

Anusha Liyanage Hampton University Group Meeting

Outline

- check the dpel_hms shift variations with the HMS central angle
- Looked at the Sieve Slit
- Checked with the BigCal calibration

$$dPel_hms = \frac{P_{HMS} - P_{Cal}}{P_{cent}}$$

- X/Yclust Measured X/Y positions on the BigCal •X = horizontal / in-plane coordinate
- Y = vertical / out of plane coordinate
- Eclust Measured electron energy at the BigCal

By knowing the energy of the polarized electron beam, E_B and the scattered proton angle, Θ_P

dPel_hms peak

The peak is at -0.00477

In order to study the above dpel_hms shift, plotted the shift vs HMS angle and the BPMX/BPMY projected to the target vs HMS angle for the selected early runs.

Used the above two higher Ty positions (0.4349 and 0.8593) as the srasty offset separately and check how it effect to the dPel_hms shift and compare it with the 0 srasty offset.

With different srasty offset

42

hms angle /(deg)

3 25 3 2.75 2.5

34

36

38

40

Looked at the Sieve Slit runs

n_sr_slopey = - (negative)

 $n_{sr_slopey} = +$ (positive)

10 22.5 8 20 6 17.5 4 15 2 12.5 0 10 -2 7.5 -45 -625 -8 -10 0 -22 4 6 -6 -4 Ô (hsxptar*168) vs (hsyptar*168+hsytar)

The smallest hole is shifted ~1.0 cm.

???

BigCal Calibration ...

- Modifying the
 Calibration to use
 the low enegy blocks
 also and
- Check with the new Neural Network.