Spin Content of the Nucleon

or
What We've Learned from Polarized Electron Scattering

Karl J. Slifer
University of New Hampshire

Spin Content of the Nucleon

What We've Learned from Polarized Electron Scattering,
I've
(in the last few months)

Karl J. Slifer University of New Hampshire

This Talk

Burkhardt-Cottingham Sum Rule
 What does the JLab data tell us?
 Is it enough to make a definitive statement?

Higher Twist Measurements at Jlab

Target Mass Corrections

impact on the clean extraction of Higher Twist

Inclusive Electron Scattering

When we add spin degrees of freedom to the target and beam, 2 Addiitonal SF needed.

$$
\frac{d^{2} \sigma}{d \Omega d E^{\prime}}=\sigma_{M o t t}\left[\frac{1}{\nu} F_{2}\left(x, Q^{2}\right)+\frac{2}{M} F_{1}\left(x, Q^{2}\right) \tan ^{2} \frac{\theta}{2}\right]
$$

$$
+\gamma g_{1}\left(x, Q^{2}\right)+\delta g_{2}\left(x, Q^{2}\right)
$$

Inclusive Polarized Cross Section
all four SF needed for a complete description of nucleon structure

Parton Model

Interpretation of the Structure Functions

Impulse Approximation in DIS no time for interaction between partons

distributions of quark momentum and spin in the nucleon.

$$
F_{1}(x)=\frac{1}{2} \Sigma e_{i}^{2}\left[q_{i}(x)+\bar{q}_{i}(x)\right]
$$

$$
g_{1}(x)=\frac{1}{2} \Sigma e_{i}^{2} \Delta q_{i}(x)
$$

runs over all quark flavors

$$
F_{2}(x)=2 x F_{1}(x)
$$

$$
g_{2}(x)=? ? ?
$$

Burkhardt-Cottingham Sum Rule

$$
\int_{0}^{1} g_{2}\left(x, Q^{2}\right) d x=0
$$

H.Burkhardt and W.N. Cottingham

Annals Phys. 56 (1970) 453.

Relies on the virtual Compton scattering amplitude S_{2} falling to zero faster than $1 / \nu$ as $\nu \rightarrow \infty$

Discussion of possible causes of violations
R.L. Jaffe Comm. Nucl. Part. Phys. 19, 239 (1990)
"If it holds for one Q^{2} it holds for all"

BC Sum Rule

BC Sum Rule

BRAND NEW DATA!

Very Preliminary
RED : RSS. (Hall C, $\mathrm{NH}_{3}, \mathrm{ND}_{3}$)
K. Slifer, O. Rondo et al. in preparation

BLUE: EO1-O12. (Hall A, ${ }^{3} \mathrm{He}$)
courtesy of P. Solvignon
GREEN: E97-110. (Hall A, ${ }^{3} \mathrm{He}$) courtesy of V. Sulkosky

Thanks also to the spokesmen of these experiments
RSS: Mark Jones, Oscar Rondon
Rho EO1-012: N. Liyanage, J.P.Chen, Se ur, Farabaldi SaGDH: J.P. Chen, A. Deur,

BC Sum Rule

Good agreement with MAID model of resonance region for JLab data

BC Sum Rule

Neutron results around $Q^{2}=1.3 \mathrm{GeV}^{2}$ from 2 very different experiments:

RSS in Hall C: Neutron from $\mathrm{ND}_{3} \& \mathrm{NH}_{3}$ E01-012 in Hall A : Neutron from ${ }^{3} \mathrm{He}$

Excellent agreement!

BC Sum Rule

Good overlap at low Q^{2} of the old and new neutron data

E94010 : Hall A ${ }^{3} \mathrm{He}$ old
E97-11O Hall $\mathrm{A}^{3} \mathrm{He}$ new

BC Sum Rule

BC Sum Rule

$$
\begin{gathered}
\int_{0}^{1} g_{2}\left(x, Q^{2}\right) d x=0 \\
\mathrm{BC}=\mathrm{RES}+\mathrm{DIS}+\mathrm{ELASTIC}
\end{gathered}
$$

"RES": Here refers to measured x-range
"DIS": refers to unmeasured low \times part of the integral. Not strictly Deep Inelastic Scattering due to low Q^{2}

Assume Leading Twist Behaviour

Elastic: From well know FFs ($<5 \%$)

BC Sum Rule

$B C=R E S+D I S+E L A S T I C$

"RES": Here refers to measured x-range
"DIS": refers to unmeasured low x part of the integral. Not strictly Deep Inelastic Scattering due to low Q^{2}

Assume Leading Twist Behaviour

Elastic: From well know FFs (<5\%)

BC Sum Rule

BC satisfied $w /$ in errors for JLab Proton 2.8σ violation seen in SLAC data
$B C$ satisfied w/in errors for Neutron (But just barely in vicinity of $Q^{2}=1$!)
$B C$ satisfied w/in errors for ${ }^{3} \mathrm{He}$

BC Sum Rule

Proton g2p still relatively unknown for such a fundamental quantity.

Need more high quality data like RSS

Upcoming Experiments
Sane: setting up now!
$2.3<Q^{2}<6 \mathrm{GeV} 2$
"g2p" in Hall A, 2011
$0.015<Q^{2}<0.4 \mathrm{GeV}^{2}$

BC Sum Rule

BC Sum Rule

BC Sum Rule

Standard Deviations from Zero

Q^{2}	Tot σ	Stat σ
0.74	1.7	6.6
0.9	2.0	7.9
1.2	2.4	2.9
1.8	1.9	2.2
2.4	1.8	2.2

Just on the edge of being interesting
Statistical precision allows unambiguous test, but limited by large systematics.

Highly desirable to revisit E94010 systematics. RC and DIS could perhaps be improved with newer data.

Higher Moment

Cornwall Norton Moment

$$
I\left(Q^{2}\right)=2 \int_{0}^{1-\varepsilon} x^{2}\left(2 g_{1}+3 g_{2}\right) d x
$$

$I\left(Q^{2}\right) \neq$ the twist-3 matrix element but very interesting all the same.

More on this later...

$I\left(Q^{2}\right)$

Existing World Data on $\mathrm{I}\left(\mathrm{Q}^{2}\right)$
 BLACK : E94010
 M. Amarian, et al. PRL. 92 (2004) 022301 BROWN : E155
 P.Anthony, et al. PLB. 553 (2003) 18 RED : RSS.

Wesselman, Slifer, Tajima et al. PRL 98(2007)132003. Magenta: E99-117
X. Zheng et al. PRC 70(2004)065207

What's happening at large Q^{2} ?

$\mathrm{I}\left(\mathrm{Q}^{2}\right)$

BRAND NEW DATA!

Very Preliminary

RED : RSS. (Hall C, $\mathrm{NH}_{3}, \mathrm{ND}_{3}$)
K. Slifer, O. Rondon et al. in preparation

BLUE: EO1-012. (Hall A, ${ }^{3} \mathrm{He}$)
courtesy of P. Solvignon
GREEN: E97-110. (Hall A, ${ }^{3} \mathrm{He}$) courtesy of V. Sulkosky

Thanks also to the spokesmen of these Rondon RSS: Mark Jones, Oscar Reonho Choi EO1-012: N. Liyanage, J. Deur, F. Garabaldi SaGDH: J.P. Chen, A. Deur, F. Garabadi

$\mathrm{I}\left(\mathrm{Q}^{2}\right)$

$I\left(Q^{2}\right) \rightarrow 0$ for $Q^{2}=0$ and $Q^{2}=$ infinity
largest around $Q^{2}=1$
Not too useful to the OPE in this region, but excellent gauge of "QCD complexity"
(i.e. where's the most difficult place to make any meaningful QCD calculation?)

$I\left(Q^{2}\right)$

$\mathrm{I}\left(\mathrm{Q}^{2}\right)$

Upcoming 6 GeV Experiments
Sane: Fall 2008
$2.3<Q^{2}<6 \mathrm{GeV} 2$
" $g 2 p$ " in Hall A, 2011
$0.015<Q^{2}<0.4 \mathrm{GeV}^{2}$
"d2n" in Hall A, 2009 $Q^{2}=3 \mathrm{GeV}^{2}$

Operator Product Expansion

Expansion of SF moments in powers of $1 / Q^{2}$ ("twist")

example:

$$
\Gamma_{1}\left(Q^{2}\right)=\int_{0}^{1} g_{1}\left(x, Q^{2}\right) d x=\sum_{\tau=2,4, \ldots} \frac{\mu_{2}\left(Q^{2}\right)}{Q^{\tau-2}}
$$

$$
\mu_{4}=\frac{1}{9} M^{2}\left(\tilde{a}_{2}+4 \tilde{d}_{2}+4 \tilde{f}_{2}\right)
$$

Lowest order (twist-2) maps to the succesful parts of the parton model.

Higher twists arise from non-perturbative multiparton interactions

Cornwall-Norton Moments

$$
\begin{aligned}
I\left(Q^{2}\right) & =2 \int_{0}^{1-\varepsilon} x^{2}\left(2 g_{1}+3 g_{2}\right) d x \\
& =\tilde{d}_{2}\left(Q^{2}\right)+\vartheta\left(\frac{M^{2}}{Q^{2}}\right)
\end{aligned}
$$

Typical method of extracting twist-3 matrix element

But completely ignores TMC!

Very significant below $Q^{2} \approx 5$
Y.B. Dong PRC 77(2008) 015201
Y.B.Dong PLB 653,(2007)18

Nachtmann Moments

Nachtmann Moments:

$$
\begin{aligned}
M_{2}^{3}\left(Q^{2}\right) & =\int_{0}^{1} d x\left(\frac{\xi^{4}}{x^{2}}\right)\left\{\frac{x}{\xi} g_{1}+\left[\frac{3}{2}\left(\frac{x}{\xi}\right)^{2}-\frac{3}{4} \frac{M^{2}}{Q^{2}} x^{2}\right] g_{2}\right\} \\
& =\frac{\tilde{d}_{2}}{2}
\end{aligned}
$$

Matsuda \& Uematsu, N.Phys. B53(1998)301 Piccione \& Ridolfi N. Phys. B513(1998)301

Generalization of CN moments to protect from the TMC

$$
\frac{M^{2}}{Q^{2}} \rightarrow 0 \quad M_{2}^{3} \rightarrow \int x^{2}\left(2 g_{1}+3 g_{2}\right) d x \quad \text { Reduces to familiar form }
$$

Not a new idea, but difficult to implement unless g_{2} measured simultaneously with g_{1}

Quantifying Size of TMC

$$
R\left(Q^{2}\right)=\frac{2 M_{2}^{3}\left(Q^{2}\right)}{I\left(Q^{2}\right)}
$$

$\mathrm{R}->1$ in case of vanishing nucleon mass

R always less than $1 \Rightarrow I\left(Q^{2}\right)$ overestimates twist-3

Target Mass Corrections must be applied in order to obtain clean dynamical Twist-3

Generalization of Γ_{1}

$$
\begin{gathered}
M_{1}^{1}\left(Q^{2}\right)=\int_{0}^{1} d x\left(\frac{x}{\xi}\right)^{2}\left\{\left[\frac{x}{\xi}-\frac{1}{9}\left(\frac{M}{Q}\right)^{2} x \xi\right] g_{1}-\left(\frac{M}{Q}\right)^{2} x^{2} \frac{4}{3} g_{2}\right\} \\
\frac{M^{2}}{Q^{2}} \rightarrow 0 \quad M_{1}^{1} \rightarrow \Gamma_{1}
\end{gathered}
$$

Matsuda \& Uematsu, N.Phys. B53(1998)301
Piccione \& Ridolfi N. Phys. B513(1998)301

Osipenko et al. PRD 71, 054007 (2005)
Global analysis of glp data. Allows to cleanly extract leading twist term.

TMC not as large as for $I\left(Q^{2}\right)$

Summary

Burkhardt-Cottingham Sum Rule

Good coverage for Neutron. Proton g2p is still relatively unknown.
Data seems to validate $B C$, but at the 2.5σ level around $Q^{2}=1$ Important to update the systematics of the old experiments

Assuming $B C$ holds, we can use JLab data to say something about low-x.
Target Mass Effects
TMC are significant at JLab kinematics
Nachtmann moments protect the SSF from TMC
Must use Nachtmann Moments in order to cleanly extract Higher twists

JLab 6 GeV Program
Still lots of Good Physics to be completed before the upgrade.

References

BLACK : E94010. (Hall A, ${ }^{3} \mathrm{He}$)
M. Amarian, et al. PRL. 92 (2004) 022301
K. Slifer, et al. PRL. 101:022303,2008

RED : RSS. (Hall C, $\mathrm{NH}_{3}, \mathrm{ND}_{3}$)

Wesselman, Slifer, Tajima et al.
PRL 98(2007)132003.
Slifer, Rondon et al. in preparation
BROWN : E155. (SLAC NH3, ${ }^{6}$ LiD)
P.Anthony, et al. PLB. 553 (2003) 18

Magenta E99-117(Hall A, $\left.{ }^{3} \mathrm{He}\right)$
X. Zheng et al. PRC 70(2004)065207

BLUE: EO1-012. (Hall A, ${ }^{3} \mathrm{He}$)
P. Solvignon et al. arXiv:0803.3845 (PRL accepted)
P. Solvignon et al. in preparation

SHADED : Theory
Osipenko et al. PRD. 71 (2005) 054007

BC Sum Rule

Low-X Estimate

Assume $\mathrm{g}_{2}=\mathrm{g}_{2}{ }^{\mathrm{wW}}$ at low x .
Supported by RSS data
15% variation seen depending on choice of g_{1} used.

Unmeasured Contributions

ELASTIC: $\mathrm{X}=1$

$$
\begin{aligned}
& g_{1}^{e l}\left(x, Q^{2}\right)=\delta(x-1) G_{M}\left(Q^{2}\right) \frac{G_{E}\left(Q^{2}\right)+\tau G_{M}\left(Q^{2}\right)}{2(1+\tau)} \\
& g_{2}^{e l}\left(x, Q^{2}\right)=\delta(x-1) \tau G_{M}\left(Q^{2}\right) \frac{G_{E}\left(Q^{2}\right)-G_{M}\left(Q^{2}\right)}{2(1+\tau)}
\end{aligned}
$$

(Form Factor uncertainties less than 5\%)

Summary

Hydrogen Hyperfine Structure

JLab Kinematic Coverage

Overview of available kinematic
range at JLab

Uniquely positioned to provide data in transition region of QCD

Target Mass Corrections

Purely kinematic effects from finite value of $4 \mathrm{M}^{2} \mathrm{x}^{2} / \mathrm{Q}^{2}$

$$
\begin{aligned}
g_{1}\left(x, Q^{2}\right) & =g_{1}\left(x, Q^{2}, M=0\right) \\
& +\frac{M}{Q^{2}} g_{1}^{(1) T M C}\left(x, Q^{2}\right) \\
& +\frac{h\left(x, Q^{2}\right)}{Q^{2}}+\vartheta\left(1 / Q^{4}\right)
\end{aligned}
$$

From PQCD

Purely kinematical

Higher twist
$\int_{0}^{x^{2},\left(x, Q^{2}\right) d x=\frac{1}{2} \tilde{a}_{2}+9\left(\frac{M^{2}}{Q^{2}}\right)}$
$\int_{0}^{1} x^{2} g_{2}\left(x, Q^{2}\right) d x=\frac{1}{3}\left(\tilde{d}_{2}-\tilde{a}_{2}\right)+\vartheta\left(\frac{M^{2}}{Q^{2}}\right)$

$I\left(Q^{2}\right)$

Q^{2} evolution predicted well by PQCD and Chiral Soliton models.

WGR: PRD55 (1997) 6910 Wakamatsu: PLB 487(2000)118 PQCD: Nucl. Phys. B201 (1982) 141 QCDSF: PRD63, 074506(2001)

g_{2} Structure Function

Wandzura-Wilczek relation PLB $\underline{72}$ (1977) 195

$$
g_{2}^{W W}\left(x, Q^{2}\right)=-g_{1}\left(x, Q^{2}\right)+\int_{x}^{1} \frac{g_{1}\left(y, Q^{2}\right)}{y} d y
$$

Leading twist determined entirely by g_{1}

$$
g_{2}=g_{2}^{W W}+\bar{g}_{2}
$$

Higher twist
g_{2} doesn't exist in Parton Model. Good quantity to study higher twist

Inclusive Electron Scattering

$$
\frac{d^{2} \sigma}{d \Omega d E^{\prime}}=\sigma_{M o t t}\left[\frac{1}{\nu} F_{2}\left(x, Q^{2}\right)+\frac{2}{M} F_{1}\left(x, Q^{2}\right) \tan ^{2} \frac{\theta}{2}\right]
$$

Inclusive Cross Section

deviation from point-like behavior characterized by the Structure Functions

