#### Polarized Structure Functions: Proton/Deuteron Measurements in the Resonance Region

Mark K. Jones, Jefferson Lab





#### **Collaboration**

Univ. Basel, Florida International Univ., Hampton Univ., Univ. of Massachusetts, Univ. of Maryland, Mississippi State Univ.,North Carolina A&T Univ., Univ. of N. C. at Wilmington, Norfolk State Univ.,Old Dominion Univ.,S.U. at New Orleans, Univ. of Tel-Aviv, Jefferson Lab, Univ. of Virginia, Virginia P. I. & S.U., Yerevan Physics Institute

Spokesmen: Oscar A. Rondon (Univ. of Virginia) and Mark K. Jones (Jefferson Lab)

Acknowledge the hard work of Paul McKee, Karl Slifer, Shige Tajima, Frank Wesselmann, Junho Yun and Hongguo Zhu

## **Experimental set-up in Hall C**



## **Polarized Target**

Dynamic Nuclear polarized ammonia (NH<sub>3</sub>) and deuterated ammonia (ND<sub>3</sub>)



- Target ladder contained carbon (7mm), two NH<sub>3</sub> ( or ND<sub>3</sub>) cups
- Rotate target can to switch from parallel,  $B_{\parallel}$ , to perpendicular,  $B_{\perp}$ , field.
- Polarization can be flipped by  $180^{\circ}$ . Ran  $\pm$  for equal times.
- Average polarization

|                 | $NH_3$ | $ND_3$ |
|-----------------|--------|--------|
| B <sub>  </sub> | 68%    | 15%    |
| $B_\perp$       | 70%    | 20%    |

Relative systematic error of 4% for ND<sub>3</sub> and 2.5% for NH<sub>3</sub>

## **Extracting Asymmetry**

Raw Asymmetry ,  $A_{raw} = \frac{N^+ - N^-}{N^+ + N^-}$ in which  $N^+$ ,  $N^-$  are the number of counts normalized by the charge and deadtime for opposite beam helicities.

Parallel and perpendicular asymmetries

$$A_{\parallel,\perp} = \frac{1}{C_N f_{rc}} \left(\frac{A_{raw}}{f P_b P_t} - C_D\right) + A_{rc}$$

- f = dilution factor; ratio of rates from polarized nucleons to all nucleons
- $P_b, P_t$  = beam and target polarizations
- $C_N, C_D$  = corrections for <sup>15</sup>N asymmetry (not applied yet)
- *f<sub>rc</sub>*, *A<sub>rc</sub>* = radiative corrections (sofar applied to proton only)
  Use code for polarized scattering in resonances
  (1. Akusevich *et al.*)

#### **Proton Elastic Asymmetry**



### **Dilution factor for elastic peak**



## **Measured proton** $A_{el}$



#### **Comparisons to carbon data**

Use carbon data to test QFS model. Example for parallel field.

Central HMS p = 4.7 GeV/c



Central HMS p = 4.1 GeV/c

1.9

1.8

1.7

## **Packing fractions**

Packing fraction is ratio of  $NH_3$  (or  $ND_3$ ) to  $NH_3$  + He in cup.



#### **Dilution factors**



### **Proton and Deuteron Asymmetries**



No correction for <sup>15</sup>N asymmetry applied Work on radiative correction for deuteron in progress Relative Systematic errors of 6% and 8% for NH<sub>3</sub> and ND<sub>3</sub>

#### **Proton A\_1 and A\_2 versus W**



 $A_{\parallel}$  and  $A_{\perp}$  transformed using Hall C  $F_2$  and R fit (M. E. Christy)

#### **Proton** $A_1$ and $A_2$ versus x



# **Proton** $g_1^p$ and $g_2^p$



## **Compare PDFs to** $g_1$



GRSV, AAC pdfs evolved to  $Q^2 = 1.3$  and have target mass correction. BSB statistical pdfs evolved to  $Q^2 = 1.3$ **Need to do quantitative comparison. In progress** 

### **Higher twist in** *g*<sub>2</sub>



Use measured  $g_1$  to calculate  $g_2^{WW}$ 

#### **Twist-3 matrix element** $d_2$

$$d_2 = \int_0^1 x^2 (2g_1 + 3g_2) dx$$

- Integrated over  $0.29 < x_{bj} < 0.84$   $d_2 = 0.0106 \pm 0.0012$
- Lattice QCD at  $Q^2 = 5$   $d_2 = 0.0085 \pm 0.0035$ QCDSF group , hep-lat/0011091
- SLAC E155 at  $< Q^2 >= 5$  $d_2 = 0.0032 \pm 0.0017$
- 1/Q dependence of twist-3 implies that SLAC d<sub>2</sub> would increase by 2.



## **Summary**

- Measured proton and deuteron  $A_{\parallel}$  and  $A_{\perp}$  at  $\mathbf{Q}^2 \approx 1.3$  and 0.8 < W < 2.0.
- **•** Extracted proton  $A_1, A_2, g_1, g_2$ .
  - MAID predicts  $A_1$  well,  $A_2$  less well
  - MAID predicts  $g_1$  well at  $\Delta$ , badly above.  $g_2$  well !?!
- **Positive**  $d_2$  measured with 10% error !
- Future → Approve experiment at JLab in Hall C to measure proton  $A_{\parallel}$  and  $A_{\perp}$  at 2.5 < Q<sup>2</sup> < 6.5 (O. Rondon, Z. E. Meziani, S. Choi)