Hall C Spin Results and Perspective

K. Slifer

University of Virginia

Topics Resonant Spin Structure SANE

Semi-SANE

Resonant Spin Structure (RSS)

of the Proton and Deuteron

Oscar A. Rondon (UVA) Mark K. Jones (JLab)

Analysis

Paul McKee, Karl Slifer, Shige Tajima Frank Wesselmann, Junho Yun, Hongguo Zhu (Eric Christy, Peter Bosted)

E01-006 Collaboration

Univ. Basel, Florida International Univ., Hampton Univ., Univ. of Massachusetts, Univ. of Maryland, Mississippi State Univ.,North Carolina A&T Univ., Univ. of N. C. at Wilmington, Norfolk State Univ.,Old Dominion Univ.,S.U. at New Orleans, Univ. of Tel-Aviv, Jefferson Lab, Univ. of Virginia, Virginia P. I. & S.U., Yerevan Physics Institute

Goals

Measure proton and deuteron $A_1(W, Q^2)$ and $A_2(W, Q^2)$ in the resonance region at moderate Q^2 .

Extract g_1 and g_2 structure functions and study:

- W-dependence
- Onset of polarized local duality
- twist-3 effects in d_2 matrix element

Experimental set-up in Hall C

 P_0 = 4.7, 4.1 GeV/c

Experimental set-up in Hall C

Polarized Target

Target Ladder

- $2 \text{ NH}_3 \text{ cups}$
- $2 \; \text{ND}_3 \; \text{cups}$
- 1 Carbon (7mm)

Target Field

5 Tesla

Para & perpendicular fields.

Polarization can be flipped by

180°. Ran \pm for equal times.

Target Polarization

 NH_3 : $P_t \approx 0.68 \pm 0.017$

 ND_3 : $P_t \approx 0.18 \pm 0.007$

Packing fraction is ratio of NH₃

Dilution factors

 NH_3

Hall C fit for F₂ and R.(*M. E. Christy*)

QFS for A > 2

Comparisons to carbon data

Carbon data used to fit QFS model.

 $P_0 = 4.7 \text{ GeV/c}$

 $P_0 = 4.1 \text{ GeV/c}$

Extracting Asymmetry

Raw Asymmetries

$$A_{raw} = \frac{N^+ - N^-}{N^+ + N^-}$$

 N^+, N^- : Helicity gated counts, normalized by the charge and deadtime

Extracting Asymmetry

Raw Asymmetries

$$A_{raw} = \frac{N^+ - N^-}{N^+ + N^-}$$

Physics Asymmetries

$$A_{\parallel,\perp} = \frac{1}{Cf_{rc}} \frac{1}{fP_bP_t} A_{raw} + A_{rc}$$

- *f* : ratio of rates from polarized nucleons to all nucleons.
- P_b, P_t : beam and target polarizations.
- : corrections for 15 N asymmetry (not applied yet).

 f_{rc}, A_{rc} : radiative corrections

POLRAD (Akusevich et al.) modified to include our data as input.

Proton Elastic Asymmetry

$$A_{el} = \frac{K_1 \cos \theta^* + K_2 \frac{G_E}{G_M} \sin \theta^* \cos \phi^*}{G_E^2 / G_M^2 + \tau / \epsilon}$$

$$\theta^*, \phi^* = \text{polar and azimuthal angles}$$

between \vec{q} and target spin

 K_1, K_2 = kinematic factors

Proton Elastic Asymmetry

$$A_{el} = \frac{K_1 \cos \theta^\star + K_2 \frac{G_E}{G_M} \sin \theta^\star \cos \phi^\star}{G_E^2 / G_M^2 + \tau / \epsilon}$$

$$\theta^\star, \phi^\star = \text{polar and azimuthal angles}$$

between $ec{q}$ and target spin

 K_1, K_2 = kinematic factors

Sensitivity		\perp
$\Delta A_{el}/A_{el}$	0.02	1
$\Delta \frac{G_E}{G} / \frac{G_E}{G}$	0.02	I
$G_M ' G_M$		

- A_{\parallel} used to determine $P_b P_t$
- A_{\perp} measure $\frac{G_E}{G_M}$

Proton Elastic Asymmetry

- A_{\parallel} used to determine $P_b P_t$
- A_{\perp} measure $\frac{G_E}{G_M}$

4 5

Inelastic Asymmetries

- ¹⁵N asymmetry correction (≈ 1.02) not applied yet.
- Radiative corrections have been applied to proton data.
 Work on radiative correction for deuteron in progress.
- Expected systematic errors:
 - NH_3 : 6% (relative)
 - ND_3 : 8% (relative)
- A_{\parallel} and A_{\perp} transformed to A_1 and A_2 using Hall C F_2 and R fit (M. E. Christy)

Asymmetries

Proton

Asymmetries

Asymmetries

Proton and Deuteron

Higher twist in g_2

Twist-3 matrix element d_2

$$d_2 = 3 \int_0^1 x^2 (g_2 - g_2^{WW}) dx$$

Twist-3 matrix element d_2

Twist-3 matrix element d_2

- Integrated over $0.29 < x_{bj} < 0.84$ $d_2 = 0.0106 \pm 0.0012$
- Lattice QCD at $Q^2 = 5$ $d_2 = 0.0085 \pm 0.0035$ QCDSF group , hep-lat/0011091
- SLAC E155 at $\langle Q^2 \rangle = 5$ $d_2 = 0.0032 \pm 0.0017$

RSS Summary

Measured proton/deuteron A_{\parallel} and A_{\perp} .

($\mathbf{Q}^2 \approx 1.3$ and 0.8 < W < 2.0)

Proton analysis complete. Extracted A_1, A_2, g_1, g_2 d_2 .

Compared to MAID model.

Compared to DIS data.

Made a qualitative comparison of g_1 to PDFs.

Positive d_2 measured with 10% error !

<u>To Do:</u>

Deuteron radiative corrections (in progress).

Quantitative duality analysis.

Structure function moments.

Spin Asymmetries on the Nucleon Experiment

E03-109

Basel, F.I.U., Hampton, IHEP Protvino, Kent State, Norfolk, N.C A&T, Rensselaer Polytechnic, St. Norbert, Temple, TJNAF, UVA, William & Mary, Yerevan

Spokesmen Oscar A. Rondon (UVA) Zein-Eddine Meziani (Temple) Seonho Choi (Seoul)

- Proton spin structure function $g_2(x, Q^2)$ and spin Asymmetry $A_1(x, Q^2)$ $2.5 < Q^2 < 6.5 \text{ GeV}^2$ and 0.3 < x < 0.8.
- Study x and Q^2 dependence, twist-3 effects, moments of g_2 and g_1 , comparison with Lattice QCD predictions, test polarized local duality for W > 1.4 GeV.

Experimental Setup

Big Electron Telescope Array (BETA)

3 subsystems

- Lead glass calorimeter
- Gas Cherenkov
- Lucite hodoscope

Target field sweeps low E BG

Characteristics

 $\Delta\Omegapprox 194~{
m msr}$ $\Delta Epprox 5\%/\sqrt{E}$ $\Delta \thetapprox 2^\circ$

1000:1 pion rejection

Expected Results for proton g_2 and A_1

Expected Results x and Q^2 dependence

Semi-Inclusive Spin Asymmetries on the Nucleon Experiment

Argonne, Duke, Florida International, Hampton, Kentucky Maryland, Massachusetts, Rensselaer Polytechnic, Norfolk, ODU Regina, Rutgers, Temple, TJNAF, UVA, William & Mary, Yerevan Physics I.

P. Bosted	D. Day	X. Jiang	M. Jones
(JLab)	(UVA)	(Rutgers)	(JLab)

Proton and deuteron semi-inclusive longitudinal spin asymmetries

- Polarized DIS reactions p(e, e'h) and d(e, e'h) for $h = \pi^{\pm}$, K[±]
- 1.2 < Q^2 <3.1 GeV²
- 0.12 < x < 0.43,</p>

Spin flavor decomposition

• emphasis on NLO spin flavor decomposition to extract Δu_v , Δd_v and $\Delta \overline{u} - \Delta \overline{d}$

J based on measurement of combined asymmetry, $A_{1N}^{\pi^+ - \pi^-}$.

Examine deviation from factorization

• by comparing combined asymmetry, $A_{1N}^{\pi^++\pi^-}$ with the inclusive asymmetry, A_{1N} .

Experiment Set-up

Hadrons detected in HMS at 10.8° and p_{cent} = 2.7 GeV/c

Summary of Hall C spin program

RSS: A_{\parallel} and A_{\perp} in inclusive electron scattering on protons and deuterons. SF and Spin Asymmetries at $Q^2 = 1.3$ GeV² and 0.8 < W < 2.0

SANE: A_{\parallel} and A_{\perp} in inclusive electron scattering on proton with large acceptance detector (BETA)

Extract g_1 and g_2 in range $2.5 < Q^2 < 6.5$ and 0.3 < x < 0.8

Semi-SANE: SIDIS reactions p(e, e'h) and d(e, e'h) for $h = \pi^{\pm}, K^{\pm}$.
1.2 < Q^2 <3.1 GeV², 0.12 < x < 0.43, 0.5 < z < 0.7</p>
Spin flavor decomposition

"Test" of validity of factorization by checking if $A_{1N}^{\pi^++\pi^-}$ equals the inclusive asymmetry, A_{1N} .

Sources of Systematic Error

	$^{15}NH_{3}$	$^{15}ND_{3}$
Nitrogen polarization	<1%	1%
Radiative corrections	2%	3%
Beam Polarization	1.5%	1.5%
Target polarization	2.5%	4%
Dilution factor	3%	3%
Pions, deadtime	1%	1%
Errors from R and F2	3%	3%
Total error	5.5%	6.8%

Compare proton A_{\parallel} and A_{\perp} w/o RC

$$A_1 = \frac{C}{D}(A_{\parallel} - dA_{\perp})$$
$$A_2 = \frac{C}{D}(c'A_{\parallel} - d'A_{\perp})$$

- Kinematic variables $C, c', d, d'(E, E', \theta), D(E, E', \theta, R)(R = \sigma_L / \sigma_T)$
- $d' \approx 1, c' \approx d \leq 1$ (at RSS kinematics)

● g_1, g_2 can be extracted directly from A_{\parallel}, A_{\perp} or A_1, A_2

$$g_{1} = \frac{F_{1}}{1 + \gamma^{2}} (A_{1} + \gamma A_{2})$$

$$g_{2} = \frac{F_{1}}{1 + \gamma^{2}} (\frac{A_{2}}{\gamma} - A_{1}) ; \gamma^{2} = \frac{Q^{2}}{\nu^{2}}$$

• Need $F_1 = F_2(1 + \gamma^2)/2x/(1 + R)$ in the resonance region. Measurement of F2 and R in resonance region