Spin - flavor structure of excited baryons

PHYSICAL REVIEW D 91, 036005 (2015)
by

Ishara Fernando

advisor
Prof. Jose Goity

Nuclear Physics Group Meeting
March 1st, 2016
Hampton, VA

Motivation

Baryon Summary Table

This short table gives the name，the quantum numbers（where known），and the status of baryons in the Review．Only the baryons with 3－or 4 －star status are included in the Baryon Summary Table．Due to insufficient data or uncertain interpretation，the other entries in the table are not established baryons．The names with masses are of baryons that decay strongly．The spin－parity J^{r}（when known）is given with each particle．For the strongly decaying particles，the J^{P} values are considered to be part of the names．

p	$1 / 2^{+}$	＊＊＊＊	$\Delta(1232)$	$3 / 2^{+}$	＊＊＊＊	Σ^{+}	$1 / 2^{+}$	＊＊＊＊	三 0	$1 / 2^{+}$	＊＊＊＊	Λ_{c}^{+}	$1 / 2^{+}$	＊＊＊＊
n	$1 / 2^{+}$	＊＊＊＊	$\Delta(1600)$	$3 / 2^{+}$	＊＊＊	Σ^{0}	$1 / 2^{+}$	＊＊＊＊	三	$1 / 2^{+}$	＊＊＊＊	$\Lambda_{c}(2595)^{+}$	$1 / 2^{-}$	＊＊＊
$N(1440)$	$1 / 2^{+}$	＊＊＊＊	$\Delta(1620)$	1／2－	＊＊＊＊	Σ	$1 / 2^{+}$	＊＊＊＊	三（1530）	$3 / 2^{+}$	＊＊＊＊	$\Lambda_{c}(2625)^{+}$	$3 / 2^{-}$	＊＊＊
$N(1520)$	$3 / 2^{-}$	＊＊＊	$\Delta(1700)$	$3 / 2^{-}$	＊＊＊＊	$\Sigma(1385)$	$3 / 2^{+}$	＊＊＊＊	三（1620）		＊	$\Lambda_{c}(2765)^{+}$		＊
$N(1535)$	$1 / 2^{-}$	＊＊＊＊	$\Delta(1750)$	$1 / 2^{+}$	＊	$\Sigma(1480)$		＊	三（1690）		＊＊＊	$\Lambda_{c}(2880)^{+}$	$5 / 2^{+}$	＊＊＊
$N(1650)$	$1 / 2^{-}$	＊＊＊	$\Delta(1900)$	1／2 ${ }^{-}$	＊	$\Sigma(1560)$		＊＊	三（1820）	$3 / 2^{-}$	＊＊＊	$\Lambda_{c}(2940)^{+}$		＊＊＊
$N(1675)$	5／2－	＊＊＊＊	Δ（1905）	$5 / 2^{+}$	＊＊＊＊	$\Sigma(1580)$	$3 / 2^{-}$	＊	三（1950）		＊＊＊	$\Sigma_{c}(2455)$	$1 / 2^{+}$	＊＊＊＊
$N(1680)$	$5 / 2^{+}$	＊＊＊＊	$\Delta(1910)$	$1 / 2^{+}$	＊＊＊＊	$\Sigma(1620)$	$1 / 2^{-}$	＊	三（2030）	$\geq \frac{5}{2}$ ？	＊＊＊	$\Sigma_{c}(2520)$	$3 / 2^{+}$	＊＊＊
$N(1685)$		＊	$\Delta(1920)$	$3 / 2^{+}$	＊＊＊	$\Sigma(1660)$	$1 / 2^{+}$	＊＊＊	三（2120）		＊	$\Sigma_{C}(2800)$		＊＊＊
$N(1700)$	3／2－	＊＊＊	Δ（1930）	5／2－	＊＊	$\Sigma(1670)$	$3 / 2^{-}$	＊＊＊	三（2250）		＊＊	Ξ_{c}^{+}	$1 / 2^{+}$	＊＊＊
$N(1710)$	$1 / 2^{+}$	＊＊＊	$\Delta(1940)$	3／2－	＊＊	$\Sigma(1690)$		＊＊	三（2370）		＊＊	Ξ_{C}^{0}	$1 / 2^{+}$	＊＊＊
$N(1720)$	$3 / 2^{+}$	＊＊＊＊	$\Delta(1950)$	7／2＋	＊＊＊＊	$\Sigma(1730)$	$3 / 2^{+}$	＊	三（2500）		＊	$\Xi_{c}^{\prime+}$	$1 / 2^{+}$	＊＊＊
$N(1860)$	$5 / 2^{+}$	＊＊	$\Delta(2000)$	5／2＋	＊＊	$\Sigma(1750)$	$1 / 2^{-}$	＊＊＊				$\Xi_{C}^{\prime \prime}$	$1 / 2^{+}$	＊＊＊
$N(1875)$	3／2－	＊＊＊	$\Delta(2150)$	1／2 ${ }^{-}$	＊	$\Sigma(1770)$	$1 / 2^{+}$	＊	Ω^{-}	$3 / 2^{+}$	＊＊＊＊	$\overline{ \pm}_{C}(2645)$	$3 / 2^{+}$	＊＊＊
$N(1880)$	$1 / 2^{+}$	＊＊	$\Delta(2200)$	7／2－	＊	$\Sigma(1775)$	5／2－	＊＊＊＊	$\Omega(2250)^{-}$		＊＊＊	$\bar{E}_{C}(2790)$	$1 / 2^{-}$	＊＊＊
$N(1895)$	$1 / 2^{-}$	＊＊	$\Delta(2300)$	9／2＋	＊＊	$\Sigma(1840)$	$3 / 2^{+}$	＊	$\Omega(2380)^{-}$		＊＊	$\bar{E}_{C}(2815)$	$3 / 2^{-}$	＊＊＊
$N(1900)$	$3 / 2^{+}$	＊＊	$\Delta(2350)$	5／2－	＊	$\Sigma(1880)$	$1 / 2^{+}$	＊＊	$\Omega(2470)^{-}$		＊＊	$\bar{E}_{C}(2930)$		＊
$N(1990)$	7／2＋	＊＊	$\Delta(2390)$	7／2＋${ }^{+}$	＊	$\Sigma(1900)$	$1 / 2^{-}$	＊				$\bar{E}_{C}(2980)$		＊＊＊
$N(2000)$	$5 / 2^{+}$	＊＊	$\Delta(2400)$	9／2 ${ }^{-}$	＊＊＊＊	$\Sigma(1915)$	$5 / 2^{+}$	＊＊＊＊				$\bar{\Xi}_{C}(3055)$		＊＊
$N(2040)$	$3 / 2^{+}$	＊	$\Delta(2420)$	$11 / 2^{+}$	＊＊＊＊	$\Sigma(1940)$	$3 / 2^{+}$	＊${ }_{*}^{* *}$				$\bar{E}_{c}(3080)$		＊＊＊
$N(2060)$	5／2－	＊＊	$\Delta(2750)$	13／2 ${ }^{-}$		$\Sigma(1940)$		***				$\bar{E}_{C}(3123)$		＊
$N(2100)$	$1 / 2^{+}$	＊	$\Delta(2950)$	$15 / 2^{+}$	＊＊	$\Sigma(2000)$	1／2－	＊					$1 / 2^{+}$	＊＊＊
$N(2120)$	$3 / 2^{-}$	$* *$ $* * * *$				$\Sigma(2030)$	$7 / 2^{+}$ $5 / 2^{+}$	＊＊＊＊				$\Omega_{C}(2770)^{0}$	$3 / 2^{+}$	＊＊＊
$N(2190)$	7／2－	＊＊＊＊	Λ	$1 / 2^{+}$	＊＊＊＊	$\Sigma(2070)$	5／2＋	＊						

Motivation

EDWARDS et al.

FIG. 11 (color online). Spin-identified spectrum of Nucleons and Deltas from the lattices at $m_{\pi}=524 \mathrm{MeV}$, in units of the calculated Ω mass.

FIG. 12 (color online). Spin-identified spectrum of Nucleons and Deltas from the lattices at $m_{\pi}=396 \mathrm{MeV}$, in units of the calculated Ω mass.

Motivation

Successful analyses were done on excited baryons with physical data

Available online at www.sciencedirect.com science doirect.

Physics Letters B 564 (2003) 83-89

Physical review d

volume 51, NUMBER 7

Predictions for decays of radially excited baryons
Peparment of Physics, College of William and Ma

```
Received 18 May 200% accepped 24 May 2000
```


Abstract

We consider the strong decays of the lowest-lying radially excited baryons, in SU(6) language the states comprising the

Applications of $1 /$ Nc expansion

Ground State Baryons including the Studies of SU(6) Spin-flavor symmetry

- E. Witten. Nucl. Phys. B160,57(1979)
- R.Dashen and A.V. Manohar phy Lett D 315,425(1993)
- E. Jenkins Phy Lett B315,431(1993)
- R.Dashen E. Jenkins and A.V. Manohar PRD 49,4713(1994)

Baryon Masses (Ground State and Excited State)

- E. Jenkins Phy Lett B 315,441(1993)
- R.Dashen E. Jenkins and A.V. Manohar PRD 51,3697(1995)
- E. Jenkins, R.F. Lebed PRD 52,282(1995)
- C.E. Carlson, C.D. Carone , J.L. Goity, R.F. Lebed PRD 59,114008(1999)
- J.L. Goity and C.L. Schat PRD 66,114014(2002)

Applications and Developments of 1/Nc Expansion

Axial Vector Current Matrix Elements

- R.Dashen and A.V. Manohar phy Lett D 315,425(1993)
- R.Dashen E. Jenkins and A.V. Manohar PRD 49,4713(1994)
- R.Dashen E. Jenkins and A.V. Manohar PRD 51,3697(1995)
- J.Dai, R. Dashen, E. Jenkins, A.V. Manohar PRD 53.273(1996)

A brief Introduction to 1/Nc expansion

QCD is the theory of strong interaction
It is the $\operatorname{SU}(3)$ gauge theory of quarks and gluons

$1 / N_{c}$ expansion framework is perturbative in both low and high energy regimes

A brief Introduction to 1/Nc expansion (Cont.)

Baryon spin-flavor symmetry

Since, πN amplitude is $\mathcal{O}\left(N_{c}^{0}\right)$
$A=-i \frac{k^{i} k^{j}}{k_{0}} \frac{N_{c}{ }^{2} g^{2}}{f_{\pi}^{2}}\left[X^{i a}, X^{i b}\right] \Rightarrow\left[X^{i a}, X^{i b}\right] \leqslant \mathcal{O}\left(1 / N_{c}\right)$
At large N_{c}, QCD has
Large N_{c} consistency condition

$$
\left[X_{0}^{i a}, X_{0}^{i b}\right]=0
$$

$$
X_{0}^{i a}=\lim _{N_{c} \rightarrow \infty} \frac{G^{i a}}{N_{c}}
$$

contracted spin-flavor symmetry $S U_{c}\left(2 N_{f}\right)$ in baryon sector

Excited baryon states

$$
\text { State }=\left|S_{\text {core }}, I_{\text {core }}, m_{1}, \alpha_{1}>\otimes\right| s, i, m_{2}, \alpha_{2}>\otimes \mid l, m_{l}>
$$

- In the spin-flavor $\mathrm{SU}(\mathbf{6})$ representation

$$
\begin{aligned}
& \mathbf{6} \otimes \mathbf{6} \otimes \mathbf{6}=\mathbf{5 6}_{\mathbf{s}} \oplus \mathbf{7 0}_{\mathbf{M S}} \oplus \mathbf{7 0}_{\mathbf{M A}} \oplus \mathbf{2 0}_{\mathrm{A}} \\
& \text { Parity }=(-1)^{l} \\
& \text { Where, } l=0,1,2
\end{aligned}
$$

- The multiplets $\left[\mathbf{5 6}, 0^{+}\right],\left[\mathbf{5 6}, 2^{+}\right],\left[\mathbf{7 0}, 1^{-}\right]$are considered in this analysis.
- $\left[56,0^{+}\right] \Longrightarrow \mathbf{1 0}\left(\frac{3}{2}\right) \oplus \mathbf{8}\left(\frac{1}{2}\right)$
- $\left[56,2^{+}\right] \Longrightarrow 10\left(\frac{1}{2},\left(\frac{3}{2}, \frac{5}{2}, \frac{7}{2}\right) \oplus \mathbf{8}\left(\frac{3}{2}, \frac{5}{2}\right)\right.$
- $\left[\mathbf{7 0}, 1^{-}\right] \Longrightarrow \mathbf{1 0}\left(\frac{1}{2} \frac{3}{2}\right) \oplus \mathbf{8}\left(\frac{1}{2}, \frac{3}{2}, \frac{5}{2}\right) \oplus \mathbf{8}\left(\frac{1}{2}, \frac{3}{2}\right) \oplus \mathbf{1}\left(\frac{1}{2}, \frac{3}{2}\right)$

Octet-Octet Mixing
$\binom{\mathbf{8}_{S}}{\mathbf{8}_{S}^{\prime}}=\left(\begin{array}{cc}\operatorname{Cos} \theta_{S} & \operatorname{Sin} \theta_{S} \\ -\operatorname{Sin} \theta_{S} & \operatorname{Cos} \theta_{S}\end{array}\right)\binom{\mathbf{2}_{\boldsymbol{8}_{S}}}{\mathbf{8}_{S}}$

Octet-Decuplet and Octet-Singlet Mixings

$$
\left(\begin{array}{c}
\mathbf{1 0}_{S} / \mathbf{1}_{S} \\
\mathbf{8}_{S} \\
\mathbf{8}_{S}^{\prime}
\end{array}\right)=\Theta\left(\begin{array}{c}
\mathbf{1 0}_{S} / \mathbf{1}_{S} \\
2^{2} \mathbf{8}_{S} \\
{ }^{4} \mathbf{8}_{S}
\end{array}\right)
$$

Mass Operators

- Mass operators are effective operators which consists of products of $S U$ (6) generators $S^{i}, T^{a}, G^{i a}$ and also the $O(3)$ generators l^{i}

Negative Parity $(l=1)$ Non-Strange $20-\operatorname{plet} S U(4) \otimes O(3)$,

$$
M_{20}=\sum_{i=1}^{8} c_{i} O_{i} \quad \text { C.E.Carlson,C.D.Carone,J.L.Goity,R.F.Lebed,Phys.Rev.D 59,114008 }
$$

$$
\begin{aligned}
& \text { up to } \\
& \mathcal{O}\left(\epsilon^{0} / N_{c}\right)
\end{aligned}
$$

- Negative Parity $(l=1)$ Strange 70 - plet $S U(6) \otimes O(3)$,

$$
M_{70}=\sum_{i=1}^{11} c_{i} O_{i}+\sum_{i=1}^{4} d_{i} \bar{B}_{i}
$$

J.L.Goity and C.L.Schat,Phys.Rev.D 66,114014

- Positive Parity $(l=2)$ Strange $56-\operatorname{plet} S U(6) \otimes O(3)$,

$$
M_{56,2^{+}}=\sum_{i=1}^{3} c_{i} O_{i}+\sum_{i=1}^{3} b_{i} \bar{B}_{i} \quad \text { J.L. Goity, C.L.Schat,.N.N.Scoccolal Phys.Lett. B564(2003),83-89 }
$$

- Positive Parity $(l=0)$ Roper $56-\operatorname{plet} S U(6) \otimes O(3)$, Gürsey Radicati formula :

$$
\begin{aligned}
M_{56,0^{+}} & =c_{1} N_{c}+\frac{c_{2}}{N_{c}} S(S+1)+b_{1} N_{s} \\
& +\frac{b_{2}}{2 \sqrt{12} N_{c}}\left(3 I(I+1)-S(S+1)-\frac{3}{4} N_{s}\left(N_{s}+2\right)\right)+\mathcal{O}\left(1 / N_{c}^{2}\right)
\end{aligned}
$$

Mass Relations

With physical data : Is incomplete due to the lack of the number of identified states with three or more stars

- Parameter Independent Mass Relations involve baryons of different spins and flavor.
Examples:

$$
\begin{aligned}
& {\left[56,2^{+}\right] \text {multiplet }} \\
& \quad \Delta_{5 / 2}-\Delta_{3 / 2}=N_{5 / 2}-N_{(3 / 2} \\
& 5\left(\Delta_{7 / 2}-\Delta_{5 / 2}\right)=7\left(N_{5 / 2}-N_{3 / 2}\right)
\end{aligned}
$$

With lattice QCD data : We can check all the mass relations

We did it!

[70, 1^{-}]multiplet

$$
\begin{aligned}
& 14\left(S_{\Sigma_{3 / 2}}+S_{\Sigma_{3 / 2}^{\prime}}\right)+21 S_{\Lambda_{5 / 2}}-9 S_{\Sigma_{5 / 2}}=18\left(S_{\Lambda_{1 / 2}}+S_{\Lambda_{1 / 2}^{\prime}}\right)+2\left(S_{\Sigma_{1 / 2}}+S_{\Sigma_{1 / 2}^{\prime}}\right) \\
& 14 S_{\Sigma_{1 / 2}^{\prime \prime}}+49 S_{\Lambda_{5 / 2}}+23\left(S_{\Sigma_{1 / 2}}+S_{\Sigma_{1 / 2}^{\prime}}\right)=45\left(S_{\Lambda_{1 / 2}}+S_{\Lambda_{1 / 2}^{\prime}}\right)+19 S_{\Sigma_{5 / 2}}
\end{aligned}
$$

$$
\begin{aligned}
M_{56,0}+ & \left.=c_{1} N_{c}+\frac{c_{2}}{N_{c}} S(S+1)+b_{1}\right) N_{s} \\
& +\frac{b_{2}}{2 \sqrt{12} N_{c}}\left(3 I(I+1)-S(S+1)-\frac{3}{4} N_{s}\left(N_{s}+2\right)\right)+\mathcal{O}\left(1 / N_{c}^{2}\right)
\end{aligned}
$$

Ground state operator evolution

$l=0,56$-plet minimum operator evolution

Fit Results (Continued...)

$$
M_{20}=\sum_{i=1}^{8} c_{i} O_{i}
$$

$l=1$, 20-plet minimum operator evolution

$l=1,70$-plet union operator evolution

$$
M_{70}=\sum_{i=1}^{11} c_{i} O_{i}+\sum_{i=1}^{4} d_{i} \bar{B}_{i}
$$

$$
l=1,70 \text {-plet minimum operator evolution }
$$

Fit Results (Fitted masses for LQCD)

Fit Results (Fitted masses for LQCD)

Fit Results (Fitted masses for LQCD)

Fit Results (Fitted Physical masses)

Fit Results (Fitted Physical masses)

Mass Predictions (Physical)

For the Physical baryons

Multiplet	Missing states	$\begin{gathered} \hline \hline \text { Fitted mass } \\ {[\mathrm{MeV}]} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Mass listed } \\ \text { in PDG[MeV] } \end{gathered}$	$\begin{gathered} \text { From mass } \\ \text { relations }[\mathrm{MeV}] \end{gathered}$
$\left[56,0^{+}\right]$	$\Sigma_{3 / 2}^{\prime \prime}$	1800 ± 26	$\Sigma(1840)\left(3 / 2^{+}\right)^{*}$ with mass ~ 1840	1790 ± 131
	$\Xi_{1 / 2}$	1815 ± 31		1825 ± 108
	$\Xi_{3 / 2}^{\prime \prime}$	1975 ± 35	$\Xi(1950)\left(?^{?}\right)^{* * *}$ with mass $\sim 1950 \pm 15$	1955 ± 171
	$\Omega_{3 / 2}$	2150 ± 46		2120 ± 219
$\left[56,2^{+}\right]$	$\Sigma_{3 / 2}$	1889 ± 30	$\Sigma(1840)\left(3 / 2^{+}\right)^{*}$ with mass ~ 1840	1920 ± 70
	$\Xi_{3 / 2}$	2074 ± 24	$\Xi(2120)^{*}\left(?^{?}\right): \quad 2130 \pm 7$	2080 ± 75
	$\Xi_{5 / 2}$	2000 ± 31	$\Xi(2030)^{* * *}\left(S \geqslant 5 / 2^{+}\right)$with 2025 ± 5	2006 ± 14
	$\Sigma_{1 / 2}^{\prime \prime}$	2060 ± 6	\ldots...	2127 ± 120
	$\Xi_{1 / 2}^{\prime \prime}$	2221 ± 6	$\Xi(2250)^{* *}\left(?^{?}\right) \quad: 2214 \pm 5$	
	$\Omega_{1 / 2}$	2382 ± 7		
	$\Sigma_{3 / 2}^{\prime \prime}$	2059 ± 29	$\Sigma(2080)^{* *}\left(3 / 2^{+}\right): 2120 \pm 40$	2109 ± 96
	$\Xi_{3 / 2}^{\prime \prime}$	2212 ± 24		
	$\Omega_{3 / 2}$	2350 ± 6	(2070)*(5/2+) : 2070 ± 10	
	$\Sigma_{5 / 2}^{\prime \prime}$	2053 ± 23	$\Sigma(2070)^{*}\left(5 / 2^{+}\right): 2070 \pm 10$	2077 ± 56
	$\Xi_{5 / 2}^{\prime \prime}$	2178 ± 31		. . .
	$\Omega_{5 / 2}$	2297 ± 6	\cdots	\ldots
	$\Xi_{7 / 2}^{\prime \prime}$	2129 ± 6	$\Xi(2120)^{*}\left(?^{?}\right) \quad: \quad 2130 \pm 7$	\ldots
	$\Omega_{7 / 2}$	2222 ± 6		

Mass Predictions (Physical) (Continued.....)

Multiplet	Missing states	Fitted mass [MeV]	Mass listed in PDG [MeV]	$\begin{gathered} \text { From mass } \\ \text { relations }[\mathrm{MeV}] \end{gathered}$
$\left[70,1^{-}\right]$	$\Sigma_{1 / 2}$	1645 ± 11	$\Sigma(1620) 1 / 2^{-* *}=1620 \pm 10$...
	$\Xi_{1 / 2}$	1801 ± 11		\ldots
	$\Xi^{\prime} / 2$	1930 ± 8	\ldots	\ldots
	$\Lambda_{3 / 2}^{\prime}$	1825 ± 6	...	\ldots
	$\Sigma_{3 / 2}^{\prime}$	1780 ± 7	\ldots	\ldots
	$\Xi_{3 / 2}^{\prime}$	1944 ± 7	$\Xi(1950)\left(?{ }^{?}{ }^{?}\right)^{* * *}=1950 \pm 15$	\ldots
	$\Xi_{5 / 2}$	1939 ± 6	$\Xi(1950)(? ?)^{* * *}=1950 \pm 15$	\ldots
	$\Sigma_{1 / 2}^{\prime \prime}$	1828 ± 7		\ldots
	$\Xi_{1 / 2}^{\prime \prime}$	1969 ± 8	$\Xi(1950)\left(?{ }^{?}\right)^{* * *}=1950 \pm 15$	\ldots
	$\Omega_{1 / 2}$	2107 ± 10	\cdots	\ldots
	$\Sigma_{3 / 2}^{\prime \prime}$	1916 ± 6	$\Sigma(1940) 3 / 2^{-* * *}=1950 \pm 30$	\ldots
	$\Xi_{3 / 2}^{\prime \prime}$	2057 ± 7	...	\ldots
	$\Omega_{3 / 2}$	2198 ± 9	\ldots	

Mass Relations (with LQCD masses)

TABLE III. Mass relations for the ground-state octet and decuplet. The relations are valid up to corrections $\mathcal{O}\left(\epsilon^{\frac{34}{2}} / N_{c}\right)$ in the case of the GMO and EQS relations which stem from the one-loop chiral corrections [36], and up to $\mathcal{O}\left(1 / N_{c}^{2}\right)$ for the rest of the relations.

		$M_{\pi}[\mathrm{MeV}]$	
Relation	PDG	391	524
$2(N+\Xi)-(3 \Lambda+\Sigma)=0$	30.2 ± 0.4	32 ± 32	
$\Sigma^{\prime \prime}-\Delta=\Xi^{\prime \prime}-\Sigma^{\prime \prime}=\Omega^{\prime \prime}-\Xi^{\prime \prime}$	155 ± 2	40 ± 75	31
	149.0 ± 0.5	64 ± 25	40 ± 13
$\frac{140.7 \pm 0.5}{14}$			
$\frac{9}{3}\left(\Sigma+2 \Sigma^{\prime \prime}\right)-\Lambda-\frac{2}{3}(\Delta-N)=0$	9 ± 1	55 ± 19	14 ± 12
$\Sigma^{\prime \prime}-\Sigma-\left(\Xi^{\prime \prime}-\Xi\right)=0$	23.5 ± 0.5	17 ± 28	12 ± 15
$3 \Lambda+\Sigma-2(N+\Xi)+\left(\Omega-\Xi^{\prime \prime}-\Sigma^{\prime \prime}+\Delta\right)=0$	16 ± 2	32 ± 36	
$\Sigma^{\prime \prime}-\Delta+\Omega-\Xi^{\prime \prime}-2\left(\Xi^{\prime \prime}-\Sigma^{\prime \prime}\right)=0$	2.5 ± 2.4	12 ± 25	14 ± 37

Well Satisfied !!!

TABLE IV. Mass relations for the Roper multiplet. The relations hold at the same orders as in the case of the ground-state baryons.

		$M_{\pi}[\mathrm{MeV}]$
Relation	391	524
$2(N+\Xi)-(3 \Lambda+\Sigma)=0$	179 ± 180	106 ± 155
$\Sigma^{\prime \prime}-\Delta=\Xi^{\prime \prime}-\Sigma^{\prime \prime}=\Omega^{\prime \prime}-\Xi^{\prime \prime}$	13 ± 45	-27 ± 26
	84 ± 40	41 ± 49
$\frac{4}{3}\left(\Sigma+2 \Sigma^{\prime \prime}\right)-\Lambda-\frac{2}{3}(\Delta-N)=0$	48 ± 42	41 ± 57
$\Sigma^{\prime \prime}-\Sigma-\left(\Xi^{\prime \prime}-\Xi\right)=0$	51 ± 65	29 ± 41
$3 \Lambda+\Sigma-2(N+\Xi)+\left(\Omega^{\prime \prime}-\Xi^{\prime \prime}-\Sigma^{\prime \prime}+\Delta\right)=0$	58 ± 63	77 ± 80
$\Sigma^{\prime \prime}-\Delta+\Omega^{\prime \prime}-\Xi^{\prime \prime}-2\left(\Xi^{*}-\Sigma^{\prime \prime}\right)=0$	144 ± 189	174 ± 170

TABLE VII. Mass relations for the $\left[\mathbf{5 6}, 2^{+}\right]$multiplet. The relations hold at the same orders as in the case of the ground-state baryons. The last column corresponds to the $\mathrm{SU}(3)$ symmetric limit.

Mass Relations (with LQCD masses)

TABLE XIII. GMO and EQS relations for the $\left[\mathbf{7 0}, 1^{-}\right]$multiplet. Due to the insufficient number of known states with three or more stars, the mass relations cannot be checked for the physical case.

		$M_{\pi}[\mathrm{MeV}]$	
Relation	PDG	391	524
$2\left(N_{1 / 2}+\Xi_{1 / 2}\right)-\left(3 \Lambda_{1 / 2}+\Sigma_{1 / 2}\right)=0$	\cdots	59 ± 156	17 ± 125
$2\left(N_{3 / 2}+\Xi_{3 / 2}\right)-\left(3 \Lambda_{3 / 2}+\Sigma_{3 / 2}\right)=0$	\cdots	31 ± 121	13 ± 74
$2\left(N_{5 / 2}+\Xi_{5 / 2}\right)-\left(3 \Lambda_{5 / 2}+\Sigma_{5 / 2}\right)=0$	\cdots	46 ± 91	6 ± 64
$\Sigma_{1 / 12}^{\prime \prime}-\Delta_{1 / 2}=\Xi_{1 / 2}^{\prime \prime}-\Sigma_{1 / 2}^{\prime \prime}=\Omega_{1 / 2}-\Xi_{1 / 2}^{\prime \prime}$	\cdots	67 ± 47	35 ± 56
	\cdots	34 ± 36	40 ± 41
$\Sigma_{3 / 2}^{\prime \prime}-\Delta_{3 / 2}=\Xi_{3 / 2}^{\prime \prime}-\Sigma_{3 / 2}^{\prime \prime}=\Omega_{3 / 2}-\Xi_{3 / 2}^{\prime \prime}$	\cdots	24 ± 49	22 ± 26
	\cdots	2 ± 49	39 ± 23

Well Satisfied !!!

TABLE XIV. Octet-decuplet mass relations for the $\left[\mathbf{7 0}, 1^{-}\right]$multiplet. S_{B} is the mass splitting between the state B and the nonstrange states in the $\mathrm{SU}(3)$ multiplet to which it belongs. The results shown correspond to the relation divided by the sum of the positive coefficients in the relation (e.g., 163 for the first relation).

		$M_{\pi}[\mathrm{MeV}]$
Relation	391	524
$14\left(S_{\Lambda_{3 / 2}}+S_{\Lambda_{3 / 2}^{\prime}}\right)+63 S_{\Lambda_{5 / 2}}+36\left(S_{\Sigma_{1 / 2}}+S_{\Sigma_{1 / 2}^{\prime}}\right)$		
$-68\left(S_{\Lambda_{1 / 2}}+S_{\Lambda_{1 / 2}}\right)-27 S_{\Sigma_{5 / 2}}=0$	9.4 ± 40	0.96 ± 34
$14\left(S_{\Sigma_{3 / 2}}+S_{\Sigma_{3 / 2}}\right)+21 S_{\Lambda_{5 / 2}}-9 S_{\Sigma_{5 / 2}}$		
$-18\left(S_{\Lambda_{1 / 2}}+S_{\Lambda_{1 / 2}^{\prime}}\right)-2\left(S_{\Sigma_{1 / 2}}+S_{\Sigma_{1 / 2}^{\prime}}\right)=0$	37 ± 45	5.4 ± 38
$14 S_{\Sigma_{1 / 2}^{\prime \prime}}+49 S_{\Lambda_{5 / 2}}+23\left(S_{\Sigma_{1 / 2}}+S_{\left.\Sigma_{\Sigma_{1 / 2}^{\prime}}\right)}\right.$		
$-45\left(S_{\Lambda_{1 / 2}}+S_{\Lambda_{1 / 2}^{\prime}}\right)-19 S_{\Sigma_{5 / 2}}=0$	9.4 ± 40	0.7 ± 34
$14 S_{\Sigma_{3 / 2}^{\prime \prime}}+28 S_{\Lambda_{5 / 2}}+11\left(S_{\Sigma_{1 / 2}}+S_{\Sigma_{1 / 2}^{\prime}}\right)$		
$-27\left(S_{\Lambda_{1 / 2}}+S_{\Lambda_{1 / 2}}\right)-10 S_{\Sigma_{5 / 2}}=0$	0.8 ± 40	0.1 ± 33

- A picture of spin-flavor composition of excited baryons is derived from a description of masses calculated in LQCD using the $1 / N_{c}$ expansion.
- All the predicted mass relations are well satisfied by the lattice QCD data.
- Missing masses in PDG are predicted by means of model independent mass relations and also by the fits.
- LQCD masses show a weaker breaking of $S U(6) \times O(3)$ symmetry limit than the physical ones.
- The spin-flavor singlet operator, hyper-fine and spin-orbit interaction play the most important role in the fits to physical and Lattice QCD masses.
- The minimum number of operators which can be used to fit the lattice QCD masses is smaller than for physical masses.

Acknowledgements

■ This work was supported in part by DOE Contract No. DE-AC05-06OR23177 under which JSA operates the Thomas Jefferson National Accelerator Facility (J. L. G.), and by the National Science Foundation through grants PHY-0855789 and PHY-1307413 (I. P. F. and J. L. G.).

Thank you

