Backup slides

Compare proton A_{\parallel} and A_{\perp} w/o RC

Structure functions in DIS and resonances

- Polarized and unpolarized structure functions share common interpretation:
 - DIS: Parton model and Operator Product Expansion (OPE) $A_1(x) \approx \frac{g_1(x)}{F_1(x)} = \frac{\sum e_i^2 \Delta q_i}{\sum e_i^2 q_i}$
 - Resonances: forward virtual Compton scattering $A_1(Q^2, \nu) = \frac{\sigma_{1/2}^T - \sigma_{3/2}^T}{\sigma_{1/2}^T + \sigma_{3/2}^T} = \frac{M\nu G_1(Q^2, \nu) - Q^2 G_2(Q^2, \nu)}{W_1(Q^2, \nu)}$

Connection: scaling limit

$$\lim_{Q^2,\nu\to\infty} M\nu G_1(Q^2,\nu) = g_1(x)$$
$$\lim_{Q^2,\nu\to\infty} MW_1(Q^2,\nu) = F_1(x)$$

Relation between A_1, A_2 and A_{\parallel}, A_{\perp}

- Clean extraction of A_1, A_2 for protons and deuterons is crucial.
- Solution: measure A_{\parallel}, A_{\perp} on polarized ammonia

$$A_1 = \frac{C}{D}(A_{\parallel} - dA_{\perp})$$
$$A_2 = \frac{C}{D}(c'A_{\parallel} - d'A_{\perp})$$

- Kinematic variables $C, c', d, d'(E, E', \theta), D(E, E', \theta, R)(R = \sigma_L / \sigma_T)$
- $d' \approx 1, c' \approx d \leq 1$ (at RSS kinematics)
- Comparable systematic errors for both A_{\parallel}, A_{\perp} is important.

SSF g_1, g_2 and Spin Asymmetries A_1, A_2

● g_1, g_2 can be extracted directly from A_{\parallel}, A_{\perp} or A_1, A_2

$$g_{1} = \frac{F_{1}}{1 + \gamma^{2}} (A_{1} + \gamma A_{2})$$

$$g_{2} = \frac{F_{1}}{1 + \gamma^{2}} (\frac{A_{2}}{\gamma} - A_{1}) ; \gamma^{2} = \frac{Q^{2}}{\nu^{2}}$$

- Need $F_1 = F_2(1 + \gamma^2)/2x/(1 + R)$ in the resonance region. Measurement of F2 and R in resonance region
- Also can get g_1, g_2 directly from cross section differences: F_2 and R not needed
- \blacksquare g_1 can be extracted from A_{\parallel} and SSF model for g_2

Measured deuteron A_{qel}

- A_{qel} for B_{\parallel}
- Top and bottom agree!

- A_{qel} for B_{\perp}
- Better agreement with $\frac{G_{Ep}}{G_{Mp}}$ from recoil pol., but both within 2 σ

Elastic and Quasi-elastic Asymmetry

Proton elastic $A_{el} = \frac{K_1 \cos \theta^* + K_2 \frac{G_E}{G_M} \sin \theta^* \cos \phi^*}{G_E^2 / G_M^2 + \tau / \epsilon}$ $\theta^{\star}, \phi^{\star}$ = polar and azimuthal angles between \vec{q} and target spin K_1, K_2 = kinematic factors B B $\theta^{\star}, \phi^{\star}$ $129^{\circ}, 180^{\circ}$ $41^{\circ}, 162^{\circ}$ $\frac{\Delta A_{el}/A_{el}}{\Delta \frac{G_E}{G_{ee}}/\frac{G_E}{G_{ee}}}$ 0.02

• A_{\parallel} used to determine $P_b P_t$

• A_{\perp} measure $\frac{G_E}{G_M}$

Deuteron quasi-elastic)

- At quasi-free peak in PWIA: $A_{qel} = \frac{\sigma_p A_{el}^p + \sigma_n A_{el}^n}{\sigma_p + \sigma_n}$
- Sensitivity to nucleon form factors

$$\begin{array}{c|c} & \mathsf{B}_{\parallel} & \mathsf{B}_{\perp} \\ \hline \frac{\Delta A_{qel} / A_{qel}}{\Delta \frac{G_{Ep}}{G_{Mp}} / \frac{G_{Ep}}{G_{Mp}}} & \mathsf{0.01} & \mathsf{0.6} \\ \hline \frac{\Delta A_{qel} / A_{qel}}{\Delta \frac{G_{En}}{G_{Mn}} / \frac{G_{En}}{G_{Mn}}} & \mathsf{0.08} & \mathsf{0.01} \end{array}$$

• Given statistical error, quasi-elastic A_{\parallel}, A_{\perp} used to check $P_b P_t$ for deuteron asymmetries

Motivation and Goals

Motivation

- For $Q^2 < 5 \text{ GeV}^2$, inclusive (e, e') dominated by W < 2 GeV (resonances)
- Limited proton and deuteron A_{\perp} in this Q^2 , W region.
- Need good W resolution ($\Delta W < 30$ MeV)
- Goals
 - Measure proton and deuteron spin asymmetries $A_1(W, Q^2)$ and $A_2(W, Q^2)$ at $Q^2 \approx 1.3 \text{ GeV}^2$ and 0.8 < W < 2 GeV.
 - Extract g_1 and g_2 structure functions and study:
 - W dependence
 - Onset of polarized local duality
 - twist-3 effects in d_2 matrix element