
Hall C Software
Development

From the perspective of a user

Outline

• Version management with Git
o Overview of git in practice

o Examples of pushing/pulling updates

o Issue tracking

• Development of a new build system – SCons
o Overview of SCons

o Current status of build/configure system

Git
• Free and open source distributed version control

system

• Created by the Linux development community
(primarily for version control of the Linux kernel), with

a focus on:
o Speed

o Simple design

o Strong support for non-linear development (1000’s of branches)

o Fully distributed

o Able to handle large projects efficiently

Git Philosophy

• CVS, Subversion, etc.
o Based on “changes” to files

o Difficult to “back out” once

changes are committed

• Git
o Based on “snapshots” of filesystems

o Trivial to back out changes

o This is hugely important for large

parallel development, as well as for
newbie users!

Github.com
• Online project hosting using git

• Developers use their own account on github.com
to create “forks” of JeffersonLab repositories

• Changes are committed to a developer’s forked
repository, and at some point may be merged with
the main JeffersonLab repository, via a pull request.

• The “gatekeeper” for the Jefferson Lab repository
governs this process.

Current JLab Git Projects

• Hall A C++ Analyzer

• Hall C C++ Analyzer

• Hall C Fortran engine

• Hall C Replay x 2 (for comparisons)

• Hall C Geant simulation of Compton Polarimeter

• SIMC (Monte Carlo for Halls A and C)

• MC_SHMS_SINGLE

• TreeSearch (Hall A TreeSearch track reconstruction

Development under Git

• Easy to install and update code on JLab systems as well as on
local (Mac and Linux) machines

o git clone git@github.com:brash99/analyzer.git

o git branch –a

• Master
• remotes/origin/HEAD -> origin/master
• remotes/origin/Release-070

• remotes/origin/Release-100
• remotes/origin/Release-110

• remotes/origin/Release-120
• remotes/origin/Release-130
• remotes/origin/Release-140

• remotes/origin/Release-150
• remotes/origin/master

• remotes/origin/scons_final_change
• remotes/origin/scons_link_develop
• remotes/origin/scons_link_develop_150

o git pull origin <branch-name>

mailto:git@github.com:JeffersonLab/analyzer.git

Example Network Graph

$ git checkout –b scons_final_change
(make changes)
$ git commit –a
$ git push origin scons_final_change

Analyzer Network

http://github.com/brash99/analyzer/network

Example Network Graph

Users/developers who are “watching” development of the
JeffersonLab/analyzer repository are notified by email of pull requests.

Typically, other developers, as well as the gatekeeper, can make comments on
the proposed pull request prior to it being accepted (or rejected).

Example Network Graph

Example Network Graph

$ git remote add upstream git@github.com:JeffersonLab/hcana.git
$ git fetch upstream
$ git merge upstream/develop

mailto:git@github.com:JeffersonLab/hcana.git

Issue Tracking in Git

- Issues to be solved can be created at any time, and assigned to a
particular developer

- When pull requests are made, can be associated with one or
more issues, and issue can be closed (if appropriate)

X

https://github.com/JeffersonLab/hcana/issues?state=open

A new build system -
SCons

• Traditionally, Hall A/C software has been built with

“make”
o Platform/system/compiler dependent configuration handled within

Makefiles (coupled with #ifdef statements within the code itself)

o Dependency checking not included by default, and is based on

timestamp.

o Having an “autoconf”-like configuration is desirable, but GNU Autoconf is

highly complex

o Makefiles are platform-dependent, and incredibly cryptic – basically
unreadable to non-experts – making changes and updates difficult

o Libtool (management of libraries) not available for all platforms

• Is there something better out there?

A new build system -
SCons

• SCons is an open-source software construction tool

o Written entirely in Python – power of a real programming language in

configuration and build scripts … plus, our students know and love Python!

o Scripts are much more readable than Makefiles

o Integrated functionality similar to Autoconf

o Built-in support for C/C++, and easily extensible for other builders (ROOTCINT)

o Built-in dependency-checking – based on MD5 signatures, and not timestamps
– important for git.

o Designed from the ground up for cross-platform builds

o Currently used by the JLab DAQ group for EVIO

Major Projects using
SCons

• ASCEND - A system modeling package for engineering

• Cantera – A toolkit for chemical kinetics and thermodynamics

• CLAM – A framework to develop sophisticated audio analysis

• FreeNOS – A microkernel operating system written in C++

• IntensityEngine – A platform for 3D games and virtual worlds

• Lumiera – A professional video editor

• Madagascar – Geophysical data processing

• Nsound – C++ audio synthesis framework

• openEHR – Electronic Health Record standard

• V8 – Google’s open source Javascript engine

• YafaRay – An open source raytracing engine

SCons – Current status
• Build and configuration scripts have been written,

tested, and committed for both PODD and HCANA

• Configuration checks for:
o ROOT installation

o gcc/g++ compiler installation and functionality

o Platform-dependent compiler/linking flags (64/32 bit, Linux/MacOSX)

• Currently, we are maintaining the traditional Make

system and SCons in parallel (for both PODD and
HCANA)

