Backup slides

Compare proton $A_{\|}$and A_{\perp} w/o RC

Structure functions in DIS and resonances

- Polarized and unpolarized structure functions share common interpretation:
- DIS: Parton model and Operator Product Expansion (OPE)

$$
A_{1}(x) \approx \frac{g_{1}(x)}{F_{1}(x)}=\frac{\sum e_{i}^{2} \Delta q_{i}}{\sum e_{i}^{2} q_{i}}
$$

- Resonances: forward virtual Compton scattering

$$
A_{1}\left(Q^{2}, \nu\right)=\frac{\sigma_{1 / 2}^{T}-\sigma_{3 / 2}^{T}}{\sigma_{1 / 2}^{T}+\sigma_{3 / 2}^{T}}=\frac{M \nu G_{1}\left(Q^{2}, \nu\right)-Q^{2} G_{2}\left(Q^{2}, \nu\right)}{W_{1}\left(Q^{2}, \nu\right)}
$$

- Connection: scaling limit

$$
\begin{aligned}
& \lim _{Q^{2}, \nu \rightarrow \infty} M \nu G_{1}\left(Q^{2}, \nu\right)=g_{1}(x) \\
& \lim _{Q^{2}, \nu \rightarrow \infty} M W_{1}\left(Q^{2}, \nu\right)=F_{1}(x)
\end{aligned}
$$

Relation between A_{1}, A_{2} and $A_{\|}, A_{\perp}$

- Clean extraction of A_{1}, A_{2} for protons and deuterons is crucial.
- Solution: measure $A_{\|}, A_{\perp}$ on polarized ammonia

$$
\begin{aligned}
A_{1} & =\frac{C}{D}\left(A_{\|}-d A_{\perp}\right) \\
A_{2} & =\frac{C}{D}\left(c^{\prime} A_{\|}-d^{\prime} A_{\perp}\right)
\end{aligned}
$$

- Kinematic variables
$C, c^{\prime}, d, d^{\prime}\left(E, E^{\prime}, \theta\right), D\left(E, E^{\prime}, \theta, R\right)\left(R=\sigma_{L} / \sigma_{T}\right)$
- $d^{\prime} \approx 1, c^{\prime} \approx d \leq 1$ (at RSS kinematics)
- Comparable systematic errors for both $A_{\|}, A_{\perp}$ is important.

SSF g_{1}, g_{2} and Spin Asymmetries A_{1}, A_{2}

- g_{1}, g_{2} can be extracted directly from $A_{\|}, A_{\perp}$ or A_{1}, A_{2}

$$
\begin{aligned}
& g_{1}=\frac{F_{1}}{1+\gamma^{2}}\left(A_{1}+\gamma A_{2}\right) \\
& g_{2}=\frac{F_{1}}{1+\gamma^{2}}\left(\frac{A_{2}}{\gamma}-A_{1}\right) ; \gamma^{2}=\frac{Q^{2}}{\nu^{2}}
\end{aligned}
$$

- Need $F_{1}=F_{2}\left(1+\gamma^{2}\right) / 2 x /(1+R)$ in the resonance region. Measurement of F 2 and R in resonance region
- Also can get g_{1}, g_{2} directly from cross section differences:
F_{2} and R not needed
- g_{1} can be extracted from $A_{\|}$and SSF model for g_{2}

Measured deuteron $A_{q e l}$

- $\mathrm{A}_{q e l}$ for $\mathrm{B}_{\|}$
- Average $\mathrm{A}_{\text {qel }}$ for $0.88<\mathrm{W}<1.0$
- Top and bottom agree!

- $\mathrm{A}_{q e l}$ for B_{\perp}
- Average $\mathrm{A}_{\text {qel }}$ for $0.88<\mathrm{W}<1.0$
- Better agreement with $\frac{G_{E p}}{G_{M p}}$ from recoil pol., but both within 2σ

Elastic and Quasi-elastic Asymmetry

$\theta^{\star}, \phi^{\star}=$ polar and azimuthal angles between \vec{q} and target spin
$K_{1}, K_{2}=$ kinematic factors

	$\mathrm{B}_{\\|}$	B_{\perp}
$\theta^{\star}, \phi^{\star}$	$129^{\circ}, 180^{\circ}$	$41^{\circ}, 162^{\circ}$
$\frac{\Delta A_{e l} / A_{e l}}{\Delta \frac{G_{E}}{G_{M}} / G_{E}} G_{M}$	0.02	1

- $\mathrm{A}_{\|}$used to determine $P_{b} P_{t}$
- A_{\perp} measure $\frac{G_{E}}{G_{M}}$

Deuteron quasi-elastic

- At quasi-free peak in PWIA:

$$
A_{q e l}=\frac{\sigma_{p} A_{e l}^{p}+\sigma_{n} A_{e l}^{n}}{\sigma_{p}+\sigma_{n}}
$$

- Sensitivity to nucleon form factors

	$\mathrm{B}_{\\|}$	B_{\perp}
$\frac{\Delta A_{q e l} / A_{q e l}}{\Delta \frac{G_{E p}}{G_{M p}} / \frac{G_{E p}}{G_{M p}}}$	0.01	0.6
$\frac{\Delta A_{q e l} / A_{q e l}}{\Delta \frac{G_{E n}}{G_{M n}} / \frac{G_{E n}}{G_{M n}}}$	0.08	0.01

- Given statistical error, quasi-elastic $\quad \mathrm{A}_{\|}, \mathrm{A}_{\perp}$ used to check $P_{b} P_{t}$ for deuteron asymmetries

Motivation and Goals

- Motivation
- For $Q^{2}<5 \mathrm{GeV}^{2}$, inclusive $\left(e, e^{\prime}\right)$ dominated by $\mathrm{W}<2 \mathrm{GeV}$ (resonances)
- Limited proton and deuteron A_{\perp} in this Q^{2}, W region.
- Need good W resolution ($\Delta W<30 \mathrm{MeV}$)
- Goals
- Measure proton and deuteron spin asymmetries $A_{1}\left(W, Q^{2}\right)$ and $A_{2}\left(W, Q^{2}\right)$ at $Q^{2} \approx 1.3 \mathrm{GeV}^{2}$ and $0.8<W<2 \mathrm{GeV}$.
- Extract g_{1} and g_{2} structure functions and study:
- W dependence
- Onset of polarized local duality
- twist-3 effects in d_{2} matrix element

