Schedule for Fall 2015

- Tue 2015/09/15 5:00pm Michael / Status of TREK, OLYMPUS, MUSE, DarkLight, C-GEN
- Tue 2015/09/22 5:00pm Narbe / Deuteron fits
- Tue 2015/09/29 5:00pm
 ?
- Tue 2015/10/13 5:00pm APS/DNP2015 rehearsals
- Tue 2015/10/20 5:00pm APS/DNP2015 rehearsals
- Tue 2015/11/03 5:00pm Leke
- Tue 2015/11/17 5:00pm (MK at J-PARC)
 ?
- Tue 2015/12/01 5:00pm (MK at PSI)
 ?
- Tue 2015/12/08 5:00pm last meeting
 ?

Status of OLYMPUS, TREK, MUSE, DarkLight, C-GEN

Michael Kohl

Hampton University, Hampton, VA 23668 Jefferson Laboratory, Newport News, VA 23606

^f Presently supported by NSF grants PHY-1436680, 1505934, and DOE DE-SC0012589, SC0013941

A framework of new experiments

- Two-photon exchange in lepton scattering OLYMPUS @ DESY to compare e⁺p and e⁻p elastic scattering
- Test of lepton flavor universality **TREK/E36** @ **J-PARC** to compare $K^+ \rightarrow e^+ v / \mu^+ v$ decays
- The proton charge radius puzzle MUSE @ PSI to compare μ[±]p and e[±]p elastic scattering
- Search for a gauge boson m_{A'} = 10-90 MeV/c² DarkLight @ JLAB to reconstruct the decay of A'→ e⁺ e⁻ in e⁻ p → e⁻ p e⁺ e⁻
- Measurement of the neutron electric form factor via neutron recoil polarization in quasielastic deuteron electrodisintegration with C-GEN @ JLAB

The nine muses

Proton form factor ratio

Projected results for OLYMPUS

OLYMPUS

OLYMPUS detector

OLYMPUS detector

CLAS and VEPP-3

I.A. Rachek et al. (VEPP-3), Phys. Rev. Lett. 114, 062005 (2015)

OLYMPUS activities and status

- Two-photon exchange remains controversal
- Results from TPE experiments at Jlab and Novosibirsk ot definitive
- OLYMPUS data taken in February and October-December 2012
- Calibration measurements (survey and field mapping) in 2013
- Large analysis and simulation effort –
 7 graduate students from MIT (4), ASU (1), HU (1), Mainz (1)
- Full implementation of radiative effects in Montecarlo
- Collaboration meetings in March 2015 at ASU and August 2015 at MIT
- First results to be released at DNP2015 in Santa Fe and at EINN2015 in Cyprus
- Final results in 2016

TREK Program

- E06: Search for Time Reversal Symmetry Violation
- E36: Test of Lepton Universality
- Search for Heavy Neutrinos
 - Search for Light Bosons

- Lower intensity

- TREK Apparatus
- Status & Schedule

Scheduled to run in fall 2015 Commissioned April-June 2015 http://trek.kek.jp

The TREK apparatus for E36

Reasonable upgrade of KEK-PS E246

Stopped K method

- K1.1BR beamline
- Fitch Cherenkov
- K⁺ stopping target

Tracking

- MWPC (C2, C3, C4)
- Spiral Fiber Tracker(SFT)

PID

- TOF1,2
- Aerogel Cherenkov (AC)
- Pb glass counter (PGC)

<u>Gamma ray</u>

CsI(TI)

TREK/E36 installation

- Completed detector installation in April 2015
- Electronics were set up and tested
- Conditioning of MWPCs

- Commissioning of TGT+TOF1+SFT with cosmic rays
- Check-out of all detectors with beam
- Commissioning of toroidal magnet

Bishoy Dongwi (Hampton Univ.)

Activities and schedule

- Detector preparation November 2014 April 2015
- First commissioning run April 8 (24) May 7, 2015
- Second commissioning run June 3 26, 2015
- PAC20 July 15-17, 2015
- Improvements to the system in summer 2015
- Production run October 14 November 24, 2015
- Review end of October / early November
- Possible run extension until December 24

The proton radius puzzle

- >7σ (4%) discrepancy between muonic and electronic measurements
- High-profile articles in Nature, NYTimes, etc.
- Puzzle unresolved, possibly New Physics

MUon Scattering Experiment (MUSE) at PSI

15

Use the world's most powerful low-energy separated $e/\pi/\mu$ beam for a direct test if μp and ep scattering are different:

- Simultaneous, separated beam of $(e^{+}/\pi^{+}/\mu^{+})$ or $(e^{-}/\pi^{-}/\mu^{-})$ on liquid H₂ target
 - \rightarrow Separation by time of flight
 - \rightarrow Measure absolute cross sections for ep and μp
 - \rightarrow Measure e+/µ+, e-/µ- ratios to cancel certain systematics
- Directly disentangle effects from two-photon exchange (TPE) in e+/e-, μ+/μ-
- Multiple beam momenta 115-210 MeV/c to separate G_E and G_M (Rosenbluth)

MUSE experiment layout

MUSE activities and status

- Proton puzzle alive and well in 2015
- R&D program with DOE support
- Improvement of the GEM telescopes: modified geometry; speed-up of data acquisition
- Test beamtimes in June and July 2015
- Mini-workshop with PSI PAC subcommittee in July 2015
- Technical design report October 2015
- Collaborative funding proposal at NSF in Nov. 2015 NSF mid-scale
- Next test beamtime December 2015
- PAC January 2016
- Full funding by mid-2016
- Construct MUSE 2016-2017
- Data taking 2x 6 months in 2018-2019

Detecting A Resonance Kinematically with eLectrons Incident on a Gaseous Hydrogen Target

DarkLight sensitivity: visible decay

Goal: Explore $e^+ e^-$ invariant mass spectrum from 10-90 MeV using the process $e^- p \rightarrow e^- p e^- e^+$

DarkLight sensitivity: invisible decay

- $ep \rightarrow epA'$ ("invisible") observe only final state electron and proton,
- Backgrounds' kinematics different enough that they can be controlled

DarkLight dark photon search

- Dark photons (universal coupling) well motivated by dark matter observations (astronomical, direct, positrons) in combination with g_u-2 anomaly
- To be run at the Low Energy Recirculator Facility (LERF) at Jefferson Lab
- Search for visible decays modes of $A' \rightarrow e^+e^-$ in $ep \rightarrow epA' \rightarrow epee$
- Search for invisible decays $A' \rightarrow X$ in $ep \rightarrow epX$
- DarkLight sensitive to dark photons with masses < 100 MeV/c² in the region of the g_µ-2 welcome band
- DarkLight phase I: Funded (NSF-MRI) in 2014, HU responsible for lepton tracker Prepare to run phase 1a/b in 2016 and phase 1c in 2017
- DarkLight phase II: Ultimate reach, design in progress, 2018+

GEMs for DarkLight Phase-I at JLAB

For lepton tracking in ep->epee

GEMs for DarkLight Phase-Ic at JLAB (MRI)

GEMs for DarkLight Phase-Ic (MRI)

For lepton tracking in ep->epee

8 GEM chambers 12x40 (as of June 2015)Readout tiles, size adjusted constant elastic fluxTotal no. of channels10,880

J. Balewski

Gⁿ_E in absence of a free neutron target

- Form factors are fundamental quantities describing spatial structure
- Knowledge of G_{En} still limited to Q² = 3.4 (GeV/c)²
- No free neutron target \rightarrow elastic and quasi-elastic scattering
- Nuclear corrections (FSI, MEC, ...)
- Use interference to amplify smallness of Gⁿ_E

Neutron electric form factor Gⁿ_E

- Measurements of G_{En} in high Q² range provide important insight
 - Complete set of form factors in region with small pion cloud contributions
 - Extraction of isoscalar and isovector form factors
 - Flavor decomposition of up, down quark contributions (neglect strange quarks) [Cates (2011); Qattan and Arrington et al. (2012)]
 - Model-independent extraction of neutron infinite-momentum frame [IMF] transverse charge density [Miller (2007); Venkat et al. (2010)]
 - Important comparisons to QCD-based calculations
 - Lattice QCD: isovector form factor (G_{Ep}-G_{En}) cancels disconnected diagrams
 - Region of interest for Dyson-Schwinger Equation calculations
- Polarized ${}^{3}He(\vec{e},e'n)$ (E12-09-016) will extend G_{En} to $Q^{2} = 10$ (GeV/c)²
 - Systematics limited
 - Significant systematics due to larger proton backgrounds, worse inelastic/ quasielastic separation, beam and target polarization uncertainty
- Recoil polarization in ²H(e,e'n) (E12-11-009) will provide complementary data with smaller (and very different) systematics up to Q² = 7 (GeV/c)²
 - Statistics limited
 - Cleaner, better control of systematics
 - Nuclear corrections smaller than in ³He

Precession magnet

- Field serves two functions
 - precess the neutron spin to maximize detected asym (low *or* high field OK, but 'medium' == no good)
 - suppress charged backgrounds from target (need high-field)
- Optimal B·dl : 4.3 T·m
 - Double magnet solution with Charybdis + 48D48 for >4.0 T·m

New neutron polarimeter

- Design and further improvements by A. Semenov / Regina
- Scintillator R&D by Will Tireman / Northern Michigan U.
- Planning for MRI proposal (HU, NCA&T, SUNO, NMU)

PAC37 version

New neutron polarimeter

Simulation: Fluka 2011.2.9 + MCEEP-generated flux of neutrons

Visible increase of polarimeter efficiency even with only 4 sections in the polarimeter

A. Semenov

Activities and schedule

- PAC43: SBS proposal in Hall A based on charge exchange reaction
- PAC: only one GEn experiment via deuteron electrodisintegration with neutron recoil polarization
- Workshop in late 2015 or early 2016
- Optimization of existing design with Geant4 simulation
- Forward charged particle tracker for CHX (GEMs?)
- Alternative polarimeter designs?
- Funding and construction 2016-2018
- Running 2019 or 2020