

OLYMPUS GEM Luminosity Monitors

ÖZGÜR ATES HAMPTON UNIVERSITY

1 October 2013 – HU Nuclear Group Meeting

Content

The OLYMPUS Experiment

- 12-degree GEM Luminosity Measurements
- Detector Performance: Resolutions and Efficiencies
 Trigger Efficiencies of the 12-degree Lumi System
 2D Comparison Plots: (GEMs vs MWPCs) and (Protons vs Leptons)

The Motivation of The OLYMPUS Experiment

Two-photon exchange theoretically suggested :

Interference of one- and twophoton amplitudes

$$\sigma = (1\gamma)^2 \alpha^2 + (1\gamma)(2\gamma)\alpha^3 + \dots$$

 $e^- \iff e^+ \Rightarrow \alpha \iff -\alpha$

Measure ratio of positron-proton to electron-proton unpolarized elastic scattering to 1% Precision!! in stat.+sys.

The OLYMPUS Experiment at DESY

- Electrons/positrons (100mA) in multi-GeV storage ring DORIS at DESY, Hamburg, Germany
- OLYMPUS prepared at DORIS/DESY since 2010.
- Took full data set in 2012 with two periods.
- Comparison of e⁺p and e⁻p elastic scattering to study the effect of "Two Photon Exchange".

DORIS Electron/Positron Storage Ring

The OLYMPUS Experiment

GEM LUMINOSITY MONITORS

"Luminosity monitors for LEPTON in coincidence with Recoil PROTON detected in the opposite sector, and vice versa"

Beam spot with GEM telescope - May 20, 2013 (!) at PSI

They are being used for beam particle trajectories.

Luminosity Monitoring

Triple Ratio:

Run the Experiment for the 2 beam particles: e⁻ and e⁺ Frequent switching between e+ and e- to reduce systematics

- Forward-angle (high-epsilon, low-Q) elastic scattering means that the effect of two-photon exchange is minimal, hence cross sections: (σ_{e+} ≈ σ_{e-})
- Two Telescopes: Left-right symmetry = Redundancy

Extracting 12-degree Luminosity

STEP 1 (Cross-Sections)

DATA/MC Cross Section Ratio

The Method For Efficiencies

- Fitting 5 out of 6 elements together with MWPC chambers
- Vicinity search for the testing element within 5 "sigma" radius if there is hit closer to track projection in the 2D areas.

"sigma" = sigma of residual [hit-track] about 400 μm.

- Binomial Probability
- \rightarrow If detected (success)
- \rightarrow If not seen (inefficiency)

Sigma Radius (US GEM)

Observed Efficiency 95.8% (US GEM)

Efficiency vs Sigma

Residual [hit-track] of testing US GEM

Background corrected Efficiency US GEM 95.5%

US GEM Efficiency Map 95.5%

20

Binomial Error corrected US GEM Efficiency

95.5% +/- 0.3%

US GEM Error Map

Resolutions of the GEM and MWPC Detectors

GEM Efficiency and Resolution Table

EFFICIENCIES ('%' percentage)	US GEM	MI GEM	DS GEM
LEFT SECTOR	96.0% +/- 0.3%	94.8% +/- 0.3%	95.8% +/- 0.4%
RIGHT SECTOR	95.5% +/- 0.3%	94.4% +/- 0.4%	96.2% +/- 0.4%

RESOLUTIONS ('µm' micrometer)	US GEM	MI GEM	DS GEM
LEFT SECTOR (X Axis)	76.0 +/- 0.5	78.8+/- 0.5	73.8 +/- 0.4
RIGHT SECTOR (X Axis)	78.0 +/- 0.4	74.4+/- 0.5	72.1+/- 0.3

12-degree Trigger Efficiencies for Right Sector

24

1D Comparison Histograms: GEMs - MWPCs

Elastic ep Events

2D Comparison Plots: Protons vs Electrons

SUMMARY

✓ OLYMPUS collected good data in Feb 2012 and Oct 2012 - Jan 2013.

✓ The 12-degree GEMs and MWPCs have performed very well.

✓ Optical survey was done in order to correct misalignments and geometry issues.

✓ More precise field measurements were done in order to correct magnetic field imperfections.

 \checkmark Analysis is underway with 2 alternative tracking codes.

✓ Olympus aims to determine two photon contribution to ep elastic scattering with 1% precision.