Nucleon Form Factors @JLab

Mark K. Jones, Jefferson Lab

Nucleon Form Factors @JLab

Mark K. Jones, Jefferson Lab

Nucleon Form Factors @JLab

Mark K. Jones, Jefferson Lab

Nucleon vertex:

$$\Gamma_{\mu}(p',p) = \underbrace{F_{1}(Q^{2})}_{Dirac} \gamma_{\mu} + \frac{i\kappa_{p}}{2M_{p}} \underbrace{F_{2}(Q^{2})}_{Pauli} \sigma_{\mu\nu}q^{\nu}$$

$$G_{E}(Q^{2}) = F_{1}(Q^{2}) \cdot \kappa_{N}\tau F_{2}(Q^{2})$$

$$G_{M}(Q^{2}) = F_{1}(Q^{2}) + \kappa_{N} F_{2}(Q^{2}), \tau = \frac{Q^{2}}{4M_{N}}$$
At $Q^{2} = 0$ $G_{Mp} = 2.79 G_{Mn} = -1.91$
 $G_{Ep} = 1 G_{En} = 0$
Extract G_{E} and G_{M} from:
Cross-section measurements $N(e, e')$
Beam-target Asymmetries $\vec{N}(\vec{e}, e')N$

Recoil polarization $N(ec{e},e')ec{N}$

Extract G_{Mn} from inclusive d(e,e') quasielastic scattering cross section data.

 $\sigma \propto R_T + \epsilon R_L$

In PWIA : $R_T \propto (G_M^n)^2 + (G_M^p)^2$ $R_L \propto (G_E^n)^2 + (G_E^p)^2$

Extract G_{Mn} from inclusive d(e,e') quasielastic scattering cross section data.

$$\sigma \propto R_T + \epsilon R_L$$

In PWIA : $R_T \propto (G_M^n)^2 + (G_M^p)^2$ $R_L \propto (G_E^n)^2 + (G_E^p)^2$

Extract G_{Mn} from inclusive d(e,e') quasielastic scattering cross section data.

$$\sigma \propto R_T + \epsilon R_L$$

In PWIA : $R_T \propto (G_M^n)^2 + (G_M^p)^2$ $R_L \propto (G_E^n)^2 + (G_E^p)^2$

Difficulties:

- Subtraction of large proton contribution
- Sensitive to deuteron model.

- ▶ Measure $\sigma(e, e'n)$ quasi-elastic. → Reduce proton contribution.
- But still sensitive to deuteron model.
- Need to know absolute neutron detection efficiency.

■ Measure $\frac{\sigma(e,e'n)}{\sigma(e,e'p)}$ → Sensitivity to ²H model cancels in ratio.

- Proton and neutron detected in same detector simultaneously.
- Need to know absolute neutron detection efficiency.

→ Bonn used $p(\gamma, \pi^+)n \ in - situ$

■ Measure $\frac{\sigma(e,e'n)}{\sigma(e,e'p)}$ → Sensitivity to ²H model cancels in ratio.

- Proton and neutron detected in same detector simultaneously.
- Need to know absolute neutron detection efficiency.
- \rightarrow NIKHEF and Mainz p(n, p)n with tagged neutron beam at PSI.

Solution Extract G_{Mn} from ${}^{3}\vec{\mathsf{He}}(\vec{\mathsf{e}},\mathsf{e}')$ transverse asymmetry, A_{T}

- At $Q^2 = 0.1$ and 0.2, use full three-body non-relativistic Fadeev calculation of A_T .
- **9** $Q^2 > 0.2$, use PWIA calculation of A_T .

\mathbf{G}_{Mn} measurement in Hall B

- **9** G_E from elastic *ed* cross sections (Galster (1971), Platchkov (1990))
- $\sigma \propto A(Q^2) + B(Q^2) \tan^2(\frac{\theta}{2})$
- Extract G_E^n from $A(Q^2)$ using deuteron model
- But very sensitive to NN potential.

- T_{20} from elastic $d(e,e'\vec{d})$ (JLab Hall C).
- Combine $T_{20}(Q^2)$ with world data to determine F_{C2} .
- Extract G_E with less theory uncertainty
 - (Schiavilla and Sick, PRC 64, 041002 (2001))

- Determine neutron charge radius from low energy neutron-electron scattering using ²⁰⁸Pb and ²⁰⁹Bi
- S. Kopecky *et al.*, PRC 56, 2229 (1997).

9 G_E from Quasi-free ${}^{3}Hec{e}(e,e'n)$

• Set
$$\theta^* = 90^\circ$$
, $A_\perp \propto P_B P_T G_E / G_M$

● Set $\theta^* = 0^\circ$, $A_{\parallel} \propto P_B P_T \implies$ In PWIA, $G_E/G_M \propto A_{\perp}/A_{\parallel}$

9 G_E from beam-target asymmetry with $\vec{d}(\vec{e}, e'n)$

● Set
$$\theta^* = 90^\circ \implies$$
 In PWIA $A_{ed}^V = P_B P_T V \frac{aG_E G_M}{G_E^2 + \tau/\epsilon G_M^2}$

NIKHEF used electron storage ring with internal \vec{d} gas target.

JLab used UVa solid 15 ND₃ target.

9 G_E from recoil polarization $d(\vec{e}, e' \vec{n})$

- At Mainz, $Q^2 = 0.15$ to 0.80
- At JLab, Q^2 = 0.45, 1.13, 1.45 → Highest Q^2 yet!

Approved experiments at JLab to measure G_E :

$$Q^2 = 3.5$$
 in Hall A by ${}^3He(\vec{e}, e'n)$ Run in Spring 2006

$$\checkmark$$
 $Q^2 = 4.3$ in Hall C by d(\vec{e} ,e' \vec{n})

 $\rightarrow ep$ elastic cross-section:

$$\sigma \propto \frac{\epsilon}{\tau} \left(\frac{G_E}{G_D}\right)^2 + \left(\frac{G_M}{G_D}\right)^2$$
$$G_D = (1 + Q^2/.71)^{-2}$$

 $\rightarrow ep$ elastic cross-section:

$$\sigma \propto \frac{\epsilon}{\tau} \left(\frac{G_E}{G_D}\right)^2 + \left(\frac{G_M}{G_D}\right)^2$$
$$G_D = (1 + Q^2/.71)^{-2}$$

 $\rightarrow \vec{e}\vec{p}$ elastic asymmetry:

 $A \propto G_E/G_M$ Relative sign of G_E/G_M

 $\rightarrow ep$ elastic cross-section:

$$\sigma \propto \frac{\epsilon}{\tau} \left(\frac{G_E}{G_D}\right)^2 + \left(\frac{G_M}{G_D}\right)^2$$
$$G_D = (1 + Q^2/.71)^{-2}$$

 $\rightarrow \vec{e}\vec{p}$ elastic asymmetry:

 $A \propto G_E/G_M$ Relative sign of G_E/G_M

Recent global fit PRC 69, 02201R (2004)

► *ep* elastic cross-section:

$$\sigma \propto \frac{\epsilon}{\tau} \left(\frac{G_E}{G_D}\right)^2 + \left(\frac{G_M}{G_D}\right)^2$$
$$G_D = (1 + Q^2/.71)^{-2}$$

 $\rightarrow \vec{e}\vec{p}$ elastic asymmetry:

 $A \propto G_E/G_M$ Relative sign of G_E/G_M

Recent global fit PRC 69, 02201R (2004) Recent data in Hall C

M. E. Christy, PRC 70, 015206 (2004)

- Measure recoil
 polarization in $p(\vec{e}, e'\vec{p})$
- First measurement at MIT-Bates

Measure recoil
polarization in $p(\vec{e}, e'\vec{p})$

•
$$\frac{G_E}{G_M} = -\frac{P_T}{P_L} \frac{(E_e + E_{e'})}{2M} \tan(\frac{\theta}{2})$$

- Measure recoil polarization in $p(\vec{e}, e'\vec{p})$
- In Hall A, $3.5 < Q^2 < 5.6$
- Did measurements to improve systematics
- Reanalyzed the low Q² data
 - Added Q^2 = 2.2 point
 - Reduced systematics
 - S. Punjabi et al., PRC 71,

055202 (2005) M. K. Jones at Hall C Summer Workshop 2005 – p.8/13

Measure recoil
polarization in $p(\vec{e}, e'\vec{p})$

- In Hall A, $0.5 < Q^2 < 5.6$
- Did measurements to improve systematics
- Reanalyzed the low Q² data
 - Added Q^2 = 2.2 point
 - Reduced systematics

M. K. Jones at Hall C Summer Workshop 2005 - p.8/13

S. Punjabi *et al.*, PRC 71,

055202 (2005)

- At JLab in Hall A did
 Rosenbluth separation
 with proton detected
 - Advantages:
 - Proton momentum fi xed at each ϵ
 - Cross section is nearly constant with ϵ
 - Reduces size of ε-dependent radiative corrections
 - Reduces systematic error from beam energy and scattering angle
 - I. Qattan *et al.* PRL 94, 142301 (2005)

Hall C RSS experiment

$$\begin{split} A_{el} &= \frac{K_1 \cos \theta^\star + K_2 \frac{G_E}{G_M} \sin \theta^\star \cos \phi^\star}{G_E^2/G_M^2 + \tau/\epsilon} \\ \theta^\star, \phi^\star = \text{polar and azimuthal angles} \\ \text{between } \vec{q} \text{ and target spin} \\ K_1, K_2 &= \text{kinematic factors} \end{split}$$

Future G_{Ep}/G_{Mp} measurements

• $p(\vec{e}, e')\vec{p}$ in Hall C.

• Measure $\frac{G_E}{G_M}$ to $Q^2 = 9$

FPP Status

- Four Chambers have arrived and assembled in their frame.
- Chambers tested with source and now being tested with cosmics.

Calorimeter status

- Calorimeter is assembled and tested with cosmics
- Found problem with optical grease.
 Need to reattach PMT.

Estimate of 2γ exchange contribution

$$\begin{split} \Gamma_{\mu}(p',p) &= \tilde{G}_{M}\gamma_{\mu} + -\tilde{F}_{2}\frac{P^{u}}{M} + \tilde{F}_{3}\frac{\gamma\cdot KP^{u}}{M^{2}} \\ \tilde{G}_{M} &= G_{M} + \delta\tilde{G}_{M} \text{ , } \tilde{F}_{2} = F_{2} + \delta\tilde{F}_{2} \text{, } \tilde{F}_{3} \text{ purely from } 2\gamma \\ \sigma_{R} &\sim \frac{\tilde{G}_{M}^{2}}{\tau} \{\tau + \epsilon \frac{\tilde{G}_{E}^{2}}{\tilde{G}_{M}^{2}} + 2\epsilon(\tau + \frac{\tilde{G}_{E}}{\tilde{G}_{M}})\mathcal{R}(\frac{\nu\tilde{F}_{3}}{M^{2}\tilde{G}_{M}})\} \\ \frac{P_{T}}{P_{L}} &\sim -\sqrt{\frac{2\epsilon}{\tau(1+\epsilon}} \{\frac{\tilde{G}_{E}}{\tilde{G}_{M}} + (1 - \frac{2\epsilon}{1+\epsilon}\frac{\tilde{G}_{E}}{\tilde{G}_{M}})\mathcal{R}(\frac{\nu\tilde{F}_{3}}{M^{2}\tilde{G}_{M}})\} \end{split}$$
To explain discrepancy need $\mathcal{R}(\frac{\nu\tilde{F}_{3}}{M^{2}\tilde{G}_{M}}) \sim 3\%$ with small Q^{2}

and ϵ dependence. P.A.M. Guichon and M. Vanderhaegen, PRL (2003)

Calculation 2 γ exchange contribution

Nucleon elastic intermediate state

P.G. Blunden, W. Melnitchouk, J.A. Tjon, nuclth/0506039

Calculation 2 γ exchange contribution

Measurement of 2γ contribution

Precision measurement of ϵ -dependence of ep elastic cross section in Hall C. (*J. Arrington, E05-017*)

Measurement of 2γ contribution

- Measure ϵ -dependence of ratio of $e^- p/e^+ p$ elastic cross section in Hall B

(A. Afanasev, J. Arrington, W. Brooks, K. Joo, L. Weinstein, E-04-116)

Measurement of 2 γ contribution

- Measure ϵ -dependence of ratio of e^-p/e^+p elastic cross section in Hall B

(A. Afanasev, J. Arrington, W. Brooks, K. Joo, L. Weinstein, E-04-116)

Measure ϵ -dependence of $\frac{G_E p}{G_M p}$ measured by recoil polarization method in Hall C . (*R. Gilman, L. Pentchev, C. Perdrisat, R. Suleiman E04-019*)

Summary of form factors

