Probing Quark-Gluon Interactions with Transverse Polarized Scattering

Oscar A. Rondón
University of Virginia

Quark Confinement and Hadron Structure IX
UC Madrid
August 31, 2010

Polarized Inclusive Scattering: Structure Functions, Twists, Moments

Polarized Inelastic lepton-nucleon Scattering

- The nucleonic component of inclusive inelastic scattering of polarized charged leptonic beams on polarized nucleons is represented by the antisymmetric (spin dependent) part of the hadronic tensor

$$
W_{\mu \nu}^{A}=2 \epsilon_{\mu \nu \lambda \sigma} q^{\lambda}\left\{M S^{\sigma}\left[M \boldsymbol{G}_{1}\left(\nu, Q^{2}\right)+\nu \boldsymbol{G}_{2}\left(\nu, Q^{2}\right)\right]-p^{\sigma} S \cdot q \boldsymbol{G}_{2}\left(\nu, Q^{2}\right)\right\}
$$

- lab frame nucleon's $p=(M, \mathbf{0}), 4$-momentum transfer $q=\left(E-E^{\prime}, \boldsymbol{k}-\boldsymbol{k}^{\prime}\right)$, $Q^{2}=-q^{2}, v=E-E^{\prime}-$ all angles relative to beam
$-\quad$ target spin $S=(0, \boldsymbol{S}), \boldsymbol{S} /|S|=\left(\sin \theta_{\mathrm{N}} \cos \phi_{\mathrm{N}^{\prime}} \sin \theta_{\mathrm{N}} \sin \phi_{\mathrm{N}^{\prime}} \cos \theta_{\mathrm{N}}\right)$
- Two polarized structure functions $\boldsymbol{G}_{1}\left(v, Q^{2}\right)$ and $\boldsymbol{G}_{2}\left(\nu, Q^{2}\right)$
- The beam polarization comes in through the anti-symmetric leptonic tensor, for lepton mass m and spin s

$$
L_{\mu \nu}^{A}=m \epsilon_{\mu \nu \lambda \sigma} s^{\lambda}\left(k-k^{\prime}\right)^{\sigma}
$$

G_{1} and G_{2} in DIS

- \boldsymbol{G}_{1} and \boldsymbol{G}_{2}, along with the unpolarized \boldsymbol{W}_{1} and \boldsymbol{W}_{2}, contain all the information on nucleon structure that can be extracted from inclusive inelastic electromagnetic scattering
- In the high energy regime of DIS \boldsymbol{g}_{1} and \boldsymbol{g}_{2} are expected to scale like \boldsymbol{F}_{1} and \boldsymbol{F}_{2} (up to \log violations)

$$
\begin{array}{rr}
\lim _{Q^{2}, v \rightarrow \infty} M^{2} v G_{1}\left(v, Q^{2}\right)=g_{1}(x) & \lim _{Q^{2}, v \rightarrow \infty} M W_{1}\left(v, Q^{2}\right)=F_{1}(x) \\
\lim _{Q^{2}, v \rightarrow \infty} M v^{2} G_{2}\left(v, Q^{2}\right)=g_{2}(x) & \lim _{Q^{2}, v \rightarrow \infty} v W_{2}\left(v, Q^{2}\right)=F_{2}(x) \\
x=Q^{2} / 2 M v
\end{array}
$$

- In the quark parton model \boldsymbol{g}_{1} and \boldsymbol{F}_{1} are also related to PDF's:

$$
\begin{aligned}
& F_{1}(x)=\frac{1}{2} \sum e_{f}^{2}\left(q_{f}^{\uparrow}(x)+q_{f}^{\downarrow}(x)\right) \\
& g_{1}(x)=\frac{1}{2} \sum e_{f}^{2}\left(q_{f}^{\uparrow}(x)-q_{f}^{\downarrow}(x)\right)
\end{aligned}
$$

Operators and structure functions - I

- The hadronic tensor W is related to the forward Compton amplitude

$$
\text { - } W=1 / 2 \pi \operatorname{Im} T
$$

- Two types of operators, corresponding to two Feynman diagrams, contribute to the Compton amplitude at the same order
- twist-2 operators which correspond to the familiar handbag diagram
- twist-3 operators which correspond to qgq correlations
M. Anselmino et al./Physics Reports 261 (1995) 1-124

Fig. 10.3. DIS interaction involving quark-gluon correlation.

Operators and structure functions - II

- The Operator-Product Expansion (OPE) relates the Cornwall-Norton - CN moments of \boldsymbol{g}_{1} and \boldsymbol{g}_{2} to the twist-2 and twist-3 matrix elements $\boldsymbol{a}_{\mathrm{N}}$ and $\boldsymbol{d}_{\mathrm{N}}$

$$
\begin{aligned}
& \Gamma_{1}^{(N)}=\int_{0}^{1} x^{N} g_{1}\left(x, Q^{2}\right) d x=\frac{1}{2} \boldsymbol{a}_{N}+O\left(M^{2} / Q^{2}\right), \\
& \Gamma_{2}^{(N)}=\int_{0}^{1} x^{N} g_{2}\left(x, Q^{2}\right) d x=\frac{N}{2(N+1)}\left(\boldsymbol{d}_{N}-\boldsymbol{a}_{N}\right)+O\left(M^{2} / Q^{2}\right), \quad N=2,4, \ldots, \ldots
\end{aligned}
$$

- twist-3 \boldsymbol{d}_{2} - mean color-magnetic field along spin - from second moments
- At low-moderate Q^{2} Nachtmann, not CN, moments are needed to obtain dynamic twist-3 matrix elements free of target mass effects to $O\left(M^{8} / Q^{8}\right)$

$$
\begin{array}{r}
\boldsymbol{d}_{2}^{\text {Nacht. }}\left(\boldsymbol{Q}^{2}\right)=\int_{0}^{1} d x \xi^{2}\left(2 \frac{\xi}{x} g_{1}+3\left(1-\frac{\xi^{2} M^{2}}{2 Q^{2}}\right) g_{2}\right) \Rightarrow_{Q^{2} \rightarrow \infty} \int_{0}^{1} d x x^{2}\left(2 g_{1}+3 g_{2}\right) \\
\xi=2 x /\left(1+\sqrt{\left[1+(2 x M)^{2} / Q^{2}\right]}\right)
\end{array}
$$

Spin Structure Function \boldsymbol{g}_{2}

- No simple interpretation for \boldsymbol{g}_{2} in the parton model as for leading twist \boldsymbol{g}_{1}
- Measured \boldsymbol{g}_{2} can be decomposed into \boldsymbol{g}_{1} dependent part (twist-2 Wandzura-Wilczek $\boldsymbol{g}_{2}{ }^{\mathrm{ww}}$) and twist-3 pieces

$$
\begin{gathered}
g_{2}\left(x, Q^{2}\right)=g_{2}^{w W}\left(x, Q^{2}\right)+\bar{g}_{2}\left(x, Q^{2}\right) \\
=-g_{1}\left(x, Q^{2}\right)+\int_{x}^{1} g_{1}\left(y, Q^{2}\right) \frac{d y}{y}-\int_{x}^{1} \frac{\partial}{\partial y}\left[\frac{m}{M} h_{T}\left(y, Q^{2}\right)+\xi\left(y, Q^{2}\right)\right] \frac{d y}{y}
\end{gathered}
$$

- $\boldsymbol{h}_{\mathrm{T}}$ is twist-2 chiral odd transversity; $\boldsymbol{\xi}$ represents q - g correlations (twist-3)
- There is no OPE rule for first moment $\Gamma_{2}^{(0)}$

Spin Dependent Scattering: a Window on twist-3 and quark-gluon Interactions

- To separate \boldsymbol{G}_{1} and \boldsymbol{G}_{2} measure cross section differences for opposite beam helicities with target spins parallel and transverse to the beam

$$
\begin{aligned}
\Delta \sigma\left(\theta, \theta_{N}, \phi\right)= & \frac{4 \alpha^{2} E^{\prime}}{Q^{2} E}\left[\left(E \cos \theta_{N}+E^{\prime} \cos \alpha\right) M \boldsymbol{G}_{1}+2 E E^{\prime}\left(\cos \alpha-\cos \theta_{N}\right) \boldsymbol{G}_{2}\right] \\
& \cos \alpha=\sin \theta_{N} \sin \theta \cos \phi+\cos \theta_{N} \cos \theta, \quad(\theta, \phi: \text { final lepton angles })
\end{aligned}
$$

- parallel spins: $\cos \alpha=\cos \theta \rightarrow G_{1}$ dominates

$$
\frac{d^{2} \sigma^{(\uparrow \downarrow)}}{d \Omega d E^{\prime}}-\frac{d^{2} \sigma^{(\downarrow \downarrow)}}{d \Omega d E^{\prime}}=\frac{4 \alpha^{2} E^{\prime}}{Q^{2} E}\left[\left(E+E^{\prime} \cos \theta\right) M \boldsymbol{G}_{1}\left(\nu, Q^{2}\right)-Q^{2} \boldsymbol{G}_{2}\left(\nu, \boldsymbol{Q}^{2}\right)\right]
$$

Spin Dependent Scattering: a Window on twist-3 and quark-gluon Interactions

- To separate $\boldsymbol{G}_{\mathbf{1}}$ and $\boldsymbol{G}_{\mathbf{2}}$ measure cross section differences for opposite beam helicities with target spins parallel and transverse to the beam

$$
\begin{array}{r}
\Delta \sigma\left(\theta, \theta_{N}, \phi\right)=\frac{4 \alpha^{2} E^{\prime}}{Q^{2} E}\left[\left(E \cos \theta_{N}+E^{\prime} \cos \alpha\right) M \boldsymbol{G}_{1}+2 E E^{\prime}\left(\cos \alpha-\cos \theta_{N}\right) \boldsymbol{G}_{2}\right] \\
\\
\cos \alpha=\sin \theta_{N} \sin \theta \cos \phi+\cos \theta_{N} \cos \theta, \quad(\theta, \phi: \text { final lepton angles })
\end{array}
$$

- transverse spins: $\cos \alpha=\sin \theta \cos \phi \rightarrow \boldsymbol{G}_{1}$ and \boldsymbol{G}_{2} contribute

$$
\frac{d^{2} \sigma^{(\uparrow \rightarrow)}}{d \Omega d E^{\prime}}-\frac{d^{2} \sigma^{(\downarrow \rightarrow)}}{d \Omega d E^{\prime}}=\frac{4 \alpha^{2} E^{\prime}}{Q^{2} E} E^{\prime} \sin \theta \cos \phi\left[M \boldsymbol{G}_{1}\left(\nu, Q^{2}\right)+2 E \boldsymbol{G}_{2}\left(\nu, \boldsymbol{Q}^{2}\right)\right]
$$

- model independent separation of g_{1} and g_{2}
- direct access to twist- 3 via $\boldsymbol{g}_{2}:$ interacting $q g$ is first step to confinement
- "Unique feature of spin-dependent scattering" (R. Jaffe)

Experiment

RSS - Resonances Spin Structure

Precision Measurement of the Nucleon Spin Structure Functions in the Region of the Nucleon Resonances

TJNAF E01-006
U. Basel, Florida International U., Hampton U., U. Massachusetts, U. Maryland, Mississippi S. U., North Carolina A\&T U., U. of N. C. at Wilmington, Norfolk S. U., Old Dominion U., S.U. New Orleans, U. of Tel-Aviv, TJNAF, U. of Virginia, Virginia P. I. \& S.U., Yerevan Physics I.

Spokesmen: Oscar A. Rondon (U. of Virginia) and Mark K. Jones (Jefferson Lab)

- Measure proton and deuteron spin asymmetries $\mathbf{A}_{1}\left(W, Q^{2}\right)$ and $\mathbf{A}_{2}\left(W, Q^{2}\right)$ at $Q^{2} \approx 1.3 \mathrm{GeV}^{2}$ and $0.8 \leq W \leq 1.91 \mathrm{GeV}$
- Goals: study W dependence of asymmetries, onset of polarized local duality, and twist-3 effects, using inclusive polarized scattering

RSS Technique

- CEBAF polarized electron beam
- 5.755 GeV - 66 to 71% polarization
- 1 cm radius raster, $\mathrm{I}=85-150 \mathrm{nA}$
- Target: polarized ammonia $\mathrm{NH}_{3}, \mathrm{ND}_{3}$.
- Luminosity $\sim 10^{35} \mathrm{~s}^{-1} \mathrm{~cm}^{-2}$
- In-beam polarization: $70 \%(p), 20 \%(d)$
- Jefferson Lab Hall C High Momentum Spectrometer (HMS)
- Kinematics
- Final state mass $0.8 \leq \mathrm{W} \leq 1.91 \mathrm{GeV}$
$-\left\langle\mathrm{Q}^{2}\right\rangle=1.28 \mathrm{GeV}^{2} ; \Delta Q^{2}= \pm 0.21 \mathrm{GeV}^{2}$

$R S S$ Technique

- CEBAF polarized electron beam
- 5.755 GeV - 66 to 71% polarization
- 1 cm radius raster, $\mathrm{I}=85-150 \mathrm{nA}$
- Target: polarized ammonia $\mathrm{NH}_{3}, \mathrm{ND}_{3}$.
- Luminosity $\sim 10^{35} \mathrm{~s}^{-1} \mathrm{~cm}^{-2}$
- In-beam polarization: $70 \%(p), 20 \%$ (d)
- Jefferson Lab Hall C High Momentum Spectrometer (HMS)
- Kinematics
- Final state mass $0.8 \leq \mathrm{W} \leq 1.91 \mathrm{GeV}$
- $\left\langle\mathrm{Q}^{2}\right\rangle=1.28 \mathrm{GeV}^{2} ; \Delta Q^{2}= \pm 0.21 \mathrm{GeV}^{2}$

Measured asymmetries $\mathrm{A}_{\|}, \mathrm{A}_{\perp}$

$$
\begin{aligned}
A_{\|, \perp} & =\left(\frac{\epsilon}{f P_{b} P_{t} C_{N}}+C_{D}\right)+A_{r c} \\
\epsilon & =\left(N^{-}-N^{+}\right) /\left(N^{-}+N^{+}\right)
\end{aligned}
$$

- $\boldsymbol{N}^{-}, \boldsymbol{N}^{+}=$charge normalized, dead time and pion corrected yields for $+/$ - beam helicities
- $\boldsymbol{P}_{\mathbf{b}} \boldsymbol{P}_{\mathbf{t}}=$ beam, target polarizations
- $\boldsymbol{f}=$ dilution factor
- $\boldsymbol{C}_{\mathrm{N}}, \boldsymbol{C}_{\mathrm{D}}=$ polarized nucleons in ${ }^{15,14} \mathrm{~N}$
- proton $\boldsymbol{C}_{\mathrm{D}}=0$, deuteron $\boldsymbol{C}_{\mathrm{N}} \simeq 1$
- $\boldsymbol{A}_{\mathrm{rc}}=$ radiative correction

Spin Asymmetries and Structure Functions

- Combine $\mathbf{A}_{\|}, \mathbf{A}_{\perp}$ to get virtual Compton absorption asymmetries

$$
\begin{aligned}
& A_{1}=\frac{1}{\left(E+E^{\prime}\right) D^{\prime}}\left(\left(E-E^{\prime} \cos \theta\right) A_{\|}-\frac{E^{\prime} \sin \theta}{\cos \phi} A_{\perp}\right) \\
& A_{2}=\quad \frac{\sqrt{Q^{2}}}{2 E D^{\prime}}\left(A_{\|}+\frac{E-E^{\prime} \cos \theta}{E^{\prime} \sin \theta \cos \phi} A_{\perp}\right)
\end{aligned}
$$

- Get $\boldsymbol{g}_{1}, \boldsymbol{g}_{2}$ from $\boldsymbol{A}_{1}, \boldsymbol{A}_{2}$ and F_{1}

$$
\begin{aligned}
& g_{1}=\frac{F_{1}}{1+\gamma^{2}}\left(A_{1}+\gamma A_{2}\right) \\
& g_{2}=\frac{F_{1}}{1+\gamma^{2}}\left(\frac{A_{2}}{\gamma}-A_{1}\right) ; \quad \gamma=\frac{2 x M}{\sqrt{Q^{2}}}
\end{aligned}
$$

- Minimal model dependence
- $D^{\prime}\left(E, E^{\prime}, \theta, R\right)$ is function only of kinematics and $\boldsymbol{R}=\sigma_{\mathrm{L}} / \sigma_{\mathrm{T}}$
- $\boldsymbol{R}, \boldsymbol{F}_{1}$: proton fit to Hall C e-p data (E. Christy); deuteron fit to world data (P. Bosted)

Results

$R S S$ Spin Structure Functions $\boldsymbol{g}_{\mathbf{1}}{ }^{\mathbf{p}, \mathbf{d}}$

F. Wesselmann et al.,

Phys.Rev.Lett. 98, 132003 (2007) (including spin asymmetries $\mathbf{A}_{1}, \mathbf{A}_{2}$)

In preparation

\boldsymbol{g}_{2} Spin Structure Functions

- First world data for $g_{2}^{\mathrm{p}, \mathrm{d}}$ in the resonances
- $\boldsymbol{g}_{2}{ }^{\mathrm{wW}}$ computed using RSS fit to g_{1} point by point
- $\mathrm{HT} \bar{g}_{2}(\operatorname{low} x) \cong 0$ within errors
$-\bar{g}_{2}\left(x<x_{\text {min }}=0.317\right)=0 \pm \delta \bar{g}_{2}$
- systematic error $\delta \bar{g}_{2}$ estimated by extrapolating fit errors $\delta \bar{g}_{2}\left(x_{\text {min }}\right)$ to $x=0$

Moments of \boldsymbol{g}_{1} and \boldsymbol{g}_{2}

- Split SSF's in three regions:
- unmeasured $x<x_{\text {min }}(=0.317)$; suppresed by x^{2} weight (possible divergence $g_{2}(x \rightarrow 0)$ does not affect $3^{\text {rd }}$ moment)
- measured

$$
x_{\min }<x<x_{\text {inel.|.tresthold }}(=0.82)
$$

- elastic (quasi-el. for deuteron)
- $\left\langle Q^{2}\right\rangle=1.28 \mathrm{GeV}^{2}$
- Calculated CN and Nachtmann moments in each region
- Errors are total (quadratic sums)
- Neutron moments approximated as D-state corrected deuteron minus proton (good to $O(1 \%)$)

$$
\begin{aligned}
& \Gamma^{n}=\frac{1}{\gamma_{\mathrm{D}}} \Gamma^{d}-\Gamma^{p} \\
& \gamma_{\mathrm{D}}=0.926(\mathrm{D} \text {-state })
\end{aligned}
$$

$\boldsymbol{d}_{2}:$ Third Moments

x ranges	Proton	Deuteron	Neutron
Measured			
CN	0.0057 ± 0.0013	0.0082 ± 0.0019	0.0015 ± 0.0012
Nachtmann	0.0037 ± 0.0010	0.0048 ± 0.0015	0.0031 ± 0.0019
$0<x<1$			
CN	0.0364 ± 0.0028	0.0170 ± 0.0035	0.0082 ± 0.0019
Nachtmann	$\mathbf{0 . 0 1 0 4} \pm \mathbf{0 . 0 0 1 4}$	$\mathbf{0 . 0 0 2 7} \pm \mathbf{0 . 0 0 1 9}$	$\mathbf{0 . 0 0 4 8} \pm \mathbf{0 . 0 0 1 5}$

- Observe twist-3 to better than 6 sigmas for proton, 3 sigmas for neutron
- Large contribution of kinematic higher twists in CN (target mass effect):
- ratios Nachtmann/CN <1
- Detailed, extensive tables for $\Gamma_{1}, \Gamma_{2}^{(3)}$ for p, d, n and non-singlet (Bjorken S.R.) to appear in PRL Sep. 3 issue (arXiv:0812.00131, K. Slifer, O. R., et al.)

Twist-3 and the Burkhardt-Cottingham Sum Rule

- BC sum rule $\Gamma_{2}=0=\Gamma_{2}^{\mathrm{ww}}+\bar{\Gamma}_{2}+\Gamma_{2}(\mathrm{el})$
- dispersion relation not from OPE, free from gluon radiation, TMC's
- twist-2 part $\Gamma_{2}^{\mathrm{WW}} \equiv 0$
- BC is higher-twist + elastic

$$
\begin{aligned}
& -\Gamma_{2}=\bar{\Gamma}_{2}(\mathrm{unm} .)+\bar{\Gamma}_{2}(\text { measur. })+\Gamma_{2}(\mathrm{el}) \\
& -\Delta \bar{\Gamma}_{2}=\Gamma_{2}-\bar{\Gamma}_{2}(\mathrm{u})=\bar{\Gamma}_{2}(\mathrm{~m})+\Gamma_{2}(\mathrm{el})
\end{aligned}
$$

- $\Delta \bar{\Gamma}_{2} \neq 0$: assuming BC , implies significant HT at $x<x_{\text {min }}$, $\underline{\text { or }}$, if twist- $3 \sim 0$ at low x,
- BC fails: isospin dependence? nuclear effects?

Outlook for Transverse Polarized Scattering: Near Term

Spin Asymmetries of the Nucleon Experiment - SANE (TJNAF E07-003)

PHYSICS: proton spin structures $\boldsymbol{g}_{2}\left(x, Q^{2}\right)$ and $\mathbf{A}_{\mathbf{1}}\left(x, Q^{2}\right)$ for $2.5 \leq \boldsymbol{Q}^{2} \leq 6.5 \mathrm{GeV}^{2}, 0.3 \leq \boldsymbol{x}_{\mathrm{Bj}} \leq 0.8$ Measure inclusive double polarization nearorthogonal asymmetries to:

- access quark-gluon correlations using LO twist3 effects (\boldsymbol{d}_{2} quark matrix element)
- compare with Lattice QCD, QCD sum rules, bag model, chiral quarks
- test nucleon models (x dependence) and Q^{2} evolution
- explore $\mathbf{A}_{1}(x \rightarrow 1)$; test polarized local duality

METHOD:

- CEBAF 4.7 \& 5.9 GeV polarized electrons
- Solid polarized ammonia target
- BETA, novel large solid angle (. 2 sr) electron telescope:
- calorimeter + gas Cherenkov + tracking

Took data in Hall C Jan-March 2009

Spin Asymmetries of the Nucleon Experiment - SANE (TJNAF E07-003)

PHYSICS: proton spin structures $\boldsymbol{g}_{2}\left(x, Q^{2}\right)$ and $\mathbf{A}_{\mathbf{1}}\left(x, Q^{2}\right)$ for $2.5 \leq \boldsymbol{Q}^{2} \leq 6.5 \mathrm{GeV}^{2}, 0.3 \leq \boldsymbol{x}_{\mathrm{Bj}} \leq 0.8$ Measure inclusive double polarization nearorthogonal asymmetries to:

- access quark-gluon correlations using LO twist3 effects (\boldsymbol{d}_{2} quark matrix element)
- compare with Lattice QCD, QCD sum rules, bag model, chiral quarks
- test nucleon models (x dependence) and Q^{2} evolution
- explore $\mathbf{A}_{1}(x \rightarrow 1)$; test polarized local duality

METHOD:

- CEBAF 4.7 \& 5.9 GeV polarized electrons
- Solid polarized ammonia target
- BETA, novel large solid angle (. 2 sr) electron telescope:
- calorimeter + gas Cherenkov + tracking

Took data in Hall C Jan-March 2009

Big Electron Telescope Array - BETA

- BigCal lead glass calorimeter: main detector used in GEp-III.
- Tracking Lucite hodoscope
- Gas Cherenkov: pion rejection
- Tracking fiber-on-scintillator forward hodoscope
- BETA specs
- Effective solid angle $=0.194 \mathrm{sr}$
- Energy resolution $9 \% / \sqrt{ } E(\mathrm{GeV})$
- 1000:1 pion rejection
- angular resolution $\sim 1 \mathrm{mr}$
- Target field sweeps low E background
- $180 \mathrm{MeV} / \mathrm{c}$ cutoff

SANE Layout

$\operatorname{BETA}\left(40^{\circ}\right)$
BigCal
Lucite Hodoscope
Gas Cherenkov
Forward Hodoscope

FIMS ($15^{\circ}-42^{\circ}$) calibrations, backgd.

Polarized Target
Beam Line

Sample of SANE Expected Results

World data on $\mathrm{A}_{\|}, \mathrm{A}_{\perp}$ and SANE kinematics

SANE Expected Results (Ia)

SANE Expected Results (II)

- \boldsymbol{x} dependence at constant \boldsymbol{Q}^{2} and \boldsymbol{Q}^{2} dependence at fixed \boldsymbol{x} (illustrative binning only)
- data are concentrated in the region most sensitive to $x^{2} g_{2,1}$
- (estimates based on 75% beam and target polarization, and 85 nA beam current)

SANE Expected Results (III)

- Constrain extrapolations of $\mathbf{A}_{1}{ }^{\mathbf{p}}$ to $x=1$ within $+/-0.1$ (using duality)
- Both $\mathbf{A}_{\|}$and \mathbf{A}_{\perp} are required to get accurate, model-free $\mathbf{A}_{1}: \mathbf{A}_{2}>0$
- SANE's measured \mathbf{A}_{2} will contribute to improve world's \mathbf{A}_{1} data set

SANE Beam Time

	Energy GeV	$\boldsymbol{\theta}_{\boldsymbol{N}}$	Time (Proposal FOM h)			
Proposal	Actual	fraction				
Calibration	2.4	off, 0,180	47	25	53%	
Production	4.7	180	70	31	44%	
	4.7	80	130	103	80%	
	5.9	80	200	151	75%	
Total production	5.9	180	100	40	40%	

SANE Collaboration (E-07-003)
P. Solvignon

Argonne National Laboratory, Argonne, IL

E. Brash, P. Carter, A. Puckett, M. Veille ux

Christopher Newport University, Newport News, VA
W. Boeglin, P. Markowitz, J. Reinhold

Florida International University, Miami, FL
I. Albayrak, O. Ates, C. Chen, E. Christy, C. Keppel, M. Kohl, Y. Li, A. Liyanage, P. Monaghan, X. Qiu,
L. Tang, T. Walton, Z. Ye, L. Zhu

Hampton University, Hampton, VA
P. Bosted, J.-P. Chen, S. Covrig, W. Deconink, A. Deur,
C. Ellis, R. Ent, D. Gaskell, J. Gomez, D. Higinbotham,
T. Horn, M. Jones, D. Mack, G. Smith, S. Wood

Thomas Jefferson National Accelerator Facility, Newport News, VA
J. Dunne, D. Dutta, A. Narayan, L. Ndukum, Nuruzzaman

Mississippi State University, Jackson. MI
A. Ahmidouch, S. Danagoulian, B. Davis, Martin Jones

North Carolina A\&M State University, Greensboro, NC
M. Khandaker

Norfolk State University, Norfolk, VA
A. Daniel, P.M. King, J. Roche

Ohio University, Athens, OH
A.M. Davidenko, Y.M. Goncharenko, V.I. Kravtsov,
Y.M. Melnik, V.V. Mochalov, L. Soloviev, A. Vasiliev

Institute for High Energy Physics, Protvino, Moscow Region, Russia

[^0]V. Kubarovsky

Rensselaer Polytechnic Institute, Troy, NY
L. El Fassi, R. Gilman

Rutgers University, New Brunswick, NJ
S. Choi, H-K. Kang, H. Kang, Y. Kim

Seoul National University, Seoul, Korea
M. Elaasar

State University at New Orleans, LA
W. Armstrong, D. Flay, Z.-E. Meziani, M. Posik, B. Sawatzky, H. Yao

Temple University, Philadelphia, PA
O. Hashimoto, D. Kawama, T. Maruta,
S. Nue Nakamura, G. Toshiyuki

Tohoku U., Tohoku, Japan
K. Slifer

University of New Hampshire
H. Baghdasaryan, M. Bychkov, D. Crabb, D. Day, E. Frlez, O. Geagla, N. Kalantarians, K. Kovacs, N. Liyanage,
V. Mamyan, J. Maxwell, J. Mulholland, D. Pocanic,
S. Riordan, O. Rondon, M. Shabestari

University of Virginia, Charlottesville, VA
L. Pentchev

College of William and Mary, Williamsburg, VA
F. Wesselmann

Xavier Unniversity, New Orleans, LA
A. Asaturyan, H. Mkrtchyan, V. Tadevosyan Yerevan Physics Institute, Yerevan, Armenia

Ph.D. student, M.S. Student, Student

Big Electron Telescope Array - BETA

- BigCal lead glass calorimeter: main detector used in GEp-III.
- Tracking Lucite hodoscope
- Gas Cherenkov: pion rejection
- Tracking fiber-on-scintillator forward hodoscope
- BETA's characteristics
- Effective solid angle $=0.194 \mathrm{sr}$
- Energy resolution $8 \% / \sqrt{ } E(\mathrm{GeV})$
- 1000:1 pion rejection
- vertex resolution ~ 5 mm
- angular resolution $\sim 1 \mathrm{mr}$
- Target field sweeps low E background

Polarized Target

- Dynamic Nuclear Polarized ammonia $\left(\mathrm{NH}_{3},<\mathrm{P}>\sim 70 \%\right.$ in beam) and deuterated ammonia $\left(\mathrm{ND}_{3},<\mathrm{P}>20-30 \%\right)$
- Wide range of field orientations
- Target used in six experiments before SANE:
- SLAC E143, E155, E155x $\left(g_{2}\right)$
- JLab GEn98, GEn01, RSS
- Damaged coils successfully repaired in Nov. '08 by JLab staff with Oxford Inst. help
- Down but not out.

RSS Proton Spin Asymmetries

Fit \mathbf{A}_{1} and \mathbf{A}_{2} independently

- Four Breit-Wigner resonance shapes plus DIS background
- Reduced $X^{2}=1.2-1.4$ for 12 d.o.f.

$R S S$ Deuteron Spin Asymmetries

- Fit deuteron \mathbf{A}_{1} with three B-W resonances plus linear DIS
- Fit deuteron \mathbf{A}_{2} with constant: $\mathbf{A}_{\mathbf{2}}=0.083+/-0.017$

Nachtmann moments and quark matrix elements

- Matrix elements representing interactions (higher twists) between quarks and gluons can be expanded in terms of Nachtmann moments
- Free of target mass effects to $O\left(M^{8} / Q^{8}\right)$: dynamic higher twists can be extracted
- Both g_{1} and g_{2} SSF's are needed: transverse asymmetry data (e.g. RSS, SANE)
- Nachtmann moments reduce to conventional Cornwall-Norton (C-N) at high Q^{2}
- Required at low momentum transfers: $Q^{2}<\sim 5 \mathrm{GeV}^{2}$ and for the higher moments dominated by high x contributions: \boldsymbol{d}_{2} (twist-3), \boldsymbol{a}_{2} (twist-2)

$$
\begin{array}{r}
\boldsymbol{d}_{2}^{\text {Nacht. }}\left(\boldsymbol{Q}^{2}\right)=\int_{0}^{1} d x \xi^{2}\left(2 \frac{\xi}{x} g_{1}+3\left(1-\frac{\xi^{2} M^{2}}{2 Q^{2}}\right) g_{2}\right) \Rightarrow_{Q^{2} \rightarrow \infty} \int_{0}^{1} d x x^{2}\left(2 g_{1}+3 g_{2}\right) \\
\boldsymbol{a}_{2}^{\text {Nacht. }}\left(\boldsymbol{Q}^{2}\right)=2 \int_{0}^{1} d x\left(\frac{\xi^{3}}{x}\left[1-\frac{9}{25} \frac{\xi^{2} M^{2}}{Q^{2}}\right] g_{1}-\frac{12}{5} \frac{x \xi M^{2}}{Q^{2}} g_{2}\right) \Rightarrow_{Q^{2} \rightarrow \infty} 2 \int_{0}^{1} d x x^{2} g_{1} \\
\xi=2 x /\left\{1+\sqrt{\left[1+(2 x M)^{2} / Q^{2}\right]}\right\}
\end{array}
$$

Twist-3 operators

- The number of twist-3 operators increases with the order of the moment
- $\boldsymbol{d}_{\mathbf{n}}$ notation is shorthand for $\tilde{d}_{n}=\sum_{i} d_{i}^{n}\left(\mu^{2}\right) E_{i, 3}^{n}\left(Q^{2} / \mu^{2}, \alpha_{s}\left(\mu^{2}\right)\right)$
$-d_{\mathrm{i}}^{\mathrm{n}}$ are the matrix elements, i is the spin index, n is the moment order
- $E_{\mathrm{i}, 3}{ }^{\mathrm{n}}$ are twist-3 Wilson coefficients
- There is only one $d_{1}{ }^{2}$, the one usually labeled \boldsymbol{d}_{2}
- There are three $d_{\mathrm{i}=1,2,3}^{4}$ operators associated with the fifth moment
- with precise data are available over a wide range of Q^{2} the evolution equations for the 5 th. moments could be solved to extract these higher spin twist-3 matrix elements (Ji and Chou, PRD 42, 3637 (1990))
- 5th. moment dominated by high x data: Nachtmann moments required

Twist-2 and Twist-4

- TOP:
- Ratio of Nachtmann to CN moments of twist-2 \boldsymbol{a}_{2} matrix element: proton and deuteron sensitive to kinematic twists
- BOTTOM
- Difference between the extracted values of the twist- $4 f_{2}$ matrix element using Nachtmann vs CN moments: twist-4 is insensitive to target mass
- (Y.B. Dong, Phys.Rev.C78:028201,2008)

[^0]: C. Butuceanu, G. Huber

 University of Regina, Regina, SK

