Eq. (2.64). The multipoles which are possible include the CO, 
C2, C4, Ml, M3, and M5 form factors. We consider the case of 25Mg, where we will 
compare the results of a shell-model calculation [56] to those of the deformed 
Nilsson model. The harmonic oscillator parameter was taken to be 1.70 fm for both 
models (that is, the magnetic form factors for the Nilsson model were calculated 
using this value). First, we examine the behaviour of the S-F for 3 even, as dis- 

q (MeV/c) 

O( 

FIG. 40. Elastic electron scattering from polarized “Mg($+ ). The three asymmetries defined in Eq. 
(3.1) are shown using the convention of (3.3): ANS(-). A,, (-- -), and A,, ( ... ). 
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FIG. 41. Elastic electron scattering from polarized *‘Mg (3’ ). The two polarization ratios defined at 
the beginning of the section are shown using the convention of (3.4): (d/Z),(-), and (d/Z), (--p); 
(d/Z), is identically zero. 

played in Fig. 39 for 8, = 90” for the shell model; as can be seen, there is con- 
siderable variation in these functions. Now, we examine the asymmetries which are 
displayed in Fig. 40 as obtained for the shell model; as can be seen, large variations 
can occur over the entire range of useful momentum transfer, due to the fact that 
the Coulomb monopole does not overwhelm the other form factors beyond 
300 MeV/c. However, such effects are not observed for the polarization ratios (see 
Fig. 41), and the (d/C), have magnitudes of more than 10% only beyond 
500 MeV/c, since the scattering angle 8, is then close to 180”. 

4.01 1 I , 350Ms”~, 
0 200 400 600 

q (MeV/c) 

FIG. 42. Elastic electron scattering from polarized “Al (3’ ). The polarization tensors Si with even 
$+ are displayed as functions of the momentum transfer for a fixed scattering angle of 90”. 
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Next, we consider the Nilsson model, for which the Coulomb form factors were 
determined using a deformed three-parameter Fermi parameterization for the 
charge density; the transverse form factors were calculated using the Nilsson model 
for the applicable 1’ [202] configuration [37, 683. The asymmetries and 
polarization ratios resulting from this model are qualitatively similar to the shell- 
model results, although significant quantitative differences can be seen for the A,. 
For instance, A,, and A,, rise somewhat more rapidly at low q, and the values at 
the peaks are increased by about 10 percentage points. At higher momentum trans- 
fers, larger differences can be observed; the peaks seen near 450 MeV/c for these 
two asymmetries are increased in value by about 20 percentage points and shifted 
to a lower momentum transfer by about 50 MeV/c, and both A,, and A,, then 
decrease in value to about -35% at 500 MeV/c. Finally, A,, shows somewhat 
smaller differences, as the peaks near 300 MeV/c are lowered in value by under 5 
percentage points and their locations are decreased by about 10 MeV/c. 

As another spin-2 ground state, we consider the case for which the target nucleus 
is “Al, which we will describe in terms of both the extreme-single-particle model 

-150 - 

I I I I 
0 200 400 6 

q (MeV/c) 

FIG. 43. Elastic electron scattering from polarized “AI( The three asymmetries defined in Eq. 
(3.1) are shown using the convention of (3.3): A,, (-), A,, (---), and A,, (.‘. ). 
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(i.e., as a Id,,, proton below 28Si) and the shell model [56]; in either model, we 
take harmonic oscillator wavefunciions with b = 1.59 fm. In this case, the practical 
limit on the cross section is reached for a momentum transfer of 550 MeV/c for an 
energy of 300 MeV; at higher energies, this limit is reached for larger values of q. 
The polarization tensors S; which are accessible in the absence of any electron 
polarization are shown in Fig. 42 for a scattering angle of 90” for the shell model. 
As can be seen, a great deal of variation is observable beyond 250 MeV/c. If we 
examine the behaviour of the asymmetries A, as shown in Fig. 43 for the shell 
model, we can see that the existence of two zeros for the charge form factor (at 
q 2 310 and 635 MeV/c) results in an extremely large variation in the asymmetries 
extending over essentially the entire accessible range of the momentum transfer. If 
we now consider the polarization ratios (d/C), as shown in Fig. 44 for the shell 
model, we can see the usual peaks corresponding to the first zero of the Coulomb 
monopole near 300 MeV/c; however, in this case, the peaks have a magnitude of 
less than 15%, and very little additional structure can be seen at higher momentum 
transfers. 

If we now compare the results for the shell model with those obtained using the 
extreme-single-particle model, we find that the qualitative behaviours of the asym- 
metries and polarization ratios are very similar for the two models, although 
reasonably large differences in magnitude can be observed. For instance, the large 
peaks seen near 310 MeV/c for the asymmetries are reduced by about 25 percentage 
points for the single-particle model, while the peaks in A,, and A,, beyond 
500 MeV/c are reduced in value by approximately 10 percentage points and dis- 
placed by about 20 MeV/c toward higher values of the momentum transfer. Also, 
A is increased in value by about 10 percentage points between 400 and 
Si$MeV/c, and reaches the value of - 100% at 600 MeV/c. Finally, (d/C), 
exhibits significant differences only beyond 400 MeV/c, where it decreases to 5% at 
440 MeV/c and then rapidly increases in value at higher momentum transfers until 

-50 I  1 I  I  I  
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FIG. 44. Elastic electron scattering from polarized *‘Al (4’ ). The two polarization ratios defined at 
the beginning of the section are shown using the convention of (3.4): (d/C), (-), and (d/C), (---); 
(d/J& is identically zero. 
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it peaks at the value of 80% at 600 MeV/c; however, (d/C), does not exhibit the 
same drastic effects, although it is twice as large as the shell-model results between 
350 and 500 MeV/c, and 25% smaller beyond 550 MeV/c. 

(ix) Inelastic Scattering:J, = 2, Jr = i, t, 2, I, and g, AII = no 

As examples of these transitions, we consider the electro-excitation of *‘Mg to its 
first nine positive-parity excited states; the level scheme for this nucleus is given in 
Fig. 45 [69]. The multipoles which are possible for these values of Jf are C2, E2, 
and M3 for Jf = t; C2, C4, E2, E4, Ml, and M3 for Jf = 4; CO, C2, C4, E2, E4, Ml, 
M3, and MS for J,= 3; C2, C4, C6, E2, E4, E6, Ml, M3, and M5 for J,= $; and C2, 
C4, C6, E2, E4, E6, M3, M5, and M7 for Jr= g. All of the values of Jr, with the 
exception of J,= 9, occur for two different levels, and so we will be able to 
demonstrate the effect of nuclear structure on the quantities of interest. For all of 
the transitions under consideration, we will be using the shell model [56]; in 
addition, we will also discuss the transitions to the ;+(1.614 MeV) and the 
s’(3.405 MeV) states in the context of the deformed Nilsson model, since these 
levels are in the same $ + [202] rotational band as the ground state. 

25Mg Level Scheme 

5/2* l4 

FIG. 45. Nuclear level scheme for 25Mg (from [69]). The levels in the ground state rotational band 
are indicated by arrows. 
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As can be seen in Figs. 4649 for J,= i, Figs. XL53 for Jr= $ and Figs. 5457 for 
Jr= $, extremely large differences for the asymmetries and polarization ratios can be 
observed over large ranges of the momentum transfer for different excited states 
with the same spin. For Jr= $, we again observe radically different behaviours in 
these quantities for the two excited states (see Figs. 58-62); in addition, large 
variations are evident when we compare the shell and deformed models for the 
1+(1.614 MeV) state (see Figs. 58 and 59, respectively). Similar results are valid for 
the Jf= 3 excited state, as can be seen by examining the behaviour of the asym- 
metries for the shell and deformed models as shown in Figs. 63 and 64, respectively. 
Note especially the fact that the signs of the A, are reversed for the two models 

J 
0 200 400 600 

q (MeV/c) 

FIG. 46. Inelastic electron scattering from polarized 25Mg(i+ ~4’ # 1). The three asymmetries 
defined in Eq. (3.1) are shown using the convention of (3.3): ANS(-), A,, (---), and A,, (..’ ). 
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FIG. 47. Inelastic electron scattering from polarized ZSMg(f + I+ f  + # 1). The two polarization ratios 
defined at the beginning of the section are shown using the convention of (3.4): (d/C),(-), and 
(d/X),(- - -); (d/C), is identically zero. 

beyond 375 MeV/c. Finally, we show the polarization ratios (d/L’); for the transi- 
tion to this state in Fig. 65 for the shell model. 

(x) Elastic Scattering: J, = Jf = i 

An example of such a nucleus is provided by 59Co, which we treat in the defor- 
med Nilsson model as a i- [ 3033 configuration which becomes a ljT,2 proton in the 
spherical limit [37]. Again, we calculate the Coulomb form factors from a 
deformed two-parameter Fermi fit while using the Nilsson model with harmonic 
oscillator wavefunctions having b = 1.9 fm for the magnetic form factors. At an 
energy of 300 MeV/c, Z, exceeds the practical limit of 1Op33 cm*/sr for momentum 
transfers below 500 MeV/c. As can be seen from Fig. 66, extremely large variations 
occur for the asymmetries A, over the entire range of q, especially in the vicinity of 
the zeros of the coherent Coulomb monopole form factor at 250, 350, 
and 440 MeV/c. 

At this point, we would like to emphasize that we are not taking into account the 
effects of the distortion of the electron wavefunctions in the Coulomb held of the 
nucleus under consideration. Because our formalism was developed using the 
PWBA, there is no easy way to determine the effects of such distortion on our 
results (with the exception of the first-order effect whereby the momentum transfer 
q is replaced by the usual effective momentum transfer). However, a simple analysis 
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FIG. 48. Inelastic electron scattering from polarized “Mg($+ w;+ #2). The three asymmetries 
defined in Eq. (3.1) arc shown using the convention of (3.3): A,, (-), A,, (---), and A,,( “’ ). 

which we have performed for this problem (in effect, allowing regions about the dif- 
fraction minima to be filled in and to have arbitrary signs) indicates the large 
magnitudes of the asymmetries and polarization ratios which were obtained are not 
spurious; thus, although the filling-in of the zeros in the form factors, most impor- 
tantly of the coherent CO contribution, due to the distortion will have an effect on 
our results, we expect our calculations to reflect at least the qualitative behaviour of 
the polarization cross sections. In spite of this, we feel that it is not very useful to 
pursue the PWBA in discussing elastic scattering from nuclei with high Z (such as 
165H~ and ‘*lTa, which are potentially interesting cases), although we will consider 
the borderline cases of elastic scattering from *‘Sr and 93Nb. We expect this 
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FIG. 49. Inelastic electron scattering from polarized “Mg(s+ ++f’ #2). The two polarization ratios 

defined at the beginning of the section are shown using the convention of (3.4): (d/Z-),(-), and 
(d/Z)& ~ -); (d/C), is identically zero 
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FIG. 50. Inelastic electron scattering from polarized zsMg (++ ++t+ # 1). The three asymmetries 
defined in Eq. (3.1) are shown using the convention of (3.3): ANs(-). A,, (---), and A,, ( ... ). 
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FIG. 51. Inelastic electron scattering from polarized 25Mg (2’ H 5’ # 1). The two polarization ratios 

defined at the beginning of the section are shown using the convention of (3.4): (d/L), (-), and 
(d/Z),(- - -); (LI/Z)~ is identically zero. 
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FIG. 52. Inelastic electron scattering from polarized 25Mg(3+ +-++j+ #2). The three asymmetries 
defined in Eq. (3.1) are shown using the convention of (3.3): AN&). ALN(---). and A,, (‘.. ). 
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FIG. 53. Inelastic electron scattering from polarized zsMg (3’ of+ #2). The two polarization ratios 

defined at the beginning of the section are shown using the convention of (3.4): (d/C),(-), and (d/C), 
); (d/Z), is identically zero. 
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FIG. 54. Inelastic electron scattering from polarized 25Mg($+ ++i+ # 1). The three asymmetries 
defined in Eq. (3.1) are shown using the convention of (3.3): A,, (-), A,, (---), and ALS ( ... ). 
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FIG. 55. Inelastic electron scattering from polarized “Mg($+ ++ 2’ # 1). The two polarization ratios 
defined at the beginning of the section are shown using the convention of (3.4): (d/Z), (-), and 
(d/C),(- - -); (d/C), is identically zero. 
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FIG. 56. Inelastic electron scattering from polarized ‘5Mg(i+ H$+ #2). The three asymmetries 
delined in Eq. (3.1) are shown using the convention of (3.3): ANS (-), A,, (- -), and A,, ( '. ). 
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FIG. 57. Inelastic electron scattering from polarized “Mg (i+ H $+ # 2). The two polarization ratios 
defined at the beginning of the section are shown using the convention of (3.4): (d/C), (-). and 
(d/L), (- -); (d/L), is identically zero. 

problem to be much less severe for inelastic scattering where the coherent CO form 
factors do not occur and in fact we will consider the case of “‘Ta in the following 
subsection. 

Returning to conclude our discussion of elastic scattering from 59Co, we expect to 
find that this distortion would significantly reduce the magnitudes of the peaks in 

the A, at 180, 225, 275, and 375 MeV/c, although these peaks would not be 
drastically suppressed. As far as the polarization ratios are concerned, we find that 
they tend to be less than 5% except near the zeros of the Coulomb monopole and 

FIG. 58. Inelastic electron scattering from polarized *5Mg(t+ HI+ # 1). The three asymmetries 
defined in Eq. (3.1) are shown using the convention of (3.3): A,, (-), A,, (---), and A,, (... ). 



322 DONNELLY AND RASKIN 

fO0 *,- 
MPb,.‘lINELASTIC: 5/2+-7/2+(1.614Mev 

E= 400 Me” 

,:. : :’ : 
,J/ 

:’ : . . . ..- 
0 200 400 

q (MeV/c) 

FIG. 59. Inelastic electron scattering from polarized 2sMg (5’ H$+ # 1). The three asymmetries 
defined in Eq. (3.1) are shown using the convention of (3.3): A Ns (-), A,, (- - -), and A,,( .. ). Note 

that the results shown correspond to the deformed model. 

at momentum transfers beyond 400 MeV/c, due to the dominance of the Coulomb 
form factor over an extended range of q. 

(xi) Inelastic Scattering: Ji = i, Jl= $ and y, An = no 

As examples of these transitions, we consider the excitation of the s’ ground 
state of “‘Ta to the g+ (0.136 MeV) and 9+(0.302 MeV) states. These three states 
all belong to the same rotational band of the ground state, which in the deformed 
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FIG. 60. Inelastic electron scattering from polarized zsMg($+ HZ+ # 1). The two polarization ratios 

defined at the beginning of the section are shown using the convention of (3.4): (d/Z),(-), and 
(d/Z), (- - -); (d/Z), is identically zero. 
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FIG. 61. Inelastic electron scattering from polarized 25Mg (2’ HZ+ #2). The three asymmetries 
defined in Eq. (3.1) are shown using the convention of (3.3): ANs(-), ALN (- -), and A,,( ..’ ). 

Nilsson model is the i’ [404] proton intrinsic state with 6 = 0.3 [37, 681. Again, we 
use a deformed two-parameter Fermi tit in order to calculate the Coulomb form 
factors, while the transverse electric and magnetic form factors are determined in 
the Nilsson model with harmonic oscillator wavefunctions with parameter 
b = 2.0 fm. 

The form factors which are possible for the first transition include the C2, C4, 
C6, C8, E2, E4, E6, E8, Ml, M3, M5, and M7 multipoles, although the E8 form 
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FIG. 62. Inelastic electron scattering from polarized Z5Mg(q+ ++ i + #2). The two polarization ratios 
defined at the beginning of the section are shown using the convention of (3.4): (d/Z),(-), and 
(d/Z)& ~ -); (d/Z), is identically zero. 
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600 

FIG. 63. Inelastic electron scattering from polarized “Mg($’ H $ + ). The three &symmetries defined 
in Eq. (3.1) are shown using the convention of (3.3): ANs(-). ALN(---). and A,s (.‘. ). 

factor is the only electric one which does not vanish in the Nilsson model [37]. 
Then, we find that CL is above the practical limit for values of q of 450 MeV/c and 
below, for an energy of 300 MeV (again, as E increases, so does the limiting value of 
q), and significant variations can be observed in the asymmetries as displayed in 
Fig. 67. Note that the effects from the collective core (which are not included here) 
are significant at low values of the momentum transfer, and so we do not show the 
asymmetries below 200 MeV/c. The effects seen near 200, 320, and 430 MeV/c are 
due to the zeros of the Coulomb quadrupole form factor, and so we expect that the 
distortion of the electron wavefunctions will soften the observed extreme behaviour 
(see subsect. (x) for a discussion of this point). In spite of this, the A, can be seen to 
be significantly large over the entire range of accessible momentum transfers. On 
the other hand, the polarization ratios (A/Z)i tend to be less than 5% except near 
the C2 zeros and so we do not display them here. 

Similar results are obtained for inelastic scattering to the y’ state, for which an 
M9 form factor is now permitted, while the Ml multipole is not. As shown in 
Fig. 68, the asymmetries are extremely large over the entire range of q and again 
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FIG. 64. Inelastic electron scattering from polarized 25Mg(t+ ++ 2 + ). The three asymmetries defmed in 
Eq. (3.1) are shown using the convention of (3.3): ANs (-), ALN (---), and A,,( ... ). Note that the 
results shown correspond to the deformed model. 
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FIG. 65. Inelastic electron scattering from polarized 2SMg($+ -2’ ). The two polarization ratios 
defined at the beginning of the section are shown using the convention of (3.4): (d/Z), (-), and 
(d/Z), (- - -); (d/Z), is identically zero. 
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FIG. 66. Elastic electron scattering from polarized 5’Co (3 .- ). The three asymmetries defined in Eq. 
(3.1) are shown using the convention of (3.3): A,, (-), A,, (- - -). and A& ... ). 

exhibit extreme variations in the vicinity of the zero of the Coulomb quadrupole 
form factor, and the polarization ratios again are only significant near these zeros. 

(xii) Elastic Scattering: Ji = Jf= 4 

Examples of such high-spin nuclei are *‘Sr, which may be treated as a single lg,,, 
neutron hole below a 88Sr core, and 93Nb, which we consider to be a lg,,, proton 
above g2Zr [37]. For both nuclei, the electromagnetic multipoles which are possible 
are the CO, C2, C4, C6, C8, Ml, M3, M5, M7, and M9 ones. Because these nuclei 
have relatively large charges, we expect that the distortion of the electron 
wavefunctions will have an important effect on our results and so the predictions 
made here should only be taken at the qualitative level (see subsect. (x) for a dis- 
cussion of this point). For the first case, we take b = 2.0 fm, and we have that 
2, > 1O-33 cm’/sr for momentum transfers of 450 MeV/c and below, for an energy 
of 400 MeV. If we consider the asymmetries A, as shown in Fig. 69, we see that 
they are nearly zero below 400 MeV/c except in the vicinity of the zeros of the 
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FIG. 67. Inelastic electron scattering from polarized 18’Ta(i7 + H p + ). The asymmetries defined in Eq. 
(3.1) are shown using the convention of (3.3): A,, (-) and A,, (- - -). 

charge form factor at 210, 335, and 485 MeV/c; because the nucleus has Z9 1, the 
asymmetries are severely suppressed between the first two zeros, in contrast to the 
low-Z cases discussed above. Again, the large asymmetries for q > 520 MeV/c are 
due to the tan 0,/Z dependence of the kinematic factors (as 8,~ 180”). As far as the 
polarization ratios A/Z are concerned, the behaviour is similar to that for the asym- 
metries (see Fig. 70). 

However, for the case of 93Nb, for which we take h = 2.03 fm, a great deal of 
structure can be observed in the asymmetries over the entire range of the momen- 
tum transfer (see Fig. 71). For electron energies beyond 400 MeV, the cross section 
exceeds the practical limit below 450 MeV/c; in fact, at higher energies, this limit is 
pushed out to higher q (e.g., 600 MeV/c at 1 GeV). In addition, the polarization 
ratios as displayed in Fig. 72 indicate the effect that the choice of the polarization 
direction can have on the measured quantities; (C/A), can be seen to be much 
greater in magnitude than (C/A),. Comparison of the results for these two spin-s 
nuclei indicate the dependence of the form factors on whether the single particle is a 
neutron or a proton. As can be seen, the fact that the valence nucleon for q3Nb is a 



-I 200 
'8'~(~,e'IINELASTIC:7/2*-lI/2+(0.158 Me\ 

E=400 WV 

-100 ' I 1 I I 

0 200 400 
q (MeV/c) 

FIG. 68. Inelastic electron scattering from polarized Is’Ta($+ ++ y+ ). The asymmetries detined in Eq. 

(3.1) are shown using the convention of (3.3): A,, (-) and A,, (- - -). 
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FIG. 69. Elastic electron scattering from polarized s’Sr($+ ). The three asymmetries defined in Eq. 

(3.1) are shown using the convention of (3.3): A,, (-), A,, (-- -), and A,,( ... ). 
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FIG. 70. Elastic electron scattering from polarized 87Sr(q+ ). The two polarization ratios defined at 
the beginning of the section are shown using the convention of (3.4): (d/z), (-), and (d/C), (---); 
(d/z), is identically zero. 

proton causes the asymmetries and polarization ratios to exhibit considerable struc- 
ture over the entire range of momentum transfer, in contrast with the results for 
“ST where a neutron is involved. This statement holds true because the closed 
proton shells have no contribution to the C2, C4, C6, and C8 multipole form fac- 
tors, and so these multipoles are identically zero for *‘Sr within the context of this 
simple model. On the other hand, the valence proton in 93Nb results in significantly 

q (MeV/c) 

FIG. 71. Elastic electron scattering from polarized 93Nb(Ef ). The three asymmetries defined in Eq. 
(3.1) are shown using the convention of (3.3): ANs (-), A,, (- --), and A,, ( .‘. ). 
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FIG. 72. Elastic electron scattering from polarized 93Nb(%’ ). The two polarization ratios defined at 

the beginning of the section arc shown using the convention of (3.4): (d/Z), (-). and (d/Z), (-p-l; 
(d/Z), is identically zero. 

large Coulomb multipoles other than the CO; all of the additional Coulomb form 
factors reach the level of the monopole at about 300 MeV/c, and the various inter- 
ferences between the Coulomb and magnetic form factors results in the observed 
behaviour of the quantities of interest for this nucleus. 

This concludes our discussion of polarization experiments for the selected 
illustrative nuclei. We will now summarize the results of Sections 2 and 3, and will 
give our conclusions concerning the usefulness of polarization studies for nuclear 
physics. 

4. CONCLUSIONS 

As discussed in this paper, the polarization degrees of freedom inherent in the 
inclusive electron-nucleus scattering process may be used as a powerful tool in 
extracting nuclear structure information. The required formalism was developed in 
Section 2, and was then applied to a variety of different nuclei and nuclear transi- 
tions in Section 3. The nuclei considered in the latter section ranged from low-A 
ones, such as the nucleon and the deuteron, to high-A nuclei, such as “lTa, and 
had spins ranging from 4-t. In all cases, the use of the polarization degrees of 
freedom was seen to lead to significant effects in the scattering cross section, thereby 
indicating the usefulness of polarization in inclusive electron-nucleus scattering 
experiments. 

There are four distinct classes of such scattering experiments which are possible, 
depending on whether or not the electrons and/or the nucleus are polarized: 

(1) Unpolarized electrons and an unpolarized nucleus. 
In this case, only two quantities are accessible, FL and PT, the usual longitudinal 

and transverse form factors of Eq. (2.73). These contributions, which contain the 
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incoherent sums of the squares of the Coulomb and the transverse (electric and 
magnetic) multipole matrix elements respectively, may be separated from one 
another using the familiar Rosenbluth analysis. However, for nuclei with spins 
beyond 4, the number of distinct electromagnetic multipole matrix elements which 
are possible from angular momentum, parity, and time-reversal-invariance con- 
siderations is greater than two, and so in general it is not possible in such 
experiments to determine these matrix elements individually. 

(2) Unpolarized electrons, but a polarized nucleus. 
In this case, new information is available, since we can now make a “super- 

Rosenbluth” separation of the electron-spin-averaged cross section C by varying the 
kinematic conditions while leaving the energy and momentum transfers fixed. This 
allows the determination of the L, T, TT, and TL response functions defined in 
Eq. (2.66). Furthermore, by varying the direction of nuclear polarization, as 
specified by 8* and #*, it is possible to decompose each of these response functions 
into a larger number of terms involving specific interferences between the multipole 
matrix elements. Thus, in a mixed-multipole situation, in general much more infor- 
mation is now accessible than was possible for case (1) in the absence of any 
polarization. 

(3) Polarized electrons, but an unpolarized nucleus. 
In this case, the electron-polarization cross section A vanishes if parity is conser- 

ved, leading to a situation which is equivalent to case (1). Of course, the effects of 
parity violation, which in fact must occur due to the presence of the weak interac- 
tion, may be explored from a measurement of d as obtained by measuring the cross 
section for two different electron beam polarizations. In the present work we have 
assumed the conservation of parity and so have not considered such effects. 

(4) Polarized electrons and a polarized nucleus. 
This case is very similar to case (2), except that now the polarization of the elec- 

tron beam may be used together with the “super-Rosenbluth” decomposition in 
order to determine the T’ and TL’ response functions of Eq. (2.66) along with the 
previous four response functions mentioned for case (2). The remainder of the 
analysis (i.e., the angular decomposition) is equivalent to that of case (2), and so it 
is apparent that the two additional response functions will provide us with more 
information than was possible in the absence of electron polarization. 

In summary, it can be seen that at least nuclear polarization is necessary to 
extract from electron scattering additional nuclear structure information beyond 
that available from the usual Rosenbluth separation in the absence of any 
polarization; significantly more information can in principle be obtained if nuclear 
polarization is available. In addition, the use of a polarized electron beam allows 
the determination of still more information due to the presence of the two extra 
response functions. While it may not be possible in general to determine unam- 
biguously all of the multipole matrix elements for inelastic scattering (as discussed 
in Appendix B), it should be noted that this problem was encountered in a more 
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severe form for the simpler Rosenbluth analysis in the absence of any electron or 
nuclear polarization. Thus, it can be seen that it is worthwhile to develop the 
necessary experimental facilities (electron stretcher rings, polarized targets, 
polarized electron beams, high-energy high-efficiency polarimeters for use with cw 
electron beams, etc.). In practice, the electron and nuclear polarizations which are 
required for such experiments appear to be attainable based on the level of 
technology which is presently available or being developed, and the resulting 
polarization studies which will be possible will provide an important means of 
extending the usefulness of electron scattering experiments in the not-too-distant 
future for the measurement of the electromagnetic properties of nuclei. 

APPENDIX A: NOTATION AND CONVENTIONS 

In this paper, we use the conventions of Bjorken and Drell [30], and we take 
physical units such that fi = c = 1. We denote Lorentz four-vectors by capital letters 
and three-vectors by boldface lowercase letters: A H Ap = (A’, a). The magnitude of 
a three-vector is written as a lowercase letter, a = [a(. The scalar product of two 
four-vectors is denoted by A B = g,,, APB’ = A, BP = A”Bo - a b, where we have 
adopted the usual convention of summing repeated upper and lower Greek indices 
from zero to three and where we have taken the metric tensor to be 

/1 0 0 o\ 

1 o-1 0 0 
gp.=Y= o o -1 o . 

) 
\ 00 0 4 

We use a caret above a quantity (as in f) to denote that we are dealing with a 
second-quantization operator acting in the nuclear Hilbert space. 

The Coulomb, electric, and magnetic operators are those considered in [25, 331; 
their single-particle matrix elements are discussed and tabulated in [38, 393. In 
these last references, several useful multipole identities are summarized. Throughout 
this paper, we use the angular momentum conventions of Edmonds [34]. 

APPENDIXB: INVERSE PROBLEM-REDUCED RESPONSE FUNCTIONS 
HFORM FACTORS 

In this Appendix, we summarize a few identities which provide relationships 
among the various reduced response functions and then discuss the problem of 
determining the electromagnetic form factors given measurements of the set of 
w:‘s for a specific nuclear transition. To begin with, it is useful to define new 
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quantities involving sums of the reduced response functions weighted with 3 -j 
coefficients, 

(B.la) 

(B.lb) 

(B.lc) 

(B.ld) 

(B.le) 

and 

~T~CP;[dl~(B-l)61(6+l)(b+2)(-1)J’-(m+*) 
d 

WTT. a 

By construction, the m’s are restricted to the following range: 
(B.lf) 

-Ji<m<J, for L, T, T’, 

-Ji<m<Ji-1 for TL, TL’, 

-Ji<m<Ji-2 for TT, 

and from the symmetry properties of the 3-j coefficients [34] we have the following 
relationships: 

U”, = u;, (B.2a) 

UT, = u;, (B.2b) 

UT’,= -Uf, (B.2c) 

UTL -(l+m)= - m 3 UTL (B.2d) 
,TJTL’ 

- Vi”‘, -(I+m)- (B.2e) 

and 

CIT_T;2+m,= ULT. (B.2f) 
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It may be shown that various inequalities must be satisfied; in particular, we have 
that 

u;>o, (B.3a) 

U;f, ll(fJ 30, (B.3b) 

and thus it is natural to define the following nonnegative quantities: 

v+&= VQO (B.4a) 

and 

Pm E &Tq > 0. (B.4b) 

Then, using Eqs. (B.2b) and ( B.~c), we also have that 

vIm=Jm20. (B.4c) 

Upon examining the specific expressions for the reduced response functions (Eq. 
(2.64)), it is possible to show that the magnitudes of the U,K for K = TL, TL’, and 
TT are determined by the quantities defined in Eq. (B.4) 

Iu~L+U~L’l=~VL,,+m,r (B.5a) 

lU3 = vii G+,,w (B.5b) 

and, using the symmetry properties of the U,K’s (see Eq. (B.2)), 

These equations immediately yield a set of relationships (i.e., for the allowed ranges 
of m-values) that must be satisfied by the reduced response functions themselves. As 
just one example, let us consider odd-A nuclei and take m = -t in Eq. (B.5a); this 
yields 

1 UT:/? + UT”,;, I  = VT ,,2 V” ,/z, 

Upon substituting the above expressions for the U’s and V’s, we obtain 

To be even more explicit, let us take Ji = f; then, for the L and T cases only f = 0 
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occurs, while for the T’ and TL’ cases only 4 = 1 occurs. Evaluating the 3-j coef- 
ficients we obtain 

(wy)* = 2%‘,L( YY; - W-T’) forJ;=f; 

similarly, if we repeat this analysis for J, = 2, we find that 

(“K-f” - 3~-‘TL’)*=~(~,L-~L’4)[(~;:- ~/-:)-(l/~)(~~T,-3~:,)]. 

Note that the above expressions are independent of the final spin JI (although the 
~‘49 themselves do depend on it). 

Returning to the general case, let us proceed to invert the problem completely 
and to determine the form factors from the (experimentally accessible) quantities 
defined above. What we wish to determine are the following linear combinations of 
longitudinal and transverse matrix elements: 

(B.6a) 

where we have defined the quantities 

and 

Q,’ E P: ( - 1 )J’z (B.7a) 

Q, = p,( - l)tJ- lli*, (B.7b) 

Note that n in Eq. (B.6) is the parity change which occurs in the transition 
JF H J;f: z = zizl. If the L’s and T’s in Eq. (B.6) are known, then the multipole 
matrix elements (and hence the form factors) are known as well: 

and 

(B.Sa) 

(B.8b) 

(B.8c) 

Thus, the inversion problem hinges on knowing the L’s and T’s. 
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From the defining equations above, we see that the following ranges of m-values 
are involved: 

for L, : -mo6m6m,, where m, = min(J,, Jr); 

for T, : -ml 6m6m2, where m, = min(J,, Jr+ 1) and m2 = min(J,, Jr- 1). 

Let us begin by considering the transverse projections in the range m > -1. Using 
the explicit expressions for “$ and $C$, it may be shown that 

T,=L~, (B.9) 

where the set of signs { 1, = f } remains to be determined. Furthermore, it may be 
shown that the Pm’s for the allowed range of m-values can only be zero accidentally. 
That is, for some specific values of q the various form factors in Eq. (B.6b) may 
interfere so as to make T, (and hence Pm) vanish; however, at a slightly different 
value of q this will not be the case. Thus, we shall assume that the accidental zeros 
are avoided and so we may safely divide by T,. We then have that 

T p,2+mj = n( - 1)4+J’U;FT/T,, (B.lOa) 

where 7c = f is the parity change as above, and so the rest of the transverse projec- 
tions (those with m < - 1) are determined. Of course, the magnitude of ULT is given 
by Eq. (BSb) and the only new (experimentally accessible) input now is its sign. 
Furthermore, we have that 

L lfrn = -( UzL + vLL’)/T, 

and 

L --m =$-l)J’+J’L,, (B.lOc) 

and so the complete set of longitudinal projections is also determined. Again, the 
magnitude of UiL + UL” ’ is already known from Eq. (BSa) and the only new input 
is from the sign of this combination. In summary to this point, the inversion process 
is complete except for the as yet unknown set of signs (Am}, where m lies in the 
range (-m,<m<m,)n(m> -1). 

For inelastic scattering, we have exhausted the information that can be used and 
so we have a certain level of ambiguity. In particular, after removing one overall 
sign which may be chosen by convention, we are left with n arbitrary signs, where n 
is given in Table Bl. Such results are not unexpected when one remembers that the 
cross sections involved bilinear combinations of the form factors and we have had 
to solve quadratic equations to determine the latter quantities. In any practical 
situation, it will usually be possible to select from the sets of solutions which occur 
when n 2 1 the one that is physically the most reasonable (e.g., the one which most 
resembles some model calculation). 
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TABLE Bl 

Level of Ambiguity n for Inelastic Scattering 

A = even 24 = odd 

Jf=J,=Jo JO J, - 4 

Jr< J, Jf Jr-4 

JI> J, Ji+ 1” J, +j 

a Except for natural parity transitions where J, = 0, in which case n = 0. 

On the other hand, for elastic scattering we have a special situation: Ji = Jr- J,, 
and it follows from parity and time-reversal invariance that the electric multipoles 
t,, = 0 for all J. Then, Eq. (B.6b) reduces to 

T,,, =c [J] 
J 

(B.ll) 

and this yields a new symmetry: 

T-(1+,,=(-1)2J0+‘T,. (B.12) 

Combining this with Eq. (B.lOa) yields a recursion relation for the phases: 

A 1+??7= -A, sign ULT (B.13) 

for the allowed range of m-values. Upon fixing the overall phase convention (e.g., 
by choosing the phase A,=,,,t,,,, ), all of the phases are now determined and the 
problem may be inverted to obtain the form factors from the measured reduced 
response functions without any ambiguity. 

Finally, it is possible to use the additional symmetry (Eq. (B.12)) to derive 
relationships directly among the reduced response functions. For example, we have 
for elastic scattering that 

and 

(B.14a) 

;(/-f)d(d+f)(B+2)(-N’~)2=; {(W$)‘-C-w$‘,‘}. (B.14b) 

Equation (B.14a) is obtained from a more general set of relationships which are 
valid for elastic scattering only, 
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x [P,pv$L Pa, WF’] [P) wy- - P; WY’ ] 

(B.15) 

where taking K = 0 yields the above result. Relationships of a similar kind, but 
involving the TT reduced response functions, can also be derived for elastic scat- 
tering, 

(B.16) 

In conclusion, we have found that, in general, a measurement of all of the 
reduced response functions for inelastic scattering will not allow the unambiguous 
determination of all of the form factors; there will usually be a degree of ambiguity 
which can be eliminated only through the use of additional physical input. 
However, the absence of the electric multipoles for elastic scattering implies that 
one is able to determine all of the form factors without any ambiguity (other than 
the overall sign) if all of the reduced response functions are known. 

APPENDIX C: TABULATION OF REDUCED RESPONSE FUNCTIONS 

E.xplanation of the Tables 

In these tables, the coefficients required for the six reduced response functions 
W;(q)fi are given. These can be written in the form 

where r~ and cr’ are labels corresponding to the type of electromagnetic form factor 
required in the expansion; CJ and 0’ = C, E, and M. The form factors are related to 
the matrix elements t,J(q)fi defined previously by 
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All of the nonvanishing real coefficients A,K;““‘(y, J’, J) are listed in the tables in 
columns corresponding to the appropriate response function for a selection of 
nuclear transitions J:lt-+.J;f. Each table then refers to a specific angular momentum 
transition Jit--+Jr (in these tables, we include the transitions up to 2~ 2), and 
includes the two possible nuclear parity cases (i.e., with and without a parity 
change). It should be noted that conservation of parity has been applied to the 
nuclear transition matrix elements. In the case of elastic scattering, all of the electric 
multipoles can be shown to vanish by time-reversal invariance; this fact is indicated 
in the tables for those cases with Ji = J, and no nuclear parity change by underlin- 
ing those nuclear response function terms which are still required even if time-rever- 
sal invariance is applied. Finally, one should note that only the situation in which 
just the initial nuclear polarization is known is given in these tables; the case in 
which just the final nuclear polarization is determined can easily be found from 
these tables through the use of the “turn-around” relation 

where the plus sign occurs for K = L, T, TT, and TL’ and the minus sign occurs for 
K = TL and T’. 

Since the squares of all of the coefficients are rational numbers, it is the squares 
of these coefficients which are listed in the tables; negative coefficients are then 
indicated by the presence of an asterisk preceding the representation of the coef- 
ficient. Any integer can be expressed as a product of prime factors, and so, if we 
adopt the convention that the prime numbers are listed in ascending order from left 
to right, then each integer can be uniquely specified. A more compact notation con- 
sists of listing only the exponents of the prime factors; for example, 
20 = 2’ x 3O x 5’ ~201. Similarly, any rational fraction can be represented in the 
same way, if we use the convention that negative exponents are overbarred. Also, a 
number which is equal to 1 is indicated by a single zero. As an example, consider 
the coefficient 

-Jm= - (24x5x13)/(32x 17) 

=- 24x3~‘x5’x70x11”x13’x177’ 

which would be listed in the tables as *421001f. For the transitions which are listed 
in this appendix, only the first seven prime numbers 2, 3, 5, 7, 11, 13, and 17 will be 
required in order to specify the resulting coefficients. 

EXAMPLE. +'F-+;+. This transition has J, = + and Jr= $, and the nucleus 
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undergoes a parity change. Then, only the Coulomb dipole, the electric dipole, and 
the magnetic quadrupole form factors are nonvanishing, 

Fe,(q) 3/2,1/2=(1;~)(~II~,(q)/It)r 

Fa(qL,2.1/2 = (1:J%<;ll fwIll1)> 
and 

F,,(q) 3/2,1/Z = (l/,:5, <$ /I i%“g(q)/I $), 

where the subscript t f refers to the transition $H; and is consistent with the 
notation “li.” Then, the eight nonvanishing coeffkients corresponding to this transi- 
tion are given in Table C9. As an example, consider the reduced response function 
W$(q)ys,,,2; then, as indicated in the table, only the 2 = 1 term is nonvanishing: 

T: MM 

YJ’J 

1 2 2 *T 

T’: E E 

YJ’J 

t I I i 
T’: E M 

fJ’J 

1 1 2 11. 

Then, we have that 

~;‘%w,z = L$-!‘$l, 2, 2) &&13/w &&)3/2,1/2 

+ A~;,(4 1, 1) FEl(q)3,2,1,2FE,(q)3,2,1/2 

+ 4$,?&(l, 1, 2) Fu(q)3,2.1/2 &&)3,2,~,2~ 

where A$jy,!(l, 2, 2)= -p, A&,:X(1, 1, l)= +F, and ,4zI$(1, 1,2)= 

+Jm; thus, 

“W‘:‘(q), 1/2 = -(l/~)(FM2(q)3,2.,,2)2 + (I/~)(F,,(q),,,,,,*)’ 

+ ~F~,(q)3,2,~,2F~z(q)3!2.~,z. 

Similarly, the other response functions can be determined from the table, and are 
given by 

cd&% I,2 = q’%‘ck&,d2~ 

K%?)y,, I,2 = ,/kf’m(dw,d2 + (FmW3,2,~,d2)> 

595116912.7 
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I 1 * .Tl 
T: T’: B M 
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TT: J; 7 

TT: E M J J’ J 

TL: ,P”: TL’: 
JF’: 

2 2 I .TzT  I 2 1 *TAT 

2 2 3 ..l”T I 2 3 .a,T 

T: , s; “: 
2 I * T3T  I I 2 T t T  

2 3 2 SIT I 3 2 .60T 

TT: M M , 1’ 1 
222 Kl 

TT: ,1’; y  

TT: 6 M , 1’ J 

T: 

T: 

T: 

TT: 

TT: 

TT: 

TL: 

TL: 

F. E 
J 1’ 1 

JBF 
221 ZT  

T’: 
JYY 

1 2 1 .OZT 

3 1 2 4OT 

T’: J?Y 
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and 

~“TL’mj2,1,2 = ~F,,(q),,,.,,*(F,,o3,*,l/2 - &%42k43,2.I,2). 

As an example of the use of the “turnaround” relation (2.66), we now consider 
the nuclear transition $ * H f T for which the final nuclear polarization is measured. 
It then follows from the turnaround relation that 

“+qq) I/2,3@== *((2.+-t 1)/(2.$+ wqs?)*,,z= +t”@“q~d3+3,2~ 

where the %“,K(q)w.,,2 are given above, and so 

and 

e(q),;,,wF= (1:,:5)(Fc~(q)3,2.1,2)2, 

cm 1/2.&f?= (l/~)((Fh12(q)3,2,,,2)2 + (M9)3,2,,,2)2), 

c(q)l,2,%/%= ( fi/WM2m3,2,,,d2 - (y/z/4)(FE,(4)3,2.1,2)2 

- ~FFdd1:2,1/2 &&)~,2,,,2~ 

~-fL’w,,2,3fz= U;$) F,,(q)3,2,,,2(FEI(q)3,2,,!?. y,/“hm(q)~iz.~,z), 

where the form factors F,,(q)3,2.,,2 refer to the transition f H 1. 
However, we have that 

and 

where 9 = 0 for the Coulomb multipole operators and q = 1 for the transverse mul- 
tipole operators [25, 331. It then follows that 

Therefore, 

and 

CJfl F,,(q), = ( - 1 )+ “I( - 1 )‘+ q - c J,l FoAq)i,. 1 

F,,(q) 3/2,1/2 = + v’k~(dw,wr 

Fm(q) 312,112 = - fiFF,(qh,2,3,z, 

Fm(q)s,z, ,,.I = + JZh4Ad,,2.3,2? 
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T: 

T: 

T: 

TT: TL’: JP’: 
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T: MM .I J’ J T’: M M 
J J’ J T: E M , J’ 1 T’: li M 

, 0’ J 

TT: M M 
J J’ J 
2 2 2 
I 1 2 

2 I 2 1TT  

1 3 1 IOT 

TL: JZ”: 

T’: F F 
.I J; i 
I 2 2 .TTI 

T: F. F. , J’ 1 T’: E I? 
J .I’ J TT: Jr’: 

0 2 1 

2 2 * 

1 2 2 

001 

.TozT 

r3”1T 

TT: 
,5: 

TT: E E , 1’ I 

TL: 
JP: 
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TL’: 
,8’: 

T: 

T: 

T: 

TT: M M , 1’ I 

TT: 
J5’;’ 
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T: E E 
I 1’ J 

TT: M M , 1’ I 

TT: E E .l 1’ J 

TT: E M 
I 1’ J 

T’: E M J J’ 1 TL: 
,?f 

T: MM , J’ 1 T’: M M 
J J’ , 



T: EE 
, 1’ 1 

TT: M M 
, 1’ J 
I 2 1 3113 

1 4 2 oT23 

2 I I a3043 

I 1 2 1313 

1 1 1 7313 

I I 4 3013 

T’: E F. TT: E M 
, J’ J J 1’ I 

T’: JIY 

1 1 I *301 1 1 2 ST1 

I 3 a *301 1 3 2 2013 

331 OII 2 3 4 TT33 

3 3 3 *3”1 I 3 2 7323 

1 I I . T  

I 3 I .TTo3 

TL: ,FY 
2 I 2 . TT I  

2 3 1 7Tl3 

2 3 4 10 033 

,I, 3 

, 3 2 i12V 
I 3 I 3403 

TL: 
J$V 

TL’: J:‘;’ 

and so 

~;(&2,yz= * ((Kv12(qh,2,3,2)2 + (Mqh,2.3,2)2) 

C(q) */2,&p = (1/Jz)(~h12(Y),,2,1,2~2 - (1/~)(~F101!2.1,2)2 

+ &Mq)*,2.3,2 Fm(q),,2,3,*, 

and 
CL’(q) l/2.4+? = - ~~c1(4)1,2,~,2(FEI(q)l,2,3,2 + Jkf201!2,3,2). 
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