Searching for Heavy Photons Using TREK

Peter Monaghan (& Michael Kohl) Hampton University

Nuclear Physics Group Meeting, HU, 4th March 2014

Search for light U(1) gauge boson A'

- 23% of the universe are Dark Matter
 - \rightarrow Rotation of galaxies; gravitational lensing; DAMA/LIBRA; WMAP \rightarrow >100 GeV WIMPs favored
- U(1) hidden sector extension of the Standard Model: Dark Matter interacting with SM via U(1) gauge boson (Fayet 2004)
- Astrophysical motivation for Dark Matter annihilation: positron excess PAMELA, FERMI, AMS-02
- Muon anomalous magnetic moment g_{μ} -2
 - \rightarrow Kinetic mixing model (Holdom 1986, Pospelov 2009)
- Beyond kinetic mixing: Proton radius puzzle R_p
- Lepton-flavor non-universal interaction (preferred coupling to muons)
 → Coupling to right-handed muons (Batell, McKeen, Pospelov)
 due to constraints from neutrino scattering
 → Fine-tuned non-universal couplings (Carlson, Rislow)

Positron excess from DM annihilation?

 Arkani-Hamed, Finkbeiner, Slatyer, Weiner and Pospelov & Ritz proposed DM annihilation to hidden sector photons (A's) in the mass range 20-1000 MeV/c² as the source of HE cosmic e+e-.

3

Muon anomalous magnetic moment

Muon g-2 experiment disagrees with theory at the 3 sigma level. A heavy photon with $m \sim 10\text{-}100 \text{ MeV}$ and $\varepsilon \sim 10^{-2} - 10^{-3}$ could solve the problem!

Anomaly 'usually' explained by SUSY with large tanß

Search for light U(1) gauge boson A'

 Light mediator of dark force coupled to SM via kinetic mixing; motivated by astrophysics, g_µ-2, (and proton radius puzzle R_p)

5

Possible kaon decay channels in E36

 K^+ decays ~ 10^{10} Signal: $K^+ \rightarrow \pi^+ A'$, $A' \rightarrow e^+ e^-$ Background: BR($K^+ \rightarrow \pi^+ e^+ e^-$) ~ 2.9 x 10⁻⁷ ~ 2,900 ev.

Signal: $K^+ \rightarrow \mu^+ \nu A', A' \rightarrow e^+e^-$ Background: BR($K^+ \rightarrow \mu^+ \nu e^+ e^-$) ~ 2.5 x 10⁻⁵ ~ 250,000 ev. Add. background from $K^+ \rightarrow \mu^+ \nu \pi^0 \rightarrow \mu^+ \nu e^+ e^-(\gamma)$

 π^{0} decays ~ 3x10⁸ – 2x10⁹ π^{0} production: $K^{+} \rightarrow \mu^{+} \nu \pi^{0} (3.27\%); K^{+} \rightarrow \pi^{+} \pi^{0} (21.13\%)$ Signal: $\pi^0 \rightarrow \gamma A', A' \rightarrow e^+e^-$ Background: BR($\pi^0 \rightarrow \gamma e^+ e^-$) ~ 1.2% ~ (0.3–2.3)x10⁷ ev. P. Adlarson et al., 1304.0671 [hep-ex] (WASA/COSY): "World's largest sample" 5x10⁵

Search for light U(1) gauge boson A'

- Light mediator of dark force coupled to SM via kinetic mixing; motivated by astrophysics, g_µ-2, (and proton radius puzzle R_p)
- Possibly enhanced coupling to muons, not probed by electroproduction
- Measure all charged decay particles and search for peak in the *e*⁺*e*⁻ invariant mass spectrum in the range 0-380 MeV
 e⁺_k

The rare kaon decay $K^+ \rightarrow \mu^+ \nu A \rightarrow \mu^+ \nu e^+ e^-$

T. Beranek

- Approximate γ' signal as in case of Fixed Target Searches
- Reach estimate possible by

$$\varepsilon^{2} = \frac{2}{\sqrt{BR\left(K_{\mu^{+}\nu_{\mu}l^{+}l^{-}}\right)(m_{\gamma'}) \times N_{K^{+}}}} \frac{2N\alpha}{3\pi} \frac{\delta m}{m_{\gamma'}}$$

Radiative kaon decay $K^+ \rightarrow \mu^+ \nu e^+ e^-$

C. Carlson; T. Beranek

FIG. 1: QED contribution to $K^+ \rightarrow \mu^+ + \nu_\mu + e^+ + e^-$.

Background: SM process with time-like (virtual) photon exchange

- Calculable in QED, BR(K⁺ → μ⁺ ν e⁺ e⁻) = 2.49 x 10⁻⁵ J. Bjnens et al., Nucl. Phys. B396, 81 (1993), hep-ph/9209261
- Measured for m_{ee} > 145 MeV/c²
 A. Poblaguev et al., Phys. Rev. Lett. 89, 061803 (2002), hep-ex/0204006

Exclusion limit – visible decay mode

T. Beranek

The proton radius puzzle

- >7σ discrepancy between muonic and electronic measurements
- High-profile articles in Nature, NYTimes, etc.
- Puzzle unresolved, possibly New Physics

nature

11

OIL SPILLS There's mor to com PLAGIARISM

ou thin CHIMPANZEES

Lepton universality and the proton radius

Batell, McKeen, Pospelov, PRL107, 011803 (2011), arXiv 1103.0721: can solve proton radius puzzle

- new e/µ differentiating force consistent with g_µ-2
- <100 MeV gauge boson V or dark photon</p>
- resulting in large PV µp scattering (coupling to right-handed muons)

Barger, Chiang, Keung, Marfatia (arXiv:1109.6652):

constrained by K → µv decay (but only if V decays invisibly!)

U(1) boson, g_{μ} -2, and the proton radius

C. Pang, R. Hildebrand, G. Cable, and R. Stiening, Phys. Rev. D8, 1989 (1973)

Proton radius and New Physics

C. Carlson and B. Rislow, Phys. Rev. D 86, 035013 (2012); [arXiv1206.3587v2]

New Physics involving light U(1) bosons can explain proton radius puzzle Fine tuning, preferred coupling to muon (not electron) – lepton non-universality Emission of Φ as radiative correction to K $\rightarrow \mu\nu$ decay

Experimental limit taken from stopped kaon experiment at Bevatron in 1970's: C. Pang, R. Hildebrand, G. Cable, and R. Stiening, Phys. Rev. D8, 1989 (1973)

E36 can probe entire allowed range: BR($K^+ \rightarrow \mu^+ \nu A'$) ~10⁻⁸

Search for a new particle in $K^+ \rightarrow \mu^+ \nu e^+ e^-$

Search for a new particle in $K^+ \rightarrow \mu^+ \nu e^+ e^-$

HUGE signals predicted, E36 very stringent test

Search for a new particle in $K^+ \rightarrow \mu^+ \nu e^+ e^-$

Determination of Mixing Parameter, ϵ^2

- Provided by T. Beranek context of dark photon model.
- Based on cross section ratio derived in eqn. 19 of Bjorken *et al.*, Phys. Rev. **D80**, 075018 (2009)
- Requires signal > 2*(background fluctuation)

$$\varepsilon^{2} = \frac{2}{\sqrt{BR\left(K_{\mu^{+}\nu_{\mu}I^{+}I^{-}}\right)(m_{\gamma'}) \times N_{K^{+}}}} \frac{2N\alpha}{3\pi} \frac{\delta m}{m_{\gamma'}}$$

$$BR\left(K_{\mu^+\nu_{\mu}I^+I^-}^+\right)\left(m_{\gamma'}\right) \times N_{K^+} = \text{total number of events in} \\ \text{mass bin at } m_{\gamma'} \text{ with width } \delta m$$

$$\frac{\delta m}{m_{\gamma'}} \longleftarrow \text{mass cut}$$

$$\frac{\delta m}{m_{\gamma'}} \longleftarrow \text{Chosen heavy photon mass}$$

Estimating ε² from Simulations

Two sets of simulations \implies signal and background events

Background: $K \rightarrow \mu^+ \nu_\mu e^+ e^-$

Signal:
$$K \to \mu^+ \nu_\mu A' \qquad A' \to e^+ e^-$$

- Signal simulation throws invariant mass of $\mu^+\nu_{\mu}$ system, for a chosen A' mass
- Throw angles of A' in lab
- Allow it to decay to e^+e^- pair in its own rest frame; throw angles
- Boost e^+e^- vectors back to lab frame and reconstruct mass
- Smear momenta and angles of e^+e^- pair in lab; reconstruct mass
- Apply threshold cut at 5 MeV and acceptance cuts for CsI calorimeter

Smear e⁺ & e⁻ Angles & Momenta

Electron theta vs phi SMEARED angles

- Smear angles and momenta with gaussian
- Apply acceptance cuts to angles

TREK Detector System

Reconstructed Invariant Mass

Reconstructed Invariant Mass e+e-

- Solid line is before acceptance cut
- Dashed line is after CsI acceptance cut applied.
- Use sigma for mass cut with $\delta m = 2^* \sigma$

Signal Width to Determine δm

- Example for 10 MeV
- Fit a Gaussian and find the sigma value
- Use sigma for mass cut with $\delta m = 2^* \sigma$

Background Differential Branching Ratio

- Provided by T. Beranek
- Total integral = 2.36e-5
- Weight every throw with value of BR at the mass of the event thrown.
- Renormalise the weighted curve to transform into counts arising from a given number of initial stopped kaons.

Weighted Throws in Simulation

- Weight each throw by diff. BR
- The higher the number of throws the smoother the curve and less statistical fluctuations.
- Next can convert this into a distribution of background events.

Background Event Simulation

from Bijnens et al., Nucl. Phys. B396 (1993) 81-118

Ideal Theoretical ε²

$$\varepsilon^{2} = \frac{2}{\sqrt{BR\left(K_{\mu^{+}\nu_{\mu}l^{+}l^{-}}\right)\left(m_{\gamma'}\right) \times N_{K^{+}}}} \frac{2N\alpha}{3\pi} \frac{\delta m}{m_{\gamma'}}$$

- Ideal curves from T. Beranek
- Chose $\delta m = 1 \text{ MeV}$
- Assumes perfect 4π acceptance

Simulated ε²

- δm cut varies
- depends on width found in signal simulations
- Use δm = 2*σ
- σ ~ 2.5 11 MeV
- Rescaled to take account of the acceptance
- Apply detector acceptance cuts

Linear Scale ε² Comparison

- With standard E36 specification, ε² probes *g-2* band
- more stopped kaons
 → ε² curve probes lower

TREK/E36:

Kaons delivered:	1.0×10^{12}
&& stopped:	2.5x10 ¹¹
&& μ^+ accepted:	1.8×10^{10}
&& e ⁺ e ⁻ accepted:	1.0×10^{10}

Summary

- Many experiments searching for heavy photons
 - \rightarrow electron scattering, kaon decay,
- Using rare kaon decay channel, can probe parameter space for dark photon model universal coupling.
- TREK E36 specifications lend to an exclusion curve in the g-2 region
- Simulations presented are a first step
- Other background decay channels to be investigated
- If other models (e.g. right-handed muon) are correct, then exclusion region for those signals should be straightforward to measure.

