

MINERvA with Cryogenic Targets

Nuclear Physics Group Meeting Sep 22, 2009

Outline

1.Physics with hydrogen Target: d/u

2.Resolution with helium target

PDFs from lepton DIS

$$Q^2 = 4E_e E'_e \sin^2(\theta_e/2); x_{\text{Bjorken}} = rac{Q^2}{2M(E_e - E'_e)}$$

Charge symmetry: u in proton = d in neutron

$$F_{2p}/x = 4(u + \bar{u}) + (d + \bar{d}) + (s + \bar{s}) + 4(c + \bar{c})$$

$$F_{2n}/x = 4(d + \bar{d}) + (u + \bar{u}) + (s + \bar{s}) + 4(c + \bar{c})$$

2

Cino I

d/u subject to big nuclear correction

d/u at x=1 limit

$$p \uparrow = \frac{1}{\sqrt{2}}u \uparrow (ud)_{S=0} + \frac{1}{\sqrt{18}}u \uparrow (ud)_{S=1} - \frac{1}{3}u \downarrow (ud)_{S=1} - \frac{1}{3}d \uparrow (uu)_{S=1} - \frac{\sqrt{2}}{3}d \downarrow (uu)_{S=1}$$

- * SU(6) spin-flavor symmetry:
 - d/u=(1/9+2/9)/(1/2+1/18+1/9)=1/2
 - The mass difference between N and Δ implies symmetry breaking
- * S=0 diquark dominance
 - d/u=(0)/(1/2)=0
 - Hyperfine-perturbed quark model with one-gluon-exchange (Isgur et al.); MIT bag model with gluon exchange (Close & Thomas); Phenomilogical quark-diquark(Close) and Regge (Carlitz) arguments
- * $S_z=0$ diquark dominance
 - d/u=(1/9)/(1/2+1/18)=1/5
 - pQCD with helicity conservation (Farrar and Jackson); quark counting rule (Brodsky et al.)
- * Others:
 - Diquark model (Close & Roberts)

Nuclear effects in A/D ratios

1

Jlab results on EMC effects of light nuclei

EMC: not A-dependence nor density-dependent.

EMC effect for $Z \neq N$ nuclei

Cloet, Bentz, and Thomas, PRL102(2009)252301 [arXiv:0901.3559]

Isovector mean-field generated in $Z \neq N$ nuclei can modify nucleon's u and d PDFs in nucleons

Schienbein et al., PRD77(2008)054013

neutrino+iron

anti-neutrino+iron

Neutrino NuTeV vs. Drell-Yan E866

Owens et al., PRD75(2007)054030

Neutrino NuTeV has different Pull at large x from Drell-Yan E866.

d/u from W asymmetry in ppbar reaction

Melnitchouk & Peng, Phys. Lett. B400(1997)220

$$\frac{d\sigma}{dx_{F}}(W^{+}) = K\frac{2\pi G_{F}}{3\sqrt{2}} \left(\frac{x_{1}x_{2}}{x_{1}+x_{2}}\right) \left\{\cos^{2}\theta_{c} \left(u_{p}(x_{1}) \ \overline{d}_{h}(x_{2}) + \overline{d}_{p}(x_{1}) \ u_{h}(x_{2})\right) \right\}$$

$$+ \sin^{2}\theta_{c} \left(u_{p}(x_{1}) \ \overline{s}_{h}(x_{2}) + \overline{s}_{p}(x_{1}) \ u_{h}(x_{2})\right) \left\{\frac{d\sigma}{dx_{F}}(W^{-}) = K\frac{2\pi G_{F}}{3\sqrt{2}} \left(\frac{x_{1}x_{2}}{x_{1}+x_{2}}\right) \left\{\cos^{2}\theta_{c} \left(d_{p}(x_{1}) \ \overline{u}_{h}(x_{2}) + \overline{u}_{p}(x_{1}) \ d_{h}(x_{2})\right) + \sin^{2}\theta_{c} \left(s_{p}(x_{1}) \ \overline{u}_{h}(x_{2}) + \overline{u}_{p}(x_{1}) \ s_{h}(x_{2})\right)\right\}$$

$$R_{ph}(x_{F}) \equiv \frac{d\sigma/dx_{F} \left(W^{+}\right)}{d\sigma/dx_{F} \left(W^{-}\right)} \qquad R_{p\overline{p}}(x_{F}) \approx \frac{u(x_{1})}{d(x_{1})} \cdot \frac{d(x_{2})}{u(x_{2})}$$

$$A(y_{l}) = \frac{d\sigma/dy_{l}(l^{+}) - d\sigma/dy_{l}(l^{-})}{d\sigma/dy_{l}(l^{+}) + d\sigma/dy_{l}(l^{-})}$$

$$y_{l} = 1/2 \ln\left[(E_{l}+p_{l})/(E_{l}-p_{l})\right] \qquad x_{F} = (M_{W}/\sqrt{s})(e^{y} - e^{-y})$$

W asymmetry at CDF

$$R_{p\overline{p}}(x_F) \approx \frac{u(x_1)}{d(x_1)} \cdot \frac{d(x_2)}{u(x_2)}$$

$$x_F = (M_W/\sqrt{s})(e^y - e^{-y}))$$

Phys. Rev. Lett 102(2009)181801

(anti-)neutrino cross section on hydrogen

$$\begin{split} \frac{d^{2}\sigma^{\nu(\tilde{\nu})}}{dxdy} &= \frac{G_{F}^{2}M_{p}E_{\nu}}{\pi} \left[xy^{2}F_{1}^{\nu(\tilde{\nu})}(x,Q^{2}) + (1-y-\frac{M_{p}xy}{2E_{\nu}})F_{2}^{\nu(\tilde{\nu})}(x,Q^{2}) \pm y(1-\frac{y}{2})xF_{3}^{\nu(\tilde{\nu})}(x,Q^{2}) \right] \\ & F_{1}^{\nu} &= d(x) + s(x) + \bar{u}(x) + \bar{c}(x) \sim \frac{F_{2}^{\nu}}{2x} \\ F_{1}^{\tilde{\nu}} &= u(x) + c(x) + \bar{d}(x) + \bar{s}(x) \sim \frac{F_{2}^{\nu}}{2x} \\ F_{3}^{\nu} &= 2[d(x) + s(x) - \bar{u}(x) - \bar{c}(x)] \\ F_{3}^{\tilde{\nu}} &= 2[u(x) + c(x) - \bar{d}(x) - \bar{s}(x)] \\ \\ & \frac{d^{2}\sigma^{\nu}}{dxdy} \sim \frac{G_{F}^{2}M_{p}E_{\nu}}{\pi} \left[2x(1-y+y^{2}/2)(d+s+\bar{u}+\bar{c}) + 2x(y-y^{2}/2)(d+s-\bar{u}-\bar{c}) \right] \\ &= \frac{G_{F}^{2}M_{p}E_{\nu}}{\pi} \cdot 2x\left((d+s) + (1-y)^{2}(\bar{u}+\bar{c})\right) \\ & \frac{d^{2}\sigma^{\bar{\nu}}}{dxdy} \sim \frac{G_{F}^{2}M_{p}E_{\nu}}{\pi} \left[2x(1-y+y^{2}/2)(u+c+\bar{d}+\bar{s}) - 2x(y-y^{2}/2)(u+c-\bar{d}-\bar{s}) \right] \\ &= \frac{G_{F}^{2}M_{p}E_{\nu}}{\pi} \cdot 2x\left[(1-y)(\bar{u}+c) + (\bar{d}+\bar{s})\right) \\ & \frac{d^{2}\sigma^{\nu}}{d^{2}\sigma^{\bar{\nu}}}(x,y) \sim \frac{d(x)}{u(x)} \cdot \frac{1}{(1-y)^{2}} \\ & \frac{d_{0}^{2}}{u_{\eta}} \\ &= \frac{d-\bar{d}}{u-\bar{u}} \sim \frac{[F_{2}^{\nu}/x + F_{3}^{\nu}] - [F_{2}^{\bar{\nu}}/x - F_{3}^{\bar{\nu}}]}{[F_{2}^{\bar{\nu}}/x + F_{3}^{\nu}]} = \frac{(d+s) - (\bar{d}+\bar{s})}{(u+c) - (\bar{u}+\bar{c})} \\ & \text{Four independent constraints from hydrogen data.} \end{array}$$

WA21: (anti-)neutrino on hydrogen

Table 5. Structure functions $x d_v$, $x u_v$ and the ratio d_v/u ones et al, Z. Phys. C44(1989)379

Valence quark from WA21

Sterman et al, Rev. Mod. Phys. 67(1995)157

Neutrino to anti-neutrino ratio from WA21

NUMI beam line

- Most powerful v beamline so far in the world.
 - 4X10²⁰ protons/year
- Configurable beam
 - Wide range of v energies
 - Neutrino and anti-neutrino

Nominal Beam for MINERVA

Combo beam: 1 year LE+3 year ME; 4.0 x 10²⁰ POT per year

At E = 5.7 GeV: $\nu_{\mu} : \bar{\nu}_{\mu} : \nu_{e} : \bar{\nu}_{e} = 3467 : 93 : 21 : 1$

Active Scintillator Target

Triangular scintillators are arranged into planes – Wave length shifting fiber is read out by Multi-Anode PMT

XUXVXUXV (4 tracking modules) between

Carbon, Iron, Lead – mixed elements in layers to give same systematics

Design for the Cryogenic Target

GENIE and GEANT4 simulation are independent steps.

Empty Target Background

(internet in the second second

Projection with NUMI ME (anti-)neutrino beam

Projection with NUMI HE (anti-)neutrino beam

Charge Symmetry Violation

•Charge symmetry (*u* in proton = *d* in neutron) in PDFs not precisely tested. The violation could be up to 5~10% level, which could partially explain the NuTeV anomally in Weinberg angle and the dbar/ubar asymmetry.

Charge symmetry violation for valence quarks

Recent review, Londergan, Peng & Thomas, arXiv:0907.2352.

Projection on Charge Asymmetry

CC events with 4-year combo neutrino flux on He

About 0.6M DIS and 0.4M CC produced from Helium.

A Example Vertex Reconstruction

Secondary Reaction before the Detector

(Reconstructed Vertex_z from muon and pion: 1160.4)

Area Mass: HE ~50*0.114=5.7 g/cm²; AL ~1.43*2.7=3.9 g/cm²

30

Secondary Reaction in the Detector

(Reconstructed Vertex_z from muon and pion: -70 cm)

Area Mass of one plane: ~4.32*1.032=4.5 g/cm²

Energy Reconstruction for Detected Events

Energy Reconstruction for Detected Events

