

Alberto Accardi Hampton U. & Jefferson Lab

> Hampton U. 27 April 2009

Motivation – why large x (and low-Q²)
 Target Mass, Higher Twist, Nuclear Corrections
 Global PDF fits at large x – preliminary results
 Conclusions

Motivation and outline

Why large x_B and low Q²?

Large uncertainties in quark and gluon PDF at x > 0.5 - e.g., CTEQ6

accardi@jlab.org

Why large x_B and low Q²?

Large uncertainties in quark and gluon PDF at x > 0.5

Precise PDF at large x are needed, e.g.,

- → at LHC, Tevatron

 New physics as excess in
 large- p_T spectra \Leftrightarrow large x PDF
 - 2) DGLAP evolution feeds large x, low Q^2 into lower x, large Q^2

Example:

W production at rest in p+p:

- $Q^2 = M_W^2 = 6400 \ {
 m GeV}^2$
 - x = 0.005 at LHC
 - x = 0.2 at Tevatron

Why large x_B and low Q² ?

- Large uncertainties in quark and gluon PDF at x > 0.5
- Precise PDF at large x are needed, e.g.,
 - 🔶 at LHC, Tevatron
 - 1) New physics as excess in large p_T spectra \Leftrightarrow large x PDF
 - 2) DGLAP evolution feeds large x, low Q^2 into lower x, large Q^2
 - → d/u ratio at $x=1 \Leftrightarrow$ non-perturbative structure of the nucleon

x Hampton U., 27 Apr 2009

accardi@jlab.org

Why large x_B and low Q²?

- Large uncertainties in quark and gluon PDF at x > 0.5
- Precise PDF at large x are needed, e.g.,
 - 🔶 at LHC, Tevatron
 - 1) New physics as excess in large p_T spectra \Leftrightarrow large x PDF
 - 2) DGLAP evolution feeds large x, low Q^2 into lower x, large Q^2
 - → d/u ratio at $x=1 \Leftrightarrow$ non-perturbative structure of the nucleon
 - spin structure of the nucleon

Why large x_B and low Q²?

- Large uncertainties in quark and gluon PDF at x > 0.5
- Precise PDF at large x are needed, e.g.,
 - 🔶 at LHC, Tevatron
 - 1) New physics as excess in large p_T spectra \Leftrightarrow large x PDF
 - 2) DGLAP evolution feeds large x, low Q^2 into lower x, large Q^2
 - → d/u ratio at $x=1 \Leftrightarrow$ non-perturbative structure of the nucleon
 - spin structure of the nucleon

JLab has precision DIS data at large x_B , BUT low Q^2

- need of theoretical control over
 - 1) higher twist $\propto \Lambda^2/Q^2$
 - 2) target mass corrections (TMC) $\propto x_B^2 m_N^2/Q^2$ this talk
 - 3) jet mass corrections (JMC) $\propto m_i^2/Q^2$
 - 4) large-*x* resummation,
 - 5) nuclear corrections, ...

Global PDF fits

Work in progress with: E.Christy, C.Keppel, W.Melnitchouk, P.Monaghan, J.Morfín, J.Owens

Factorization of hard scattering processes

accardi@jlab.org

Global PDF fits

Problem: we need a set of PDFs in order to calculate a particular hard-scattering process

Solution:

- generate a set of PDFs using a parametrized functional form at a given initial scale Q₀ and evolving it at any Q.
- Choose a data set for a choice of hard scattering processes of different kinds.
- Repeatedly vary the parameters and evolve the PDFs again, to obtain an optimal fit to a set of data.
- Examples: CTEQ6.1, MRST2002 for unpolarized protons DSSV, LSS for polarized protons

For details, see J. Owens' lectures at the 2007 CTEQ summer school

Collaboration and goals

Jefferson Lab/Florida State U./Fermilab collaboration ("cteqX"):

- Alberto Accardi, Eric Christy, Thia Keppel, Wally Melnitchouk, Peter Monaghan, Jorge Morfin, Jeff Owens
- Initial Goals:
 - \Rightarrow Extend PDF global fits to larger values of x_B and lower values of Q
 - Wealth of data from older SLAC experiments and newer JLab
 - Study effects of different target mass correction methods
 - Explore role of higher twist contributions
- Eventually,
 - → see if PDF errors can be reduced using new JLAB data
 - \Rightarrow determine an optimized set of PDFs at large x_B

CTEQ 6.1

• Cuts: $Q^2 \ge 4 \text{ GeV}^2$ $W^2 \ge 12.25 \text{ GeV}^2$

 \Rightarrow not so large x, not so low Q^2 : hope that TMC, HT & C. are not large

neglects nuclear corrections for deuterium target

accardi@jlab.org

Target mass corrections

Accardi, Qiu, JHEP '08 Accardi, Melnitchouk, PLB '08

Operator Product Expansion

[Georgi, Politzer 1976; see review of Schienbein et al. 2007]

$$\int d^4z \, e^{-iq \cdot z} \langle N | T[j^{\dagger \mu}(z)j^{\nu}(0)] | N \rangle = \sum_k f^{\mu_1 \dots \mu_{2k}} A_{2k} \langle N | \underbrace{\mathcal{O}_{\mu_1 \dots \mu_{2k}}(0)}_{\text{symmetric, traceless}} | N \rangle$$

$$A_{2k} = \int_0^1 dy \, y^{2k} F(y) \quad F(y) \sim \frac{1}{y^2} \sum_q e_q^2 q(y) \text{ (at LO)} = \text{``quark function''}$$

Mellin transform, sum, transform back:

$$F_2^{GP}(x_B, Q^2) = \frac{x_B^2}{\rho_B^3} F(\xi) + 6 \frac{m_N^2}{Q^2} \frac{x_B^3}{\rho_B^4} \int_{\xi}^{1} d\xi' F(\xi') + 12 \frac{m_N^4}{Q^4} \frac{x^4}{\rho_B^5} \int_{\xi}^{1} d\xi' \int_{\xi'}^{1} d\xi'' F(\xi'') \xi'' = \frac{2x_B}{1 + \sqrt{1 + 4x_B^2 m_N^2/Q^2}} = \frac{2x_B}{1 + \rho_B^2}$$
 Nachtmann variable

- ◆ <u>Threshold problem</u>: $x_B \le 1$ implies $0 \le \xi \le \xi_{th} \stackrel{\text{\tiny def}}{=} \xi(x_B = 1)$
 - Inverse Mellin transform does not give back F(y) !! [Johnson, Tung 1979]

• <u>Unphysical region</u>: $F(y) \sim F_2(y)$ has support over 0 < y < 1

•
$$F_2^{GP}(x_B) > 0$$
 also for $x_B > 1 !!$

accardi@jlab.org

Collinear factorization - outline

Target Mass Corrections – $O(x_B^2 m_N^2/Q^2)$

- momentum space, <u>no need of Mellin transf.</u>
- kinematics of handbag diagram
 - \Rightarrow <u>no "unphysical region"</u> at $x_B > 1$ (!!)
- \Rightarrow any order in α_s at leading twist

Kinematics with $m_N \neq 0$

$$\int d^4z \, e^{-iq\cdot z} \langle p | j^{\dagger \mu}(z) j^{\nu}(0) | p \rangle$$

$$x = \frac{k^+}{p^+} \qquad \xi = \frac{2x_B}{1 + \sqrt{1 + 4x_B^2 m_N^2/Q^2}}$$

Lorentz invariants:

$$x_B = \frac{-q^2}{2p \cdot q} \qquad Q^2 = -q^2$$
$$x_f = \frac{-q^2}{2k \cdot q} \qquad m_N^2 = p^2$$

Light cone vectors:

 $\begin{aligned} \overline{n} = &(1/\sqrt{2}, \vec{0}_{\perp}, 1/\sqrt{2}) \\ &n = &(1/\sqrt{2}, \vec{0}_{\perp}, -1/\sqrt{2}) \\ &a^{\pm} = &(a_0 \pm a_3)/\sqrt{2} \end{aligned}$

→ Bjorken limit: $\xi \rightarrow x_B$ recovers the massless ($m_N^2=0$) kinematics accardi@jlab.org Hampton U., 27 Apr 2009 17

Factorization theorem with $m_N \neq 0$

[see also J.W.Qiu's talk at CTEQ meeting 2005]

Expand around $\tilde{k}^{\mu} = xp^{+}\overline{n}^{\mu}$ $\tilde{k}^{2} = 0$ $\tilde{x}_{f} = \frac{-q^{2}}{2\tilde{k} \cdot q} = \frac{\xi}{x}$ $W_N^{\mu\nu}(p,q) = \sum_f \int \frac{dx}{x} \,\mathcal{H}_f^{\mu\nu}(\tilde{k},q) \,\varphi_{f/N}(x,Q^2) + O(\Lambda^2/Q^2)$ $\sum_{k=1}^{q} = \frac{\mu_{q}}{k} + \frac{\mu_{q}}{k} +$ perturbative: doesn't know dynamical TMC about the target's mass only from nucleon w.f. • Helicity structure functions F_T , F_I projected out of $W^{\mu\nu}$: e.g., $F_T(x_B, Q^2) = \sum_f \int \frac{dx}{x} h_{fT}(\tilde{x}_f, Q^2) \varphi_{f/N}(x, Q^2) + O(\Lambda^2/Q^2)$ $= \xi/x$

no kinematic prefactors [Aivazis, Olness, Tung 1994]

Kinematic constraints

igstarrow General handbag diagram – on shell gluons and light quarks ($\widetilde{k}^2=0$):

 $x_B \leq \widetilde{x}_f \leq 1$ i.e., $\xi \leq x \leq \xi/x_B$

Proof (can be generalized to heavy and off-shell quarks – and nuclei)

$$\circ 0 \leq p_j^2 = (\tilde{k} + q)^2 = Q^2 \left(\frac{1}{\tilde{x}_f} - 1\right) \implies \tilde{x}_f \leq 1$$

$$\circ s = (p+q)^2 = (p_j + p_Y)^2 \geq p_j^2 + p_Y^2 \geq p_j^2 + m_N^2$$

$$p_j^2 = \left(\frac{1}{\tilde{x}_f} - 1\right)Q^2$$

$$s - m_N^2 = \left(\frac{1}{x_B} - 1\right)Q^2$$

$$\Rightarrow \tilde{x}_f \geq x_B$$

$$p \xrightarrow{p_Y} p_Y^2 \geq m_N^2$$

$$baryon number$$

If net baryon number appears in the upper blob (not for pQCD quarks) $\frac{x_B}{1 + x_B m_N^2/Q^2} ≤ \widetilde{x}_f ≤ \frac{1}{1 + m_N^2/Q^2}$

accardi@jlab.org

No unphysical region!

TMC in collinear factorization:

$$F_T(x_B, Q^2) = \sum_f \int_{\xi} \underbrace{\frac{\xi}{x_B}}_{\xi} \frac{dx}{x} h_{fT}\left(\frac{\xi}{x}, Q^2\right) \varphi_f(x, Q^2)$$

 $F_T(x_B, Q^2) = 0$ at $x_B > 1$

Bjorken limit $m_N/Q^2 \rightarrow 0$ recovers "massless" structure functions $(m_N=0)$

$$F_T(x_B, Q^2) \longrightarrow F_T^{(0)}(x_B, Q^2) \equiv \sum_f \int_{x_B}^1 \frac{dx}{x} h_{fT}\left(\frac{x_B}{x}, Q^2\right) \varphi_f(x, Q^2)$$

Different from the "naive" collinear factorization TMC [Aivazis et al '94 Kretzer, Reno '02] $F_T^{nv}(x_B, Q^2) \equiv F_T^{(0)}(\xi, Q^2) = \sum_f \int_{\xi}^{1} \frac{dx}{x} h_{fT}\left(\frac{\xi}{x}, Q^2\right) \varphi_{f/N}(x, Q^2)$ which does not vanish at $x_B > 1$

accardi@jlab.org

Target mass corrections – F2 at NLO

$$F_2^{nv}(x_B) = \frac{1}{1 + 4x_B^2 \frac{m_N^2}{Q^2}} \frac{x_B}{\xi} F_2^{(0)}(\xi)$$

Target mass corrections – σ_L/σ_T at NLO

Higher-twist terms

Higher-Twists parametrization

• Power-suppressed (HT) terms $\sim O(1/Q^2)$ usually neglected at "large" Q^2 , but essential to fit both over low- and high- Q^2 structure functions

Operationally, parametrize the HT terms by a multiplicative factor:

$$F_2(data) = F_2(TMC) \times \left(1 + \frac{C(x_B)}{Q^2}\right)$$

with

$$C(x_B) = a x^b (1 + c x + d x^2)$$

parametrization is sufficiently flexible to give good fits to data

→ typically, parameter *d* is not needed since at x_B near 1 there is not a lot of difference between *x* and x^2

accardi@jlab.org

Nuclear corrections

Deuteron corrections

• Nuclear Smearing Model [Kahn et al., arXiv:0809.4308; Accardi et al., in preparation]

nucleon Fermi motion and binding energy use non-relativistic deuteron wave-function $F_{2A}(x_B) = \int_{x_D}^{\infty} dy \mathcal{S}(y, \gamma, x_B) F_2^{TMC}(x_N, Q^2)$ 1.3 $\gamma = \sqrt{1 + 4x_B^2 m_N^2/Q^2}$ $x_N = \frac{p_N \cdot q}{p_D \cdot q} = \frac{x_B}{y}$ NSM $Q^2 = 2 \text{ GeV}^2$ $\begin{array}{rrrr} \text{NSM} & \text{Q}^2 = 5 & \text{GeV}^2 \\ \text{NSM} & \text{Q}^2 = 10 & \text{GeV}^2 \end{array}$ 1.2 F2(D)/F2(n+p)(using CTEQ6.1 PDF) It is essential to go beyond Bjorken limit finite- Q^2 corrections off-shell nucleon corrections are small but non-negligible 0.9 0.2 0.8 0.4 0.6 Ω XR 26 accardi@jlab.org Hampton U., 27 Apr 2009

cteqX PDF fits - status report

Work in progress with: E.Christy, C.Keppel, W.Melnitchouk, P.Monaghan, J.Morfín, J.Owens

cteqX global fits

We are using Jeff Owens' NLO DGLAP fitting package

- \Rightarrow use CTEQ6.1 parametrization of PDFs at $Q^2 = 1.69 \text{ GeV}^2$
- → option for finite d/u at $x \rightarrow 1$ is being considered
- -> Can fit DIS, Drell-Yan, W lepton asymmetry, jets (and γ +jet)
- Multiple TMC and HT terms added
- Higher-twist contributions by a multiplicative factor
- Nuclear corrections for deuteron targets added
- → PDF errors computed by the Hessian method, with $\Delta \chi^2 = 1$

Lower the CTEQ6.1 cuts cut02 - $Q^2 > 2$ (GeV/c)², $W^2 > 4$ (GeV/c)², BCDMS binning \Rightarrow Q²>2 GeV² (was 4 GeV²) 10 ⊾∼ W²>4 GeV² (was 12.25 GeV²) x=0.07 (x10.0) called "cut02" henceforth _____ x=0.1 (x5.0) _ x=0.14 (x3.0) → x=0.18 (x2.5) Include TMC: <u>---</u> x=0.225 (x2.0) CF, Gorgi-Politzer, naïve CF и те те се се се сопо x=0.35 Use HT parametrization 10⁻¹ Use Deuterium corrections bcd1h2 & slac_p data BCDMS data 10^{-2} SLAC data no correction Coll. Fact. Georgi-Politzer x=0.85 Naive CF CTEQ6 cuts 10^{-3} 10² 10⁻¹ 10 1 $Q^2 [(GeV/c)^2]$

 10°

x=0.65

x=0.75

Extracted higher-twist term depends on the type of TMC used

 \Rightarrow $Q^2 > 1.69 \text{ GeV}^2$ and $W^2 > 3 \text{ GeV}^2$ (referred to as "cut03")

→ lower cuts $\Rightarrow x_B < 0.85$ compared to $x_B < 0.65$ in CTEQ/MRST

curves have d=0 and small errors on a, b, and c

accardi@jlab.org

Extracted twist-2 PDF much less sensitive to choice of TMC

fitted HT function compensates the TMC

except when no TMC is included

Largest effect on d-quark

Q² > 1.69 GeV², W² > 3 GeV²
 (referred to as 'cut03')

plots relative to fit with

→ $Q^2 > 4 \text{ GeV}^2$, $W^2 > 12.25 \text{ GeV}^2$ ("cut00" = CTEQ6.1 cuts)

🔸 no TMC, no HT, no deut.cor.

Deuterium corrections have large effect on d-quark

use WA21 data on v(vbar)-p to cross-check *d* without Deuterium?
 topic is under study

accardi@jlab.org

> PDF errors at large x are reduced by lowering the cuts

Note: errors multiplied by 10 for rough comparison to CTEQ6.5 errors

accardi@jlab.org

Conclusions

★ A new series of global PDF fits is underway with expanded kinematic range and enlarged data set

- Suppressed d/u ratio at large x compared to CTEQ6.1
- TMC, HT essential for good fits, stability of PDF
- Large effect of deuterium corrections, also for standard CTEQ cuts
- **\star** Tension with data sets requiring mild *d*-quark enhancement:
 - Global fit including E-866 lepton pair data and NuTeV, CHORUS neutrino data show enhanced d/u ratios
 - DØ W electron asymmetry lie below predictions of current PDFs suggesting an enhanced *d/u* ratio for *x* near 0.4-0.5
 - But... directly measured W asymmetry compatible with d suppression
- **PDF** errors reduced by expanded large- x_B SLAC+JLab (+ recent DY) data set

Outlook

- ★ Theoretical effects to be included
 - TMC (and hadron mass corrections) for SIDIS [w/ Hobbs, Melnitchouk]
 - TMC for DY and p+p
 - Large-x resummation
 - Effect of Jet Mass Corrections [Accardi,Qiu '08]
 - \Rightarrow new theory, phenomenology, connections to lattice QCD (?), ...
 - Parton-hadron duality further reduce kinematic cuts

★ In the longer run:

- Polarized QCD fits ?
- ✤ TMDs ?

App. A – F1 and GP

Target mass corrections - F₁ at NLO

 $F_1^{nv}(x_B) = F_1^{(0)}(\xi)$

Target Mass Corrections in OPE formalism

For unpolarized structure functions, [Georgi, Politzer 1976; see review of Schienbein et al. 2007]

$$F_1^{GP}(x_B, Q^2) = \frac{x_B}{\rho_B} \Big[\frac{F_1^{(0)}(\xi, Q^2)}{\xi} + \frac{m_N^2 x_B}{Q^2 \rho_B} \Delta_2(x_B, Q^2) \Big]$$

$$F_2^{GP}(x_B, Q^2) = \frac{x_B^2}{\rho_B^3} \Big[\frac{F_2^{(0)}(\xi, Q^2)}{\xi^2} + 6 \frac{m_N^2 x_B}{Q^2 \rho_B} \Delta_2(x_B, Q^2) \Big]$$

$$F_L^{GP}(x_B, Q^2) = \frac{x_B}{\rho_B} \Big[\frac{F_L^{(0)}(\xi, Q^2)}{\xi} + 2 \frac{m_N^2 x_B}{Q^2 \rho_B} \Delta_2(x_B, Q^2) \Big]$$

where

$$\xi = \frac{2x_B}{\rho_B^2} \qquad \rho_B^2 = 1 + 4x_B^2 m_N^2 / Q^2$$
$$\Delta_2(x_B, Q^2) = \int_{\xi}^{1} dv \left[1 + 2\frac{m_N^2 x_B}{Q^2 \rho_B} (v - \xi) \right] \frac{F_2^{(0)}(v, Q^2)}{v^2}$$

and, in my conventions,

$$F_L(x_B, Q^2) = \frac{\rho_B^2}{2x_B} F_2(x_B, Q^2) - F_1(x_B, Q^2)$$

accardi@jlab.org

Target Mass Corrections in OPE formalism

For polarized structure functions, [Bluemlein, Tvabkladze, . 2007]

$$g_1^{\text{OPE}}(x_B) = \frac{1}{(1+\gamma^2)^{3/2}} \frac{x_B}{\xi} g_1^{(0)}(\xi) + \frac{\gamma^2}{(1+\gamma^2)^2} \int_{\xi}^{1} \frac{dv}{v} \Big[\frac{x_B+\xi}{\xi} + \frac{\gamma^2-2}{2\sqrt{1+\gamma^2}} \log\Big(\frac{v}{\xi}\Big) \Big] g_1^{(0)}(v) g_2^{\text{OPE}}(x_B) = -g_1^{\text{OPE}}(x_B) + \int_{x_B}^{1} \frac{dy}{y} g_1^{\text{OPE}}(y) A_1^{\text{OPE}}(x_B) = \frac{(1+\gamma^2)}{F_1^{\text{OPE}}(x_B)} \Big[g_1^{\text{OPE}}(x_B) - \gamma^2 \int_{x_B}^{1} \frac{dy}{y} g_1^{\text{OPE}}(y) \Big]$$

Target Mass Corrections in OPE formalism

Why is the GP corrected FL so large??

App. B – polarized DIS

Polarized DIS

TMC for virtual photon asymmetries (leading twist):

$$\int g_1(x_B) - \gamma^2 g_2(x_B) = \sum_f g_{1,f}^{(0)} \otimes \Delta \varphi(\xi) + \text{HT}$$

 $g_1(x_B) + g_2(x_B) = 0 + \text{HT}$

where

$$\Delta\varphi_f(x) = \varphi_f^+(x) - \varphi_f^-(x) \qquad \gamma^2 = 4x_B^2 \frac{m_N^2}{Q^2} = \rho_B^2 - 1$$
$$g_{1,f}^{(0)} \otimes \Delta\varphi_f(\xi) \equiv \int_{\xi} \frac{\xi}{x_B} \frac{dx}{x} g_{1,f}^{(0)}\left(\frac{\xi}{x}, Q^2\right) \Delta\varphi_f(x, Q^2)$$

TMC for g_1 , A_1 at leading twist:

$$g_1(x_B) = \frac{1}{1+\gamma^2} \sum_f g_{1,f} \otimes \Delta\varphi(\xi)$$
$$A_1(x_B) = \frac{1}{F_1(x_B)} \sum_f g_{1,f} \otimes \Delta\varphi(\xi)$$

accardi@jlab.org

Polarized DIS at LO

Accardi, Melnitchouk '08

Polarized DIS at LO

 \Rightarrow Precision measurements of A_1 at JLAB requires both A_{\parallel} and A_{\perp}

App C – Jet mass corrections

Accardi, Qiu, JHEP '08

Jet smearing at LO – 1

Rigorously – after some toil:

- $J(m_j^2)$ is the spectral function of a vacuum quark propagator, smeared by soft momentum exchanges with the target jet

accardi@jlab.org

Collinear factorization with a jet function

[see also Collins, Rogers, Stasto, PRD '07]

Handbag diagram with a quark jet

A hat denotes a Dirac matrix:

$$\hat{T}(k) = \bigwedge_{i \to i} \int_{i \to i} \int_{i$$

(color factors are included in \hat{T})

accardi@jlab.org

Jet spectral representation - 1

$$j_2(l) = \int_0^\infty dm_j^2 J_2(m_j^2) 2\pi \delta(l^2 - m_j^2) \theta(l^0) \quad \text{with } \int_0^\infty dm_j^2 J_2(m_j^2) = 1$$

Jet spectral representation - 2

Assume color neutralization through a soft exchange with the target jet
 goes beyond the handbag diagram considered

would need generalization to fully unintegrated PDFs [Collins, Rogers, Stasto PRD '07]

Phenomenologically:

 \rightarrow A soft momentum exchange is going to smear out the jet function J₂

 \rightarrow The smeared jet function J_m is smooth in m_i^2 :

Estimate of Jet Mass Corrections

Estimate of Jet Mass Corrections

Jet function phenomenology

We need to develop a "phenomenology" of the jet function:

- from lattice QCD?
- from Dyson-Schwinger equations?
- → from e^+e^- → jets?
- from Monte Carlo simulations?

- Should we ultimately regard it only as a phenomenological tool?
 fit it to DIS data, in the spirit of "global QCD fits"
- Can we compare the fitted $J_m \approx J_2$ to lattice QCD computations ?? $\int_0^\infty dm_j^2 J_2(m_j^2) 2\pi \delta(l^2 - m_j^2) \,\theta(l^0) = \frac{1}{4l^-} \int d^4 z e^{iz \cdot l} \text{Tr} \left[\gamma^- \langle 0 | \overline{\psi}(z) \psi(0) | 0 \rangle \right]$
 - 🔶 Landau gauge vs. light-cone gauge
 - 🔶 Euclidean vs. Minkowski space

...

App. D collinear fact. and Jet function

accardi@jlab.org

Factorization procedure

[see Ellis, Furmanski, Petronzio, 1983]

Expand on a basis of Dirac matrices

 $\hat{T}(k) = \tau_1(k)\hat{1} + \tau_2(k)\not{k} + \tau_3(k)\gamma_5 + \tau_4(k)\not{k}\gamma_5$ contributes to higher twists = 0 (T-odd) cancels for unpolarized targets $\hat{J}(l) = j_1(k)\hat{1} + j_2(l)\not{l} + j_3(l)\gamma_5 + j_4(l)\not{l}\gamma_5$ enters traces with = 0 (T-odd) cancels (quark spin is unobserved) odd no. of γ 's

Dominance of k^+ , l^- in Breit frame suggests to define

$$\tau_2(k) = \frac{1}{4k^+} \operatorname{Tr}\left[\not n \hat{T}(k) \right] = \frac{1}{4k^+} \int d^4 z \, e^{iz \cdot k} \langle p | \overline{\psi}_j(z) \gamma^+ \psi(0) | p \rangle$$
$$j_2(l) = \frac{1}{4l^-} \operatorname{Tr}\left[\overline{\not n} \hat{J}(l) \right] = \frac{1}{4l^-} \int d^4 z \, e^{iz \cdot l} \langle 0 | \overline{\psi}_j(z) \gamma^- \psi(0) | 0 \rangle$$

Collinear expansion - 1

$$W^{\mu\nu}(p,q) = \int \frac{d^4k}{(2\pi)^4} \underbrace{\frac{e_q^2}{8\pi} \text{Tr}\left[\not k\gamma^{\nu} \not l\gamma^{\mu}\right]}_{= \frac{1}{\pi} H_*^{\mu\nu}(k,l)} j_2(l) \tau_2(k) \mathbb{K}(k,p,q)$$

$$i = \frac{1}{\pi} H_*^{\mu\nu}(k,l)$$
kinematic constraints
$$k^{\mu} = xp^+ \overline{n}^{\mu} + \frac{k^2 + k_T^2}{2xp^+} n^{\mu} + k_T^{\mu}$$

$$l^{\mu} = (x - \xi)p^+ \overline{n}^{\mu} + \left(\frac{k^2 + k_T^2}{2xp^+} + \frac{Q^2}{2\xip^+}\right) n^{\mu} + k_T^{\mu}$$

1) Expand H_*(k,l) around \tilde{k} \equiv xp^+ \overline{n}^{\mu} \quad [\tilde{l} \equiv \tilde{k} + q]

$$H_*^{\mu\nu}(k,l) = H_*^{\mu\nu}(\tilde{k},\tilde{l}) + \frac{\partial H_*^{\mu\nu}}{\partial k^{\alpha}}(k^{\alpha} - \tilde{k}^{\alpha}) + \dots$$

leading twist contributes to Higher Twists [Qiu '90]

NOTE:

- up to now no approximations
- + especially, I did not approximate the final state kinematic

accardi@jlab.org

Collinear expansion - 2

2) Use spectral representation

3) Assume k^- , $k_T \ll (x/\xi)Q^2 \Rightarrow j_2(l) \approx \int_0^\infty dm_j^2 J_2(m_J^2) 2\pi \delta(\tilde{l}^2 - m_J^2) \theta(l^0)$

$$W^{\mu\nu}(p,q) = \int_{0}^{\infty} dm_{J}^{2} J_{2}(m_{J}^{2}) \int \frac{d^{4}k}{(2\pi)^{4}} H_{*}^{\mu\nu}(\tilde{k},\tilde{l}) \,\delta(\tilde{l}^{2}-m_{J}^{2}) \,2\tau_{2}(k) \,\mathbb{K}(k,p,q)$$

unapproximated!
"fat quark" line: $\int_{\tilde{k}}^{q} \int \frac{d^{4}k}{(2\pi)^{4}} H_{*}^{\mu\nu}(\tilde{k},\tilde{l}) \,\delta(\tilde{l}^{2}-m_{J}^{2}) \,2\tau_{2}(k) \,\mathbb{K}(k,p,q)$

NOTE:

- → Involves a shift in the final state momentum l evil !! see [CRS]but $J_2(m_J^2)$ is unapproximated (improvement over $m_J^2=0$ case)
- → OK if $\int d^4l$ dominated by *l* such that $j_2(l)$ has small slope. In terms of the spectral representation we need,

$$rac{1-x_B}{x_B}Q^2\gtrsim m_J^2ert_{
m peak}$$

Collinear expansion - 3

4) Ignore kinematic limits on k^- , k_T : $\mathbb{K}(k, p, q) \approx \mathbb{K}(\tilde{k}, p, q)$

 $W^{\mu
u}(p,q) = \int_0^\infty dm_j^2 J_2(m_J^2) \int \frac{dx}{x} H_*^{\mu
u}(\widetilde{k},\widetilde{l}) \,\delta(\widetilde{l}^2 - m_J^2) \,\varphi_q(x) \,\mathbb{K}(\widetilde{k},p,q)$

where
$$\varphi_q(x) = \int \frac{dz^-}{2\pi} e^{iz^-k^+} \langle p | \bar{\psi}(z^-n) \frac{\gamma \cdot \bar{n}}{2} \psi(0) | p \rangle$$

needed to define collinear PDF does not respect 4-momentum conservation – evil !! – e.g.,

 $s = (p_J + p_Y)^2 \ge 4k_T^2 \implies 4k_T^2 \le \frac{1-\xi}{\xi}Q^2\left(1+\xi\frac{m_N^2}{Q^2}\right)$ 5) Set $m_l^2 = 0$ inside $H_*(\tilde{k}, \tilde{l})$ [CRS]

 $H^{\mu
u}_*(\widetilde{k},\widetilde{l})pprox H^{\mu
u}_*(\widetilde{k},\hat{l}) \quad ext{with } \hat{l}^\mu = rac{Q^2}{2\mathcal{E}n^+}n^\mu$

Needed to:

- + respect gauge invariance (otherwise $q_{\mu}^{\mu} \rightarrow \neq 0$)
- + use Ward ids in proof of factorization
- not so evil: does not touch the final state kinematic

accardi@jlab.org

Finally, as promised...

Collinearly factorized DIS at LO with Target and Jet Mass Corrections \rightarrow respects $x_B \leq 1$, goes smoothly to 0: $=rac{\xi}{Q^2}\deltaig(x-\xi(1+rac{m ilde{\jmath}}{Q^2})ig)$ $W^{\mu\nu}(p,q) = \int_0^\infty dm_J^2 J_{\bar{m}}(m_J^2) \int_{\mathcal{E}}^{\frac{\xi}{x_B}} \frac{dx}{x} \frac{1}{8\pi} \frac{e_q^2}{2} \operatorname{Tr}(\tilde{k}\gamma^{\nu}\hat{l}\gamma^{\mu}) 2\pi \,\delta(\tilde{l}^2 - m_J^2) \,\varphi_q(x)$ $\mathcal{H}^{\mu\nu}$ $F_T(x_B, Q^2) = \int_{0}^{\frac{1-x_B}{x_B}Q^2} dm_J^2 J_m(m_J^2) F_T^{(0)}\left(\xi\left(1+\frac{m_J^2}{O^2}\right), Q^2\right)$ TMC + JMC $J_m(m_J^2)$ m_{π}^2 m_I^2

accardi@jlab.org

Jet function and lattice QCD $\int_0^\infty dm_j^2 J_2(m_j^2) 2\pi \delta(l^2 - m_j^2) \,\theta(l^0) = \frac{1}{4l^-} \int d^4 z e^{iz \cdot l} \mathrm{Tr} \big[\gamma^- \langle 0 | \overline{\psi}(z) \psi(0) | 0 \rangle \big]$ Quark propagator in lattice QCD [e.g., Bowman et al. '05] $\int d^4z e^{iz \cdot q} \langle 0 | \overline{\psi}(z) \psi(0) | 0 \rangle = \frac{Z(q^2)}{i\gamma \cdot q + M(q^2)}$ 0.6 1.2 0.010 _ 0.0200.5 0.040 1.0 = 0.100 $M(q^2)$ (GeV) 0 0 $(d^{2})^{2}$

🔶 but:

- 1) Landau gauge vs. light-cone gauge
- 2) Euclidean vs. Minkowski space

2.0

2.5

3.0

3.5

4.0

Where can we trust the approximations?

Neglect of integration limits on k_T is OK if

0

0.4

0.5

0.6

$$Q_{
m max}^2 = ig(rac{1}{x_B}-1ig)Q^2\gtrsim \langle m_J^2
angle$$

0.8

0.9

0.7

XB

"Proof" of collinear factorization - 1

Generalized handbag diagram with a quark jet [Collins, Rogers, Stasto, 2007]

Factorization with fully unintegrated parton distributions (for an abelian theory of massive gluons – QCD to come soon) [CRS]

$$\begin{split} P_{\mu\nu}W^{\mu\nu} &= \int \frac{d^4k_{\rm T}}{(2\pi)^4} \frac{d^4k_{\rm J}}{(2\pi)^4} \frac{d^4k_S}{(2\pi)^4} (2\pi)^4 \delta^{(4)} (q+P-k_{\rm T}-k_{\rm J}-k_S) \times \\ &\times |H(Q,\mu)|^2 \, S_2(k_S,y_s,\mu) \, F(k_{\rm T},y_p,y_s,\mu) \, J(k_{\rm J},y_s,\mu) \\ &\quad \text{soft PCF} \quad \text{target PCF} \quad \text{jet PCF} \end{split}$$

"Proof" of collinear factorization - 2

🔶 Start from

$$\begin{split} P_{\mu\nu}W^{\mu\nu} &= \int \frac{d^4k_{\rm T}}{(2\pi)^4} \frac{d^4k_{\rm J}}{(2\pi)^4} \frac{d^4k_{\rm S}}{(2\pi)^4} (2\pi)^4 \delta^{(4)} (q+P-k_{\rm T}-k_{\rm J}-k_{\rm S}) \times \\ &\times |H(Q,\mu)|^2 \; S_2(k_S,y_s,\mu) \; F(k_{\rm T},y_p,y_s,\mu) \; J(k_{\rm J},y_s,\mu). \end{split}$$

$$\tilde{F}(w,y_p,y_s,\mu) \; = \langle p | \bar{\psi}(w) V_w^{\dagger}(n_s) I_{n_s;w,0} \frac{\gamma^+}{2} V_0(n_s) \psi(0) | p \rangle. \\ J(k_p y_s m) = \langle 0 | \bar{\psi}(w) V_w^{\dagger}(-n_s) I_{-n_s;w,0} \gamma^- V_0(-n_s) \psi(0) | 0 \rangle \end{split}$$

$$V_w(n) = P \exp\left(-ig \int_0^\infty d\lambda \, n \cdot A(w + \lambda n)\right)$$

- → neglect soft jet-target interactions, use P k_T = k, k_J=l
 → the hard function H is the same as our h_{T,L,...}
 → integrate out k_J, use spectral representation for J(k_J)
 → expand H, repeat approximations 3, 4
- \rightarrow use $n_s \cdot A = 0$ gauge