

Update on the Polarized Electrons for Polarized Positrons (PEPPo) Experiment

A. Adeyemi⁴, P. Aguilera¹, H. Areti¹, M. Baylac², G. Bosson², A. Camsonne¹,
L. Cardman¹, S. Covrig¹, C. Cuevas¹, O. Dadoun³, J. Dumas^{1,2}, E. Fanchini²,
T. Forest⁵, E. Forman¹, A. Freyberger¹, S. Golge⁶, J. Grames¹, P. Guèye⁴,
C. Hyde⁷, Y. Kim^{1,5}, J.-F. Muraz², M. Marton², M. Poelker¹, S. Setiniyaz⁵,
J.-S. Réal², R. Suleiman¹, A. Variola³, E. Voutier³

¹ Jefferson Lab, Newport News, VA, USA
 ² LPSC, Grenoble, France
 ³ LAL, Orsay, France
 ⁴ Hampton University, Hampton, VA, USA
 ⁵ Idaho State University & IAC, Pocatello, ID, USA
 ⁶ North Carolina University, Durham, NC, USA
 ⁷ Old Dominion University, Norfolk, VA, USA

HU nuclear physics group seminar, Nov. 17, 2015

The PEPPo Concept

 The PEPPo experiment was conducted in the injector of the CEBAF accelerator at JLab to demonstrate a new technique for the production of polarized positrons.

• It involves a two-step processes :

 $_{\odot}$ Creation of circularly polarized photons from the bremsstrahlung interaction of longitudinally polarized electrons in a target

 Followed by the creation of polarized e+e- pairs via the pair production from the photons, within the same target.

JLab CEBAF

PEPPo took advantage of the existing experimental capabilities that uniquely define with precision the CEBAF polarized electron beam at creation.

Polarization controls

Principle of Operation

PEPPo measured the **polarization transfer** from **8.2 MeV/c longitudinal electrons** to longitudinal positrons in the **3.1-6.2 MeV/c momentum range**.

Experiment Layout

Viewers

Compton Transmission Polarimeter

Electrons or Positrons radiate polarized photons by Bremsstrahlung in reconversion target

Energy dependent Compton scattering of **photons transmitted** through **polarized target** is proportional to polarization of incoming **Electrons** or **Positrons** (aligned or anti-aligned).

$$A_T = \frac{N^+ - N^-}{N^+ + N^-} = \tanh(-P_3 P_T \mu_1 L)$$

$$\mu 1$$
 - Compton absorption coefficient
 L - target length
 P_3 - photon polarization (long.)

$$A_T = P_e P_T A_e$$

 P_e - electron/positron polarization

- P_{T} target polarization
- A_e analyzing power

Bremmstrahlung photon spectrum requires energy-dependent analyses

- Energy binning
- Energy integration

Positron Detection

The positrons produced in the PEPPo experiment are detected using a set of two annihilation counters. The positrons stopped in an insertable 0.011" chromox target and the corresponding 511keV photons detected in coincidence with two NaI detectors.

Coincidence Signal and Positron "Beam" Yield

Photon Calorimeter and DAQ

CsI(TI) crystals (28cm) are coupled to PMTs equipped with LPSC custom amplified basis to extend the PMT life-time in the high rate environment of PEPPo.

The ~2 µs long and 2 V optimized signal is fed into the JLab custom FADC250 that sampled the signal at 250 MHz.

Hamamatsu R6236-100

FADC250 allows for 3 data taking modes :

- Sample (500 samples /2 micro-sec)
- Semi-integrated (1 integral / 2 micro-sec)
- Integrated (1 integral /33 milli-sec)

Electron Data Analysis

G4PEPPo

Asymmetry measurements

Combining experimental asymmetries measured for each analyzing magnet polarity and each laser polarization orientation (IHWP) allows to cancel-out eventual false asymmetries and isolate physics asymmetries.

$\begin{array}{c} P_{e}.\\ (MeV\!/c) \end{array}$	Mode	I _e . @ T2
3.08	Int.	60 pA
4.02	Int.	23 pA
5.34	Int.	25 pA
6.25	Int.	10 pA
7.19	Int.	10 pA

Electron Analyzing power

The calibration of the analyzing power for the PEPPo experiment relies on electron experimental data and the positron analyzing power is obtained directly from the simulations.

Simulated Analyzing power

GEANT4 simulations allow to link the **measured electron** analyzing power to the **expected positron analyzing power** of the **PEPPo** Compton transmission polarimeter.

Positron Polarization

With the measured asymmetry of positrons (A_T) the target polarization (P_T) and the simulated positron analyzing power (Ae+),the positron polarization is calculated.

Conclusion

- Used an 8.2 MeV/c electron beam with polarization 84% to generate positrons by successive polarized bremsstrahlung and polarized pair production in a 1mm tungsten foil.
- Detected and estimated positron yield with an annihilation detector.
- Used a Compton transmission polarimeter and benchmarked a Geant4 model of polarimeter with a known electron polarization in order to calculated the analyzing power for positrons.
- Collected positrons in the range of 3.1-6.2 MeV/c and measured their polarization as high as 80%.