Nuclear Physics Group Meeting September 2014

Geant4 simulation for the TREK experiment at J-PARC

Bishoy H. Dongwi

Hampton University, Hampton, VA 23668

1

*This work has been supported by DOE Early Career Award DE-SC0003884

Overview

- Introduction
- Physics Motivation
- Test of Lepton Flavor Universality
- Search for Heavy Sterile neutrino (N)
- Search for Light U(1) gauge boson
- Implementation of Geant4 Framework
 - Geometry
 - Optimization of magnetic field
- Further Study

What Is Trek?

- Time Reversal violation Experiment with Kaons
 - Measurement of T-violating transverse muon polarization (P_T) in K⁺ $\rightarrow \pi^0\mu^+\nu$ decays
- E36 (Lepton Universality & Sterile Neutrino Search)
 - Measurement of $\Gamma(K^+ \to e^+\nu)/\Gamma(K^+ \to \mu^+\nu)$ and search for heavy sterile neutrinos using the TREK detector system
 - Use TREK apparatus with stopped kaons to search for:
 - Lepton Flavor Universality
 - Heavy Sterile Neutrino
 - U(1) Boson

Physics Motivation

- Search for new physics beyond the Standard Model (SM)
- SM effective low energy description, new physics lies at ~1TeV and:
 - Dark matter (~23%) & dark energy (72%) cannot be explained
 - Baryogenesis cannot be derived from the SM
 - Neutrino masses

Test Lepton Flavor Universality

<u>Lepton Flavor Universality</u> – e, μ and τ: Have different masses, same gauge couplings

$$\Gamma(K_{l2}) = g_l^2 (G^2/8\pi) f_K^2 m_K m_l^2 \{1 - (m_l^2/m_K^2)\}^2$$

 $\Rightarrow g_e = g_\mu$

- Branching ratio of Leptonic K⁺ decay

$$R_{K}^{SM} = \frac{\Gamma(K^{+} \to e^{+}\nu)}{\Gamma(K^{+} \to \mu^{+}\nu)} = \frac{m_{e}^{2}}{m_{\mu}^{2}} \left(\frac{m_{K}^{2} - m_{e}^{2}}{m_{K}^{2} - m_{\mu}^{2}}\right)^{2} (1 + \delta_{r})$$

- Hadronic form factors cancel
- SM prediction is highly precise
 - R_KSM= (2.477±0.001) x 10⁻⁵

Lepton Flavor Universality cont...

High sensitivity to LFV beyond SM

- MSSM with charged-Higgs SUSY-LFV
- Can strongly be enhanced by emission of τ neutrino (v_τ)

$$R_{K}^{LFV} = R_{K}^{SM} \left(1 + \frac{m_{K}^{4}}{M_{H^{+}}^{4}} \cdot \frac{m_{\tau}^{2}}{m_{e}^{2}} \Delta_{13}^{2} \tan^{6}\beta \right)$$

~R_KSM(1±0.013)

J. Girrbach and U. Nierste, arXiv:1202.4906;

A. Masiero, P. Paradisi, and R. Petronzio, Phys. Rev. D 74, 011701 (2006); JHEP11, 042 (2008)

- Current Experimental Precision (KLOE, NA62)
 - $R_{K} = (2.488 \pm 0.010) \times 10^{-5}, \Delta R_{K} / R_{K} = 0.4\%$

Improve precision to 0.25% (0.20%stat.+0.15% sys.)

Search For Heavy Sterile Neutrinos

- ν Minimal Standard Model (vMSM)
 - Explanation of DM and BAU
 - Possibility of $M_N \leq M_K$
- monochromatic peaks in K⁺ \rightarrow µ⁺N, K⁺ \rightarrow e⁺N

D. Gorbunov and M. Shaposhnikov, JHEP0710, 015 (2007)

7

Search for Dark Photon/U(1) Boson

- Full reconstruction of final state
 - Detection of all charges particles with good resolution
- Channel:K⁺ \rightarrow µ⁺ v e⁺e⁻
- Search for narrow peak in (ee) invariant mass spectrum: V → e⁺e⁻
- Sensitivity: $Br(K^+ \rightarrow \mu^+ \nu V) \sim 10^{-8}$
- Background: Br(K⁺ \rightarrow µ⁺ v e⁺e⁻) ~ 2.5 x 10⁻⁵

- Channel: $K^+ \rightarrow \pi^+ e^+e^-$
- Search narrow peak in (ee) invariant mass spectrum: V → e⁺e⁻
- Sensitivity: Br(K⁺ $\rightarrow \pi^+$ V) ~ 10⁻⁸
 - Background: Br(K⁺ \rightarrow π ⁺ e⁺e⁻) ~ 2.5 x10⁻⁷

The TREK apparatus for E36

Implementation of Geant4 framework

Regions of sensitive detectors

Geometry of tracking elements

- Qt well suited for real-time fast visualization and demonstration.
 - Mouse control (rotation and zoom)
 - Save scene as vector or pixel graphics
- Qt generated geometry
 - SciFiber Target
 - Csl Barrel
 - GEMs
 - MWPCs

Tracking Element Geometry cont...

Magnetic field

- TOSCA generated magnetic field (P. Monaghan)
 - 1/8 sector field map
- Needed to generate a full sector field map
 - Used ROOT script with following symmetry $-y: B_x \rightarrow -B_x, B_y \rightarrow +B_y, B_z \rightarrow -B_z$ $-z: B_x \rightarrow +B_x, B_y \rightarrow +B_y, B_z \rightarrow -B_z.$

Magnetic field cont

- Comparison of TOSCA field to NIM field
 - Very good agreement

Kawachi et al., NIMA416 (1998) 253

Magnetic field optimization studies: Geant4

0.65T TOSCA field scaled to 1.4T

0.65T E236 field scaled to 1.4T

Magnetic field optimization studies: Geant4 cont...

1.4T TOSCA field

0.65T E246 field scaled to 1.4T

Magnetic field optimization studies: Geant4 cont...

1.6T TOSCA field scaled to 1.4T0.65T E246 field scaled to 1.4T

Magnetic field optimization studies: ROOT

0.65T TOSCA field scaled to 1.4T

0.65T E246 field scaled to 1.4T

Magnetic field optimization studies: ROOT cont...

1.4T TOSCA field

0.65T E246 field scaled to 1.4T

Magnetic field optimization studies: ROOT cont...

1.6T TOSCA field scaled to 1.4T

0.65T E246 field scaled to 1.4T

Conclusion and further study

- Very good agreement between TOSCA calculation and NIM field
- Notice similarities for 0.65T fields
 - Differences between them are evident
- Saturation reduces bending power of the magnetic field at 1.4T and 1.6T
- Study differences in hit location event by event using the same seed number
- Add Silicon Fiber Tracker to Geant4 geometry
- Port C++ code to GDML
 - Enable me to incorporate already existing OLYMPUS codes