Nucleon Resonances Spin Structure -RSS: Experiment 01-006 at Jefferson Lab

Oscar A. Rondón
University of Virginia

PANIC05 Santa Fe
October 2005

$\mathrm{A}_{\|}$and A_{\perp} data on protons and deuterons

- Spin Structure \boldsymbol{g}_{1} and \boldsymbol{g}_{2} obtained from $\mathrm{A}_{\|}$and A_{\perp}

$$
\mathrm{A}_{\|}=\frac{\sigma^{(\uparrow \downarrow)}-\sigma^{(\downarrow \downarrow)}}{\left.\sigma^{(\uparrow \downarrow)}+\sigma^{(\downarrow \downarrow}\right)}, \quad \mathrm{A}_{\perp}=\frac{\sigma^{(\uparrow \rightarrow)}-\sigma^{(\downarrow-)}}{\sigma^{(\uparrow \rightarrow)}+\sigma^{(\downarrow-)}}
$$

- Few A_{\perp} data for $\mathrm{W}<2 \mathrm{GeV}$
- JLab E01-006 (RSS) first complete measurement on protons and deuterons in the resonances

Central kinematics of world's p, d data
($Q^{2}<10 \mathrm{GeV}^{2}$; upper Q^{2} limit for Hall B)

JLab E01-006: Resonances Spin Structure

Precision Measurement of the Nucleon Spin Structure Functions in the Region of the Nucleon Resonances
U. Basel, Florida International U., Hampton U., U. Massachusetts, U. Maryland, Mississippi S. U., North Carolina A\&T U., U. of N. C. at Wilmington, Norfolk S. U., Old Dominion U., S.U. New Orleans, U. of Tel-Aviv, TJNAF, U. of Virginia, Virginia P. I. \& S.U., Yerevan Physics I.

Spokesmen: Oscar A. Rondon (U. of Virginia) and Mark K. Jones (Jefferson Lab)

- Measure proton and deuteron spin asymmetries $\mathbf{A}_{1}\left(W, Q^{2}\right)$ and $\mathbf{A}_{2}\left(W, Q^{2}\right)$ at four-momentum transfer $Q^{2} \approx 1.3 \mathrm{GeV}^{2}$ and invariant mass $0.8 \leq W \leq 2 \mathrm{GeV}$
- Study W dependence, onset of polarized local duality, twist-3 effects, using inclusive polarized scattering

$R S S$ technique

- Equipment: TJNAF Hall C
- CEBAF polarized electron beam
- 2 cm diameter raster at target
- $\mathrm{I}=85-150 \mathrm{nA}$
- Target: polarized ammonia $\mathrm{NH}_{3}, \mathrm{ND}_{3}$.
- Luminosity $\sim 10^{35} \mathrm{~s}^{-1} \mathrm{~cm}^{-2}$
- HMS electron detector
- Data run: Jan.-Feb. 2002
- 160 M proton,
- 350 M deuteron triggers

RSS kinematics

- Beam energy 5.755 GeV
- HMS angle 13.15°
- HMS central momenta:
- $4.71 \mathrm{GeV} / \mathrm{c}$
- $4.08 \mathrm{GeV} / \mathrm{c}$
- Final state mass range:
$-0.8 \mathrm{GeV} \leq W \leq 2.0 \mathrm{GeV}$
- $\left\langle Q^{2}\right\rangle=1.3[\mathrm{GeV} / \mathrm{c}]^{2}$

Measured asymmetries $\mathrm{A}_{\|}, \mathrm{A}_{\perp}$

$$
\begin{aligned}
A_{\|, \perp} & =\left(\frac{\epsilon}{f P_{b} P_{t} C_{N}}+C_{D}\right)+A_{\mathrm{rc}} \\
\epsilon & =\left(\boldsymbol{N}^{-}-\boldsymbol{N}^{+}\right) /\left(\boldsymbol{N}^{-}+\boldsymbol{N}^{+}\right)
\end{aligned}
$$

- $\boldsymbol{N}^{-}, \boldsymbol{N}^{+}=$charge normalized, dead time and pion corrected yields for +/- beam helicities
- $P_{b^{\prime}} P_{t}=$ beam, target polarizations
- $f=$ dilution factor
- $C_{N}, C_{D}=$ corrections for ${ }^{15,14} \mathrm{~N}$
proton $C_{\mathrm{D}}=0$, deuteron $C_{\mathrm{N}} \simeq 1$
- $f_{\mathrm{rc}}, A_{\mathrm{rc}}=$ radiative corrections

Measured asymmetries $\mathrm{A}_{\|}, \mathrm{A}_{\perp}$

$$
\begin{aligned}
A_{\|, \perp} & =\left(\frac{\epsilon}{f \boldsymbol{P}_{\boldsymbol{b}} \boldsymbol{P}_{\boldsymbol{t}} C_{N}}+C_{D}\right)+A_{\mathrm{rc}} \\
\epsilon & =\left(N^{-}-N^{+}\right) /\left(N^{-}+N^{+}\right)
\end{aligned}
$$

- $N^{-}, N^{+}=$charge normalized, dead time and pion corrected yields for +/- beam helicities
- $\boldsymbol{P}_{\mathbf{b}}, \boldsymbol{P}_{\mathbf{t}}=$ beam, target polarizations
- $f=$ dilution factor
- $C_{N}, C_{D}=$ corrections for ${ }^{15,14} \mathrm{~N}$
proton $C_{\mathrm{D}}=0$, deuteron $C_{\mathrm{N}} \simeq 1$
- $A_{\text {r }}=$ radiative correction

Measured asymmetries $\mathrm{A}_{\|}, \mathrm{A}_{\perp}$

$$
\begin{aligned}
A_{\|, \perp} & =\left(\frac{\epsilon}{\boldsymbol{f} P_{b} P_{t} C_{N}}+C_{D}\right)+A_{\mathrm{rc}} \\
\epsilon & =\left(N^{-}-N^{+}\right) /\left(N^{-}+N^{+}\right)
\end{aligned}
$$

- $N^{-}, N^{+}=$charge normalized, dead time and pion corrected yields for +/- beam helicities
- $P_{b}, P_{t}=$ beam, target polarizations
- $\boldsymbol{f}=$ dilution from N, He and others - $C_{N}, C_{D}=$ corrections for ${ }^{15,14} \mathrm{~N}$
proton $C_{\mathrm{D}}=0$, deuteron $C_{\mathrm{N}} \simeq 1$ - $A_{\mathrm{rc}}=$ radiative correction

Measured asymmetries $\mathrm{A}_{\|}, \mathrm{A}_{\perp}$

$$
\begin{aligned}
A_{\|, \perp} & =\left(\frac{\epsilon}{\boldsymbol{f} P_{b} P_{t} C_{N}}+C_{D}\right)+A_{\mathrm{rc}} \\
\epsilon & =\left(N^{-}-N^{+}\right) /\left(N^{-}+N^{+}\right)
\end{aligned}
$$

- $N^{-}, N^{+}=$charge normalized, dead time and pion corrected yields for +/- beam helicities
- $P_{b}, P_{t}=$ beam, target polarizations
- $\boldsymbol{f}=$ dilution factor

proton $C_{\mathrm{D}}=0$, deuteron $C_{\mathrm{N}} \simeq 1$
- $f=$ fraction of rate from polarized $\mathrm{H},{ }^{2} \mathrm{H}$
- Monte Carlo radiated rates
- Effective ammonia thickness (packing fraction) is cell specific - 8 cells total
- obtained from data-MC comparison
- packing fraction range: 0.52-0.61

Proton parallel top
" bottom
Deuteron parallel top " bottom perp bottom

Measured asymmetries $\mathrm{A}_{\|}, \mathrm{A}_{\perp}$

$$
\begin{aligned}
A_{\|, \perp} & =\left(\frac{\epsilon}{f P_{b} P_{t} \boldsymbol{C}_{\boldsymbol{N}}}+\boldsymbol{C}_{\boldsymbol{D}}\right)+A_{\mathrm{rc}} \\
\epsilon & =\left(N^{-}-N^{+}\right) /\left(N^{-}+N^{+}\right)
\end{aligned}
$$

- $N^{-}, N^{+}=$charge normalized, dead time and pion corrected yields for +/- beam helicities
- $P_{b}, P_{t}=$ beam, target polarizations
- $f=$ dilution factor
- $C_{\mathrm{N}}, \boldsymbol{C}_{\mathrm{D}}=$ corrections for ${ }^{15,14} \mathrm{~N}$ proton $\boldsymbol{C}_{\mathrm{D}}=0$, deuteron $\boldsymbol{C}_{\mathrm{N}} \simeq 1$
- $A_{\mathrm{rc}}=$ radiative correction

Measured asymmetries $\mathrm{A}_{\|}, \mathrm{A}_{\perp}$

$$
\begin{aligned}
A_{\|, \perp} & =\left(\frac{\epsilon}{f P_{b} P_{t} C_{N}}+C_{D}\right)+\boldsymbol{A}_{\mathrm{rc}} \\
\epsilon & =\left(N^{-}-N^{+}\right) /\left(N^{-}+N^{+}\right)
\end{aligned}
$$

- $N^{-}, N^{+}=$charge normalized, dead time and pion corrected yields for +/- beam helicities
- $P_{b}, P_{t}=$ beam, target polarizations
- $f=$ dilution factor
- $C_{\mathrm{N}}, C_{\mathrm{D}}=$ corrections for ${ }^{15,14} \mathrm{~N}$

proton $C_{\mathrm{D}}=0$, deuteron $C_{\mathrm{N}} \simeq 1$
- $\boldsymbol{A}_{\mathrm{rc}}=$ radiative correction

Measured asymmetries $\mathrm{A}_{\|}, \mathrm{A}_{\perp}$

$$
\begin{aligned}
\boldsymbol{A}_{\|, \perp} & =\left(\frac{\epsilon}{\boldsymbol{f} \boldsymbol{P}_{b} \boldsymbol{P}_{\boldsymbol{t}} \boldsymbol{C}_{N}}+\boldsymbol{C}_{\boldsymbol{D}}\right)+\boldsymbol{A}_{\mathrm{rc}} \\
\epsilon & =\left(N^{-}-N^{+}\right) /\left(N^{-}+N^{+}\right)
\end{aligned}
$$

- $\boldsymbol{N}^{-}, \boldsymbol{N}^{+}=$charge normalized, dead time and pion corrected yields for +/- beam helicities
- $\boldsymbol{P}_{\mathrm{b}^{\prime}}, \boldsymbol{P}_{\mathrm{t}}=$ beam, target polarizations
- $\boldsymbol{f}=$ dilution factor
- $\boldsymbol{C}_{\mathrm{N}}, \boldsymbol{C}_{\mathrm{D}}=$ corrections for ${ }^{15,14} \mathrm{~N}$ proton $\boldsymbol{C}_{\mathrm{D}}=0$, deuteron $\boldsymbol{C}_{\mathrm{N}} \simeq 1$
- $\boldsymbol{A}_{\mathrm{rc}}=$ radiative correction (\boldsymbol{p} only)

Parallel, no r.c
Perp, no r.c.
Born (fully corrected) $\longmapsto \longmapsto$
Born (fully corrected) $ص$

How to get $\mathrm{A}_{1}, \mathrm{~A}_{2}$

- Combine $\mathbf{A}_{\|}, \mathbf{A}_{\perp}$ to get $\mathbf{A}_{1}, \mathbf{A}_{2}$:

$$
\begin{aligned}
& A_{1}=\frac{1}{\left(E+E^{\prime}\right) D^{\prime}}\left(\left(E-E^{\prime} \cos \theta\right) A_{\|}-\frac{E^{\prime} \sin \theta}{\cos \phi} A_{\perp}\right) \\
& A_{2}=\quad \frac{\sqrt{Q^{2}}}{2 E D^{\prime}}\left(A_{\|}+\frac{E-E^{\prime} \cos \theta}{E^{\prime} \sin \theta \cos \phi} A_{\perp}\right)
\end{aligned}
$$

- $\boldsymbol{D}^{\prime}\left(E, E^{\prime}, \theta, R\right)$ is function of kinematics and $\boldsymbol{R}=\sigma_{\mathrm{L}} / \sigma_{\mathrm{T}}$
- Proton $\boldsymbol{R}, \boldsymbol{F}_{2}$ unpolarized S.F.s from E. Christy's fit to JLab Hall C e-p data

Spin Asymmetry results

- $\mathrm{A}_{1}, \mathrm{~A}_{2}$ for proton, deuteron in resonances are unique:
- $R S S$ is only experiment that can separate $\mathrm{A}_{1}, \mathrm{~A}_{2}$
- Proton (near) final results
- Deuteron radiative corrections not applied yet

$R S S$ Proton SA's in context

- A_{1} : clear resonance structure
- will use updated fit to R, F_{2} for final shape, minor changes
- A_{2} : first measurement on proton

Spin Structure Functions

- Use unpolarized F_{1}

$$
\begin{aligned}
& g_{1}=\frac{\boldsymbol{F}_{1}}{1+\gamma^{2}}\left(A_{1}+\gamma A_{2}\right) \\
& g_{2}=\frac{\boldsymbol{F}_{1}}{1+\gamma^{2}}\left(\frac{\boldsymbol{A}_{2}}{\gamma}-A_{1}\right) ; \quad \gamma=\frac{2 \boldsymbol{x} \boldsymbol{M}}{\sqrt{\boldsymbol{Q}^{2}}}
\end{aligned}
$$

- High precision, high resolution measurement
- First world data for $\boldsymbol{g}_{2}{ }^{\mathrm{p}}$ in
 the resonances
- Clear high twist in $\boldsymbol{g}_{2}{ }^{\text {p }}$

RSS Proton \boldsymbol{g}_{1} results in context

- Local (Bloom-Gilman) duality in $\boldsymbol{g}_{1}{ }^{\mathbf{p}}$:
- compare integrals over resonances and extrapolated DIS for each resonance

High twist in $\boldsymbol{g}_{\mathbf{2}}{ }^{\mathbf{p}}$

- g_{2} : combination of twist-2
($q-q$) and twist-3 ($q-g$)
$g_{2}\left(x, Q^{2}\right)=g_{2}^{W W}\left(x, Q^{2}\right)+\overline{g_{2}}\left(x, Q^{2}\right)$
- OPE matrix elements $\boldsymbol{d}_{\mathrm{N}}$ measure twist-3
- calculable in the lattice:
$\boldsymbol{d}_{2}\left(\boldsymbol{Q}^{2}\right)=3 \int_{0}^{1} x^{2} \overline{\boldsymbol{g}_{2}}\left(x, Q^{2}\right) d x$

- Measured d_{2} :
- elastic not included

Next: Neutron Spin Structure

- Extract neutron from p and d
- Bodek-Ritchie version of Atwood-West smearing
- generate smeared proton $\mathbf{A}_{\|}, \mathbf{A}_{\perp}$ from $\boldsymbol{g}_{1}, g_{2}$
- subtract from deuteron $\mathbf{A}_{\|}, \mathbf{A}_{\perp}$ to form smeared neutron quantities
- unsmear neutron using iterated fit to model

Credits

Analysis Team

- Mark Jones
- Karl Slifer
- Shigeyuki Tajima
- Frank Wesselmann
- Eric Christy
- Paul McKee
- Hamlet Mkrtchyan
- Junho Yun
- Hongguo Zhu
- Oscar Rondon

Special Thanks

- Peter Bosted
- Don Crabb
- Donal Day
- Mahbub Khandaker
- JLab Hall C
- JLab Target group

Proton Unpolarized SF's

- Used E. Christy's fit to JLab Hall C e-p inelastic data to get
- unpolarized H cross section in MonteCarlo for dilution factor
- unpolarized proton F_{1}, F_{2} and R.

MC-data Comparison

Carbon data used to fit QFS model.

$$
P_{0}=4.7 \mathrm{GeV} / \mathrm{c}
$$

$$
P_{0}=4.1 \mathrm{GeV} / \mathrm{c}
$$

Packing Fraction

- Compare data spectra to
- Interpolate to match data MonteCarlo simulation for two (or more) values of packing fraction

