#### MINERvA::Tracking Prototype Momentum Reconstruction and Particle ID of hadrons using MC data Tammy Walton Hampton Group Meeting Nov. 3, 2009



# NuMI Beam

•Movable graphite target for flux studies

•Reversible horn current allows for  $v_{\mu}$  or  $v_{\mu}$ -bar beams •Variable beam energy •92.9%  $v_{\mu}$ , 5.8%  $v_{\mu}$ -bar, and 1.3%  $v_{e}$  in low energy (LE) configuration





Pictures/plots retrieved

ttp://www-numi.fnal.gov/talks/postedtalks.html

# MINERvA Diagram

MINERvA: Main INjector ExpeRiment for v-A

|                    | Module/Frame | Scintillator<br>Planes |
|--------------------|--------------|------------------------|
| Nuclear<br>Targets | 18           | 36                     |
| Active<br>Target   | 60           | 120                    |
| DS ECAL            | 10           | 20                     |
| <b>DS HCAL</b>     | 20           | 20                     |
| Totals             | 108          | 196                    |





|        | u<br>x       | 22        | 1  |
|--------|--------------|-----------|----|
|        | V<br>X       | 21        | 2  |
| ra     | u<br>v       | 20        | 3  |
|        | ×<br>V       | 19        | 4  |
| e      | x<br>u       |           |    |
|        | x            | 18        | 5  |
| $\leq$ | V<br>X       | 17        | 6  |
| O      | u<br>x       | 16        | 7  |
| ules   | V            | 15        | 8  |
|        | x<br>u       | 14        | 9  |
|        | x<br>v       | 40        | 10 |
|        | pb/x         | 13        | 10 |
|        | pb/v<br>pb/x | 12        | 11 |
|        | pb/u         | 11        | 12 |
| S<br>S | pb/x<br>pb/v | 10 pb/    | 13 |
|        | pb/x<br>pb/u | 0         | 14 |
| C      | pb/x         | 9         |    |
| AL Re  | pb/v<br>pb/x | 8         | 15 |
|        | pb/u<br>pb/x | 7         | 16 |
|        | pb/v         | 17 6 pb/v | 17 |
| 0<br>0 | pb/x<br>pb/u | 5         | 18 |
| Ē      | pb/x         |           |    |
| n      | pb/v<br>pb/x | 4         | 19 |
|        | pb/u<br>x    | 3         | 20 |
| Н      | steel        | 2         | 21 |
| ÄL     | steel        | 1         | 22 |

### **Events: Quasi-elastic Candidates**



 $v_{\mu} + n -> \mu^{-} + p$ 

**Two different events:** Both have long track exiting detector (muon) and **short contained track when preased** dE/dx at endpoint (proton)

# Methods for Momentum Reconstruction

- Sum the total reconstructed track's visible energy to estimate the initial momentum, used the estimate initial momentum to calculate missing non-visible energy, and then iterate the initial and missing momentum to correct for the momentum.
- > Using the range tables, find the range of the reconstructed track in all material and then trace it back to a reconstructed momentum.
- Fit the reconstructed track's visible energy dE/dx profile to an expected energy loss profile.

## Momentum Reconstruction Method

- Fitted the dE/dx profile of the reconstructed track's visible energy to a calculated <dE/dx>avg profile of a particle's visible energy for various incident momenta, where the path length of the materials and the vertex plane depended on the trajectory of the reconstructed track and the <dE/dx>avg per material was calculated at the z position in each layer.
- > Used the chi squared test search algorithm to find the best fitted incident momentum for the reconstructed track.



## dE/dx profile plot





# Converting from PE to MeV: Using mono-energetic straight going through proton tracks

- Using the ParticleCannon, generated individual proton data files at the face of the TP of a momentum which equal only 700MeV/c, 800MeV/c, 900MeV/c, 1.0GeV/c, 1.1GeV/c, 1.2GeV/c or 1.3 GeV/c.
- In principal, we can take the ratio of the expected <dE/dx>avg and measured energy (cluster PE) per plane to find a conversion constant from MeV to PE
- > Used the Bethe-Bloch to calculate the expected visible  $\langle dE/dx \rangle$  avg and Birk's Law to correct for the expected  $\langle dE/dx \rangle$  avg per plane scintillator light output response, where the birk's constant was obtained for Sim.

$$k_{i} = \frac{\Delta E_{avg_{i}}(1 + k_{b} \langle \frac{dE}{dx} \rangle_{avg_{i}})}{Clus_{P}E_{i}} , \text{ excluding the first and last node on a second second$$

reconstructed track.

Took the average of the mean of the data from each distribution.

$$0.28276 \frac{MeV}{PE} \pm 0.003525$$



#### Examples of dE/dx Profile Fits

#### dE/dx Profile Plot for Event: 601



>visible energy: reconstructed track's dE/dx, where the error bars correspond to an approximated width of the energy straggling plus an estimated 5% error due to the optical model

>input pO: the generated momentum

>best fit p: the reconstructed momentum from the best chi^2 value

> path length is calculated from the reconstructed track's trajectory

Chi2 test: tests the vertex's plane and the last plane energy deposition of a recon trk

>theta: 3degrees to 33degrees

>Generate vertices X and Y with the fiducial volume

≻Z: -20.8cm to 19.2cm



#### Examples of dE/dx Profile Fits



11

### Momentum Residuals

Residual Plots for Proton MC data



> Using the dE/dx profile plots, can one discriminate proton from pion, by changing the mass from proton to pion?

#### **Discrimination of Protons and Pions**





#### **Discrimination of Protons and Pions**





# **Secondary Nuclear Interaction**





#### **Nuclear Interaction Candidates**



#### Proton that could look possible like a Pion



#### Proton that looks like a Pion





# EnergyLoss Tool

- > Input: track (nodes, clusters, clusterPE)
- > Output: reconstructed momentum, mass
- May work for proton, pion, and muon tracks leaving the HCAL rear or side providing if there is enough information
- > Working with Benjamin to implement it into the KalmanFilter Tool

# Improvement to the EnergyLoss Tool

- Develop an algorithm which recognizes reconstructed tracks that includes secondary nuclear interaction.
- Study the momentum of the reconstructed track before and after the interaction.
- > Can we do kinematics for p->2p collisions?