

Spin Structure Function Measurements in Hall C at Jefferson Lab

Stephen Wood For the RSS and SANE collaborations

November 10, 2008

Spin Structure Functions

Parallel and perpendicular target orientations needed to extract $g_1 \& g_2$

Resonant Spin Structure

Q2 ~ 1.3 GeV2, focus on resonance region

Spin SF g1 & g2 on proton and deuteron

Global and local polarized duality

Twist-3 effects

E01-006: Mark Jones (Jlab), Oscar Rondon (UVA)

U. Basel, Florida International U., Hampton U., U. of Massachusetts, U. of Maryland, Mississippi State U., North Caroline A&T U., U. of N.C. at Wilmington, Norfolk State U., Old Dominion U., S. U. at New Orleans, U. of Tel Aviv, Jefferson Lab, U. of Virginia, Virginia P.I & S.U. Yerevan Physics Institute

UVA Polarized Target

Target

Frozen ND₃, NH₃, LiD ⁴He evaporation refrigerator 5T polarizing field Dynamic nuclear polarization Polarization \parallel or \perp to beam Pre-target chicane for \perp polarization Open geometry Experiments @ JLab Neutron Form Factor Resonance Spin Structure (g_1 , g_2 on p and d @ $Q^2 = 1.3$ GeV²) SANE: $g_1, g_2 Q^2 = 4.5 \text{ GeV}^2$ Jefferson Lab

RSS Kinematics

- Beam Energy 5.755 GeV
- HMS spectrometer
 - -13.15°
 - $\mathrm{P}_{_{0}}$ 4.71 GeV/c, 4.08 GeV/c
- Mass Range:
 - W: Elastic 2.0 GeV
- $\langle Q^2 \rangle = 1.28 \, [\text{GeV/c}]^2$
- 160 M proton events
 350 M deuteron events

Office of

Asymmetries

$$\epsilon = (N^{-} - N^{+})/(N^{-} + N^{+})$$
$$A_{\parallel,\perp} = (\frac{\epsilon}{f P_{h} P_{t} C_{N}} + C_{D}) + A_{rc}$$

- N^{-} , N^{+} = Yields from +/- beam helicities
- P_{h} = beam polarization ~ 70%
- P_t = target polarization
 - NH3 ~ 70%
 - ND3 ~ 20%

Jefferson Lab

- f = dilution from N, He
- C_N, C_D = polarized nucleons in N
- A_{rc} = radiative corrections

Proton elastic, A_{\parallel} insensitive To G_{F}/G_{M} . Cross check on $P_{b}P_{t}$ A sensitive to G_F/G_M $^{
m eg}_{
m E}/{
m G}_{
m M}$ World xn JLAB05 MIT-Bates AB00 0.6 JLAB06 This experimen $Q^2 [(GeV/c)^2]$ PRC 74, 035201 (2006)

Dilution factor

- Scattering from unpolarized nuclei in target reduce asymmetries by factor of 5-10.
- W dependent due to resonance structure

Proton Spin Asymmetries A₁, A₂

Office of

Proton

$$g_1 = \frac{F_1}{1 + \gamma^2} (A_1 + \gamma A_2)$$
$$g_2 = \frac{F_1}{1 + \gamma^2} (\frac{A_2}{\gamma} - A_1); \quad \gamma = \frac{2 x M}{\sqrt{Q^2}}$$

- Approximate global polarized Bloom-Gilman duality for resonance region
- Local duality (individual resonances does not hold at this Q²
- Twist-3 contribution to g_2

$$g_2^{WW}(x, Q^2) = -g_1(x, Q^2) + \int_x^1 g_1(y, Q^2) \frac{dy}{y}$$

Office of

Proton Sum Rules

• First moment of $g_{_1}$

$$\overline{\Gamma_1}(Q^2) = \int_0^{1-el} g_1(x, Q^2) dx$$

• First moment of g_2

(Burkhardt-Cottingham)

$$\Gamma_2(Q^2) = \int_0^1 g_2(x, Q^2) dx = 0$$

Resonance, DIS, elastic cancel

Deuteron

- Obtain neutron g_1, g_2 by subtracting smeared $g_1^{\ p}, g_2^{\ p}$ from $g_1^{\ d}, g_2^{\ d}$

Office of

Neutron g_2

Office of

SANE: <u>Spin Asymmetries on the Nucleon Experiment</u>

Proton spin structure functions $2.5 < Q^2 < 6.5, 0.3 < x < 0.8$

Twist-3 effects from g1, g2 moments

Comparisons with Lattice QCD, sum rules, bag models

High – x

Test local duality for W > 1.4 GeV

Currently starting in Hall C

E07-003: Senho Choi (Seoul U.), Mark Jones (JLab), Zein-Eddine Meziani (Temple), Oscar Rondon (UVA)

U. Basel, Christopher Newport U., Florida International U., Hampton U., Jefferson Lab, Norfolk State U., Mississippi State U., Norfolk State U., North Carolina A&T U., IHEP-Protvino, U. of Regina, Renselaer Polytechnic I., Rutgers U., Seoul National U., Temple U., U. of Virginia, College of William & Mary, Yerevan Physics Institute

Measure A_{\parallel} and A_{\perp} New large solid angle electron telescope BETA

SANE expected results

- Constrain x=1 extrapolations of A^p₁+/- 0.1
- Use A2 to improve worlds A1
- High precision d₂ over broad Q² range

Big Electron Telescope Array

- BigCal 1744 lead glass blocks, 120x240cm x40cm
 Used recently as electron detector for high Q² G_{ep}
- Forward Tracker: Scintillator bars with fiber readout
- Gas Cherenkov: Pion rejection
- Lucite Bars

Target magnetic field with positions from tracker, lucite and BigCal allow rejection of low momentum positron

Gas Cherenkov Lucite BigCal Calorimeter backgrounds (Temple) (NCAT,KSU, ...) (Protvino, W&M, ...)

Jefferson Lab

Office of

Busy Picture

Spectrometer

BigCal Calibrations (ep elastic) Positron background Measurements P_bP_t measurement

Target

Future Hall C spin structure

Hall C 12 GeV experiments. 5-10 years.
 Polarized ³He target.
 HMS - High Momentum Spectrometer

SHMS (NEW) Super High Momentum Spectrometer

- Neutron A1 $3 < Q^2 < 10 \text{ GeV}^2$
- Neutron g_{2} , d_{2} : 0.3 < x < 1, 2.5 < Q^{2} < 6.6 GeV²,

ties onto Hall A data expected early 2009

