Bestimmung der Analysierstärke des A4-Compton-Rückstreupolarimeters

Determination of the analyzing power of the A4 Compton Backscattering Polarimeter

Jürgen Diefenbach

1. Juli 2010

MAMI – The Mainz Microtron Facility Parity Violation in Elastic Electron Scattering Compton Polarimetry Experimental Realization Data Analysis Summary and Outlook MAMI – The Mainz Microtron Facility

♦ MAMI – beam parameters

MAMI – principle of operation

MAMI – Groups at the Institute

Parity Violation in Elastic Electron Scattering

Compton Polarimetry

Experimental Realization

Data Analysis

Summary and Outlook

MAMI – The Mainz Microtron Facility

MAMI – beam parameters

MAMI – The Mainz Microtron Facility

MAMI – beam parameters

MAMI – principle of operation

MAMI – Groups at the Institute

Parity Violation in Elastic Electron Scattering

Compton Polarimetry

Experimental Realization

Data Analysis

- continuos (polarized) electron beam (coincidence experiments!)
- beam energy: 180...1508 (1558) MeV
- beam current up to 100 μ A (polarized)
 - "parity beam" at 315, 420, 510, 570, 855, 1500 MeV

MAMI – principle of operation

MAMI – principle of operation

Harmonic Double-Sided Microtron (HDSM): up to 1.5 GeV (1100..1508 in steps of 15 MeV)

MAMI – Groups at the Institute

MAMI – The Mainz Microtron Facility

MAMI – beam parameters

MAMI – principle of operation

MAMI – Groups at the Institute

Parity Violation in Elastic Electron Scattering

Compton Polarimetry

Experimental Realization

Data Analysis

Summary and Outlook

Experiments

- B1 Accelerator Operation & Development
- B2 Polarized Source
- A1 Electron Scattering
- A2 Tagged Photons
- A4 Parity Violation
 - X1 X-Rays

Theory

 χ PT

Lattice QCD ("Wilson": 2240 CPU cores, 2.24 TB RAM, \approx 17 TFlops (peak), 3.7 TF (sustained))

MAMI – The Mainz Microtron Facility

Parity Violation in Elastic Electron Scattering

♦ Strangeness in the Proton
♦ The A4

experiment

 Interpolation of Polarization

 Polarimeters at MAMI

Compton Polarimetry

Experimental Realization

Data Analysis

Summary and Outlook

Parity Violation in Elastic Electron Scattering

Strangeness in the Proton

MAMI – The Mainz Microtron Facility

Parity Violation in Elastic Electron Scattering

 Strangeness in the Proton

♦ The A4 experiment

 Interpolation of Polarization
 Polarimeters at

MAMI

Compton Polarimetry

Experimental Realization

Data Analysis

Summary and Outlook

sub-structure

dynamical, strongly interacting system

- Access to the dynamical aspects of QCD:
- \rightarrow strangeness contributions to the vector formfactors
- \rightarrow parity violating electron scattering

Extraction of Strange Formfactors I

MAMI – The Mainz Microtron Facility

Parity Violation in Elastic Electron Scattering

 Strangeness in the Proton

The A4 experiment

 Interpolation of Polarization

 Polarimeters at MAMI

Compton Polarimetry

Experimental

Realization

Data Analysis

Summary and Outlook

$$J^{\mu} = \sum_{f=u,d,s} Q_f \bar{f} \gamma^{\mu} f \tag{1}$$

Parametrization using formfactors:

Hadronic current:

$$J^{\mu} = e\bar{u} \left(\sum_{f=u,d,s} q_f \left(F_1^f(Q^2) \gamma^{\mu} + \frac{1}{2M} F_2^f i \sigma^{\mu\nu} q_{\nu} \right) \right) u \quad (2)$$

Dirac, Pauli \longrightarrow Sachs formfactors:

$$G_E^{p,n}(Q^2) = F_1^{p,n}(Q^2) - \tau F_2^{p,n}(Q^2)$$

$$G_M^{p,n}(Q^2) = F_1^{p,n}(Q^2) - F_2^{p,n}(Q^2)$$
(3)

Extraction of Strange Formfactors II

MAMI – The Mainz Microtron Facility

Parity Violation in Elastic Electron Scattering

 Strangeness in the Proton

The A4 experiment

 Interpolation of Polarization

 Polarimeters at MAMI

Compton Polarimetry

Experimental Realization

Data Analysis

Summary and Outlook Isospin symmetry & zero netto strangeness:

$$G_{E,M}^{u} := G_{E,M}^{p,u} = G_{E,M}^{n,d}$$

$$G_{E,M}^{d} := G_{E,M}^{p,d} = G_{E,M}^{n,u}$$

$$G_{E,M}^{s} := G_{E,M}^{p,s} = G_{E,M}^{n,s}$$
(4)

Proton:

$$G_{E,M}^{p} = \frac{2}{3}G_{E,M}^{u} - \frac{1}{3}G_{E,M}^{d} - \frac{1}{3}G_{E,M}^{s}$$
(5)

N	Δ		tı	'n	n	•
IN	C	u	U	U		•

$$G_{E,M}^{n} = \frac{2}{3}G_{E,M}^{d} - \frac{1}{3}G_{E,M}^{u} - \frac{1}{3}G_{E,M}^{s}$$
(6)

Extraction of Strange Formfactors III

MAMI – The Mainz Microtron Facility

Parity Violation in Elastic Electron Scattering

 Strangeness in the Proton

♦ The A4 experiment

Interpolation of Polarization
 Polarization

 Polarimeters at MAMI

Compton Polarimetry

Experimental Realization

Data Analysis

Summary and Outlook Hadronic current with weak interaction:

$$\tilde{J}^{\mu} \sim \bar{u} \sum_{f=u,d,s} \left[q_V^f \left(\gamma^{\mu} \tilde{F}_1^f + i \frac{\tilde{F}_2^f}{2M} \sigma^{\mu\nu} q_{\nu} \right) - q_A^f \gamma^{\mu} \gamma^5 \tilde{G}_A^f \right] u$$
(7)

Quark *distributions* should not depend on type of interaction:

$$F_{1,2}^f = \tilde{F}_{1,2}^f$$
 (8)

Therefore:

$$\tilde{G}_{E,M}^{p} = q_{V}^{u} G_{E,M}^{u} + q_{V}^{d} G_{E,M}^{d} + q_{V}^{s} G_{E,M}^{s}$$
(9)

This makes *two* relations, together with *four* relations from isospin symmetry for *six* vector formfactors $G_{E,M}^{f}$ to extract the *strange vector formfactors*.

MAMI – The Mainz Microtron Facility

Parity Violation in Elastic Electron Scattering

 Strangeness in the Proton

The A4 experiment

 Interpolation of Polarization
 Polarimeters at MAMI

Compton Polarimetry

Experimental Realization

Data Analysis

MAMI – The Mainz Microtron Facility

Parity Violation in Elastic Electron Scattering

 Strangeness in the Proton

The A4 experiment

 Interpolation of Polarization
 Polarimeters at MAMI

Compton Polarimetry

Experimental Realization

Data Analysis

MAMI – The Mainz Microtron Facility

Parity Violation in Elastic Electron Scattering

Strangeness in the Proton

The A4 experiment

 Interpolation of Polarization
 Polarimeters at MAMI

Compton Polarimetry

Experimental Realization

Data Analysis

Interpolation of Polarization

Transmission Compton Polarimeter

MAMI – The Mainz

accuracy 1 % in 30 minutes absolute calibration with the A1 Møller Polarimeter

Polarimeters at MAMI

MAMI – The Mainz Microtron Facility

Parity Violation in Elastic Electron Scattering

 Strangeness in the Proton

The A4 experiment

 Interpolation of Polarization

 Polarimeters at MAMI

Compton Polarimetry

Experimental Realization

Data Analysis

Summary and Outlook

A1 Møller Polarimeter

- absolute
- 1 % in 4 hours
- destructive
- A1 beam line
 - \rightarrow systematics
 - \rightarrow time consuming

A4 Transmission Compton Polarimeter

- relative
- non-destructive (behind target)
- 1 % in 30 minutes

B2 Mott Polarimeter

- relative (absolute)
- 1 % in 10 minutes
- destructive

Polarimeters at MAMI

MAMI – The Mainz Microtron Facility

Parity Violation in Elastic Electron Scattering

 Strangeness in the Proton

The A4

experiment

 Interpolation of Polarization

 Polarimeters at MAMI

Compton Polarimetry

Experimental	
Realization	

Data Analysis

Summary and Outlook

A1 Møller Polarimeter

- absolute
- 1 % in 4 hours
- destructive
- A1 beam line
 - \rightarrow systematics
 - \rightarrow time consuming

B2 Mott Polarimeter

- relative (absolute)
- 1 % in 10 minutes
- destructive

A4 Transmission Compton Polarimeter

- relative
- non-destructive (behind target)
- 1 % in 30 minutes

A4 Compton Backscattering Polarimeter

- absolute
- non-destructive
- 1 % in 24/48 h
 (1508/855 MeV)
- in front of target!

MAMI – The Mainz Microtron Facility

Parity Violation in Elastic Electron Scattering

Compton Polarimetry

Principle of Compton Polarimetry

Cross Section

Experimental Realization

Data Analysis

Summary and Outlook

Compton Polarimetry

Principle of Compton Polarimetry

MAMI – The Mainz Microtron Facility		
Parity Violation in Elastic Electron Scattering		
Compton Polarimetry		
 ♦ Principle of Compton Polarimetry 	polarisierter Elektronenstrahl	polarisiertes Laserlicht
Cross Section		
Experimental Realization		
Data Analysis		
Summary and Outlook		

Principle of Compton Polarimetry

Principle of Compton Polarimetry

Cross Section

MAMI – The Mainz **Microtron Facility**

Parity Violation in Elastic Electron Scattering

Compton Polarimetry

♦ Principle of Compton Polarimetry

Cross Section

Experimental Realization

Data Analysis

Summary and Outlook

 $\frac{d\sigma}{d\rho} = \frac{d\sigma_0}{d\rho} - P_e P_L \frac{d\sigma_p}{d\rho}$ where $\rho = k_f / k_f^{max}$

spin-independent part σ_0

spin-dependent part σ_p

Cross Section

MAMI – The Mainz Microtron Facility

Parity Violation in Elastic Electron Scattering

Compton Polarimetry

Principle of
 Compton
 Polarimetry

Cross Section

Experimental Realization

Data Analysis

$$rac{d\sigma}{d
ho}=rac{d\sigma_0}{d
ho}-P_eP_Lrac{d\sigma_p}{d
ho}$$
 where $ho=k_f/k_f^{max}$

MAMI – The Mainz Microtron Facility

Parity Violation in Elastic Electron Scattering

Compton Polarimetry

Experimental Realization

The A4 Compton
 Polarimeter

Detectors

Photon Detector

Electron Detector

Data Acquisition

Data Analysis

Summary and Outlook

Experimental Realization

MAMI – The Mainz Microtron Facility

Parity Violation in Elastic Electron Scattering

Compton Polarimetry

Experimental Realization The A4 Compton Polarimeter

Detectors

Photon Detector

Electron Detector

Data Acquisition

Data Analysis

MAMI – The Mainz Microtron Facility

Parity Violation in Elastic Electron Scattering

Compton Polarimetry

Experimental Realization

The A4 Compton Polarimeter

Detectors

- Photon Detector
- Electron Detector
- Data Acquisition

Data Analysis

- photon calorimeter (energy spectra)
- use second half of chicane as magnetic spectrometer
- electron detector
 - momentum-resolved detection of electrons in coincidence with photons
 - \rightarrow tagged photons

MAMI – The Mainz Microtron Facility

Parity Violation in Elastic Electron Scattering

Compton Polarimetry

Experimental Realization The A4 Compton Polarimeter

Detectors

- Photon Detector
- Electron Detector
- Data Acquisition

Data Analysis

Photon Detector

MAMI – The Mainz Microtron Facility

Parity Violation in Elastic Electron Scattering

Compton Polarimetry

Experimental Realization

The A4 Compton
 Polarimeter

Detectors

Photon Detector

Electron Detector

Data Acquisition

Data Analysis

Summary and Outlook **LYSO** (Lu_{1.8}Y_{0.2}SiO₅), *PreLude420* from Saint Gobain

• density:

• X₀:

• au:

• light yield:

7.1 g/cm³ 12 mm 41 ns 32 photons/keV, \approx 75% of NaI(TI)

crystals: 20x20x200 mm³

3×3 crystals in DF2000MA (dielectr. reflective from 3M)

fast, compact calorimeter for 1.5 ... 100 MeV photons

Electron Detector

MAMI – The Mainz Microtron Facility

Parity Violation in Elastic Electron Scattering

Compton Polarimetry

Experimental Realization

The A4 Compton
 Polarimeter

Detectors

Photon Detector

Electron Detector

Data Acquisition

Data Analysis

Summary and Outlook

Elektronenstrahl

Electron Detector

MAMI – The Mainz Microtron Facility

Parity Violation in Elastic Electron Scattering

Compton Polarimetry

Experimental Realization

The A4 Compton
 Polarimeter

Detectors

Photon Detector

Electron Detector

Data Acquisition

Data Analysis

Summary and Outlook

48 fibers

24 logic channels

plastic scintillator

- photon tagger
- 0.78 mm resp. 1.9 MeV
 per fiber @ 855 MeV

Determination of the analyzing power of the A4 Compton Backscattering Polarimeter - Jürgen Diefenbach

Data Acquisition

MAMI – The Mainz Microtron Facility

Parity Violation in Elastic Electron Scattering

Compton Polarimetry

Experimental Realization

Data Analysis

Background
 Subtraction

Energy Calibration

Influence of Detector Response

Raw Asymmetries

Determination of

the Analyzing Power

Energy Tagging

Simultaneous Fit

✤ Results

♦ Outlook

Summary and Outlook

Data Analysis

Background Subtraction

MAMI – The Mainz Microtron Facility

photon detector raw data

Parity Violation in Elastic Electron Scattering

Compton Polarimetry

Experimental Realization

Data Analysis

Background Subtraction

Energy Calibration

Influence of
 Detector Response

Raw Asymmetries

Determination of the Analyzing Power

Energy Tagging

- Simultaneous Fit
- Results

Outlook

Summary and Outlook

gray: without laser light

measurement w/o laser light to determine background

Background Subtraction

MAMI – The Mainz Microtron Facility

Parity Violation in Elastic Electron Scattering

Compton Polarimetry

Experimental Realization

Data Analysis

Background
 Subtraction

Energy Calibration

Influence of
 Detector Response

Raw Asymmetries

Determination of the Analyzing Power

Energy Tagging

- ♦ Simultaneous Fit
- Results

Outlook

Summary and Outlook

photon detector raw data

- red/blue: with laser light
- gray: without laser light
 - measurement w/o laser light to determine background
- normalization above max. energy of backscattered photons

Background Subtraction

MAMI – The Mainz Microtron Facility

Parity Violation in Elastic Electron Scattering

Compton Polarimetry

Experimental Realization

Data Analysis

Background
 Subtraction

Energy Calibration

 Influence of Detector Response

Raw Asymmetries

Determination of the Analyzing Power

Energy Tagging

- Simultaneous Fit
- Results

Outlook

Summary and Outlook

spectra of backscattered photons

after normalization and background subtraction
red/blue: e⁻ beam helicity

Energy Calibration

MAMI – The Mainz Microtron Facility

Parity Violation in Elastic Electron Scattering

Compton Polarimetry

Experimental Realization

Data Analysis

Background
 Subtraction

Energy Calibration

Influence of
 Detector Response

Raw Asymmetries

Determination of the Analyzing Power

Energy Tagging

♦ Simultaneous Fit

ResultsOutlook

Summary and Outlook

absolute energy calibration

fit simulated to measured backscattered photon spectrum parameters: pedestal und sensitivity (MeV/ch) of QDCs

Energy Calibration

absolute energy calibration

MAMI – The Mainz Microtron Facility

Parity Violation in Elastic Electron Scattering

Compton Polarimetry

Experimental Realization

Data Analysis

Background
 Subtraction

Energy Calibration

 Influence of Detector Response

Raw Asymmetries

Determination of the Analyzing Power

Energy Tagging

- Simultaneous Fit
- Results

Outlook

Summary and Outlook

fit simulated to measured backscattered photon spectrum parameters: pedestal und sensitivity (MeV/ch) of QDCs

Influence of Detector Response

Influence of Detector Response

Determination of the analyzing power of the A4 Compton Backscattering Polarimeter - Jürgen Diefenbach

Raw Asymmetries

MAMI – The Mainz Microtron Facility

Parity Violation in Elastic Electron Scattering

Compton Polarimetry

Experimental Realization

Data Analysis

Background
 Subtraction

Energy Calibration

 Influence of Detector Response

Raw Asymmetries

 Determination of the Analyzing Power

Energy Tagging

Simultaneous Fit

Results

♦ Outlook

Summary and Outlook

Determination of the Analyzing Power

MAMI – The Mainz Microtron Facility

Parity Violation in Elastic Electron Scattering

Compton Polarimetry

Experimental Realization

Data Analysis

Background
 Subtraction

Energy Calibration

Influence of
 Detector Response

Raw Asymmetries

 Determination of the Analyzing Power

Energy Tagging

Simultaneous Fit

Results

Outlook

Summary and Outlook energy spectrum: cuts on *measured* energy
required: cuts on *true* energy

Determination of the Analyzing Power

MAMI – The Mainz Microtron Facility

Parity Violation in Elastic Electron Scattering

Compton Polarimetry

Experimental Realization

Data Analysis

Background
 Subtraction

Energy Calibration

 Influence of Detector Response

Raw Asymmetries

 Determination of the Analyzing Power

Energy Tagging

Simultaneous Fit

Results

♦ Outlook

Summary and Outlook energy spectrum: cuts on *measured* energy
 required: cuts on *true* energy

Determination of the Analyzing Power

MAMI – The Mainz Microtron Facility

Parity Violation in Elastic Electron Scattering

Compton Polarimetry

Experimental Realization

Data Analysis

Background
 Subtraction

Energy Calibration

 Influence of Detector Response

Raw Asymmetries

Determination of the Analyzing Power

Energy Tagging

- Simultaneous Fit
- Results

♦ Outlook

Summary and Outlook

energy spectrum: cuts on *measured* energy required: cuts on *true* energy

Alternative: tagged photons = quasi-monoenergetic photons

MAMI – The Mainz Microtron Facility

Parity Violation in Elastic Electron Scattering

Compton Polarimetry

Experimental Realization

Data Analysis

Background
 Subtraction

Energy Calibration

 Influence of Detector Response

Raw Asymmetries

Determination of the Analyzing Power

Energy Tagging

Simultaneous Fit

Results

♦ Outlook

Summary and Outlook

One photon spectrum for each fiber

$$E_e + E_{\gamma} = E_{beam}$$

MAMI – The Mainz Microtron Facility

Parity Violation in Elastic Electron Scattering

Compton Polarimetry

Experimental Realization

Data Analysis

Background
 Subtraction

Energy Calibration

Influence of
 Detector Response

Raw Asymmetries

Determination of the Analyzing Power

Energy Tagging

Simultaneous Fit

✤ Results

♦ Outlook

Summary and Outlook

projection from 2dim simulation using $\eta_i(E)$

Simultaneous Fit

set of parameters:

- distance fiber bundle beam
- dispersion of chicane
- width of Gaussian filter
 - (to respect beam position fluctuations etc.)

MAMI – The Mainz Microtron Facility

Parity Violation in Elastic Electron Scattering

Compton Polarimetry

Experimental Realization

Data Analysis

Background
 Subtraction

Energy Calibration

Influence of
 Detector Response

Raw Asymmetries

Determination of

the Analyzing Power

Energy Tagging

Simultaneous Fit

Results

Outlook

Summary and Outlook

Simultaneous Fit

MAMI – The Mainz Microtron Facility

Parity Violation in Elastic Electron Scattering

Compton Polarimetry

Experimental Realization

Data Analysis

Background
 Subtraction

Energy Calibration

Influence of
 Detector Response

Raw Asymmetries

Determination of the Analyzing Power

Energy Tagging

Simultaneous Fit

✤ Results

♦ Outlook

Summary and Outlook

Simultaneous Fit

set of parameters:

- distance fiber bundle beam
- dispersion of chicane
- width of Gaussian filter
 - (to respect beam position fluctuations etc.)

examined sources of errors/applied corrections:

- energy calibration
- dead-time corrections
- pileup (multiple hits)
- random coincidences
- background asymmetries
- analysis thresholds/ranges
- beam energy
- laser wavelength
- geometry of fiber bundle

MAMI – The Mainz Microtron Facility

Parity Violation in Elastic Electron Scattering

Compton Polarimetry

Experimental Realization

Data Analysis

- Background
 Subtraction
- Energy Calibration
- Influence of
 Detector Response
- Raw Asymmetries
- Determination of
- the Analyzing Power
- Energy Tagging

Simultaneous Fit

- Results
- Outlook
- Summary and Outlook

Results

Microtron Facility

855 MeV data set: microsample #1 MAMI – The Mainz

Parity Violation in Elastic Electron		Wert	stat.	syst.
Compton	polarization product./%	53.24		
Polarimetry	correction: dead-time	+0.28	0.10	
Experimental Realization	correction: random coinc.	+2.24	0.09	
Data Analysis				
 Background Subtraction 	corr. polarization prod.	55.76		
Energy Calibration	Unterarundnormierung		0.02	
 Influence of Detector Response 	stat. err. (incl. correlations)		4.05	
Raw Asymmetries	energy calibration		0.06	
Determination of the Analyzing Power	lower threshold (analysis)			0.11
Energy Tagging	beam energy laser wavelength			0 00
Simultaneous Fit				0.00
♦ Results	geometry fiber bundle			0.14
* Outlook				
Summary and Outlook	polarization prod./%	55.76	4.05	0.18

Results

MAMI – The Mainz Microtron Facility

Parity Violation in Elastic Electron Scattering

Compton Polarimetry

Experimental Realization

Data Analysis

Background
 Subtraction

Energy Calibration

Influence of
 Detector Response

Raw Asymmetries

Determination of the Analyzing Power

Energy Tagging

♦ Simultaneous Fit

Results

Outlook

Summary and Outlook

855 MeV data set:

 $P_e P_L = \begin{cases} (52.67 \pm 1.15_{\text{stat.}}) \% \text{ GVZ OUT} \\ (52.82 \pm 0.92_{\text{stat.}}) \% \text{ GVZ IN} \end{cases}$

for a laser polarization of

 $P_L = (83.5 \pm 1.0) \%$ (preliminary)

one gets

$$P_e = \begin{cases} (63.08 \pm 1.38_{\text{stat.}} \pm 1.11_{P_L}) \% \text{ GVZ OUT} \\ (63.26 \pm 1.10_{\text{stat.}} \pm 1.11_{P_L}) \% \text{ GVZ IN} \end{cases}$$

MAMI – The Mainz Microtron Facility

Parity Violation in Elastic Electron Scattering

Compton Polarimetry

Experimental Realization

Data Analysis

Background
 Subtraction

Energy Calibration

Influence of Detector Response

Raw Asymmetries

Determination of

the Analyzing Power

Energy Tagging

Simultaneous Fit

Results

Outlook

Summary and Outlook Determination of beam polarization at 1508 MeV:

$$\Delta A_{PV} = \sqrt{\left(\frac{\Delta A_{PV}^{Roh}}{0.80}\right)^2 + \left(\frac{A_{PV}^{Roh}}{P_e^2}\Delta P_e\right)^2}$$

so far $\Delta P_e/P_e = 5 \%$ $\Delta A_{PV} = 1.68 \cdot 10^{-6}$

MAMI – The Mainz Microtron Facility

Parity Violation in Elastic Electron Scattering

Compton Polarimetry

Experimental Realization

Data Analysis

Background
 Subtraction

Energy Calibration

Influence of
 Detector Response

Raw Asymmetries

Determination of the Analyzing Power

Energy Tagging

♦ Simultaneous Fit

Results

Outlook

Summary and Outlook Determination of beam polarization at 1508 MeV:

$$\Delta A_{PV} = \sqrt{\left(\frac{\Delta A_{PV}^{Roh}}{0.80}\right)^2 + \left(\frac{A_{PV}^{Roh}}{P_e^2}\Delta P_e\right)^2}$$

so far $\Delta P_e/P_e = 5 \%$ $\Delta A_{PV} = 1.68 \cdot 10^{-6}$

now
$$\Delta P_e / P_e = 1.5 \%$$

 $\Delta A_{PV} = 1.19 \cdot 10^{-6}$

MAMI – The Mainz Microtron Facility

Parity Violation in Elastic Electron Scattering

Compton Polarimetry

Experimental Realization

Data Analysis

Background
 Subtraction

Energy Calibration

Influence of
 Detector Response

Raw Asymmetries

Determination of

the Analyzing Power

Energy Tagging

Simultaneous Fit

♦ Results

Outlook

Summary and Outlook Determination of beam polarization at 1508 MeV:

$$\Delta A_{PV} = \sqrt{\left(\frac{\Delta A_{PV}^{Roh}}{0.80}\right)^2 + \left(\frac{A_{PV}^{Roh}}{P_e^2}\Delta P_e\right)^2}$$

so far $\Delta P_e/P_e = 5 \%$ $\Delta A_{PV} = 1.68 \cdot 10^{-6}$

now $\Delta P_e / P_e = 1.5 \%$ $\Delta A_{PV} = 1.19 \cdot 10^{-6}$

29 % smaller uncertainty in ΔA_{PV} , i.e. a factor of **3.3** in ΔP_e

MAMI – The Mainz Microtron Facility

Parity Violation in Elastic Electron Scattering

Compton Polarimetry

Experimental Realization

Data Analysis

Summary and Outlook

Summary and Outlook

Summary

MAMI – The Mainz Microtron FacilityParity Violation in Elastic Electron ScatteringCompton PolarimetryExperimental RealizationData AnalysisSummary and Outlook	 Installation of a collinear Compton backscattering polarimeter Improvement/development to achieve routine operation Energy tagging: Connect data with cross section asymmetry → robust basis for data analysis → precise measurement of longitudinal beam polarization
---	--

Determination of the analyzing power of the A4 Compton Backscattering Polarimeter - Jürgen Diefenbach

Summary

Parity Violation in Elastic Electron Scattering Compton Polarimetry Experimental Realization Data Analysis Summary and Outlook	 polarimeter Improvement/de Energy tagging: asymmetry → robust basis → precise meas
	 Improvement of Improvement of (1.5 GeV, Q²=0

- Installation of a collinear Compton backscattering polarimeter
- Improvement/development to achieve routine operation
- Energy tagging: Connect data with cross section asymmetry
 - \rightarrow robust basis for data analysis
 - \rightarrow precise measurement of longitudinal beam polarization
- Improvement of ∆P_e/P_e by a factor of 3.3
 Improvement of ∆A_{PV} by presumably 30 %
 - (1.5 GeV, Q^2 =0.6 (GeV/c)²)

MAMI – The Mainz Microtron Facility

Parity Violation in Elastic Electron Scattering

Compton Polarimetry

Experimental Realization

Data Analysis

Summary and Outlook

- Data analysis for 1508 MeV Compton data still pending... (convergence of simultaneous fits)
- Compton has zero analyzing power for transverse spin so far (no position sensitive photon detector)
 - \rightarrow polarimeter for transverse spin:
 - Møller scattering in hydrogen target
 - collimator to select θ_{lab}
 - dipole magnet to separate Møller from ep, ...
 - current/integrating mode detector
 - "tracking mode" with plastic scintillators to tune apparatus at low beam current

Diploma thesis, D. Becker Seemed to work in beam test two weeks ago! MAMI – The Mainz Microtron Facility

Parity Violation in Elastic Electron Scattering

Compton Polarimetry

Experimental Realization

Data Analysis

Summary and Outlook

Backup

Faserdetektor

energy deposition in a fiber as function of electron energy

Determination of the analyzing power of the A4 Compton Backscattering Polarimeter - Jürgen Diefenbach

Faserdetektor

number of photo electrons of a fiber channel as function of photon energy

Determination of the analyzing power of the A4 Compton Backscattering Polarimeter - Jürgen Diefenbach
Faserdetektor

spectrum of photo electrons: measurement simulation

Determination of the analyzing power of the A4 Compton Backscattering Polarimeter - Jürgen Diefenbach

Faserdetektor

simulated trigger efficiency of a fiber with fitted $\eta_i(E)$

Determination of the analyzing power of the A4 Compton Backscattering Polarimeter - Jürgen Diefenbach

Strange Form Factors at 0,6 (GeV/c)²

A4 beam times 2009/2010: $A_{PV} \stackrel{Q^2(\text{GeV}^2)}{= 23}$ ppm, $A_0 = 28$ ppm (preliminary)

- $G_E^S + 0,623G_M^S = 0,075 \pm 0,026$ $G_E^S(0,6) = 0 \rightarrow G_M^S = 0,12 \pm 0,04$

Analysis not finished yet, small strangeness contributions possible!

Separation of G_E^S , G_M^S : measurement at 615 MeV, $\theta = 135^\circ$. Impossible due to very high background!?

Determination of the analyzing power of the A4 Compton Backscattering Polarimeter - Jürgen Diefenbach