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Introduction to GMP _Experiment:
Proton Magnetic Form Factor

« Form factors encode electric and magnetic structure of the target

- At low Q% form factors characterize the spatial distribution of electric charge and
magnetization current in the nucleon
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GMP Experiment at Hall A JLab

- Accurate measurement of the elastic ep cross-section in the Q*range of

7-14 GeV? and extraction of proton magnetic form factors

> To improve the precision of the previous experiment

- To provide insight into scaling behavior of the form factors at high Q°

> To understand two photon exchanae contribution in en elastic scatterina
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Hall A arms and beamline transport
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Hall A Beamline and detector
schematics
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Beam Position Calibration

 The main components of beam position monitoring system are two BPMs and two Harps

« BPMis a cavity with four wire antennas whose signal is proportional to the distance from
the beam and Harp is a system of three wires used to measure the beam profile

« Difference over sum technique is used to find relative beam position

« The relative position from BPM is calibrated to match the absolute beam position known
from the Harp
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Beam Current Calibration (1): Unser calibration

* The beam current measurement system consist of an unser monitor and two BCM cavities

* The unser monitor is a toroidal transformer sensitive to the DC currents passing through its
cores

* Output signal of unser monitor drifts significantly on a time scale of several minutes and can't
be used for long term beam current monitoring

* Unser is calibrated by passing high-precision current along a wire through the device

* Precise knowledge of the beam current from unser monitor is used for BCM calibration

2 [ ndf RHRS 21590
[ 71ng13l 4'77?,,/9.% ¢ 0.8 x*/ ndf 4778 /13
100p P9 -0.03515 £0.1168 0.6 LP0_7:34¢-06 £ 0.06901
- 10275 0. 10406 [ = Estimated current noise(Al)=2/sqrt(1*60)
= ~0.4F
280' <
= | :10.2_—
= 60 ® [
c|=.> [ S 0F
et i O .
S 40[- @.0.21
O T .
! T o.4f
20F T — First ramp
0.6p — Second ramp

VAN T T . T
% 10000 20000 30000 0. 50 100
unser_rate(Hz) Current(uA)



Beam Current Calibration (1I): BCM Calibration

A BCM is a cylindrical resonant cavity whose output voltage is proportional to the beam

current
The signal from the BCM cavity is send to a V-F converter and then fed to scalers
BCM calibration obtains the parameters to convert the scaler counts into electron charge

> Standard error of the residual in the range of 15 to 65 uA indicates a beam current
precision of 0.39%
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Production data collected in spring 2016

*Complete
(1%)statistics
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Tracking efficiency Study

Calculated 1 track efficiency for events passing electron PID cuts: Cut on no. Photoelectron in Cherenkov and
total energy deposited in calorimeter

Eff = (No. passing PID cuts and having 1 track)/(Number passing PID cuts)

Pass set momentum (GeV/c) efficiency (%)
1 1.254 99.432
2 1.547 95.340
4 2.101 60.281

Clearly there is some cosmic contamination passing these cuts, because the electron rate drops quickly at
higher pass. To estimate the cosmic events we took a cosmic run taken over 3 days period and applied same
cuts

ass total time for pass (hrs)
cosmic 68.037
1 0.561
2 86.37
4 115.79
Using the ratio of (Production)/(Cosmic time) we estimated the number of cosmic passing our cuts:
pass total events passing pid total events passing pid+1trk
1 274450 272891
2 110310 105169
4 11876 7159
ass cosmics passing pid cuts (expected) cosmics passing pid+itrk (expected)
1 39.56 6.359
2 5181 796 .2
4 5555 856.0
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Tracking efficiency Study

So, the corrected efficiency = (total events passing pid+1trk — cosmic passing pid+1trk)/
(total events passing pid — cosmic passing pid)

pass corrected efficiency(%)
1 99.44
2 99.28
4 99.71

The top panel in the plot shows the cherenkov and calorimeter response for cosmic run. The middle shows
the same for production and the bottom shows the no. of track for the events passing PID cuts.

The next step is to apply additional cuts to better select the electron sample. We plan on using the scintillator
timing to do this as well as requiring minimum energy deposition on both layer of calorimeter..
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Scintillator timing calibration

v
p=-
c

Pathlength, .

timeg Xc

« Each paddle of the scintillator detectors has two PMTs

« To determine the particle beta we need to calibrate time offset for each PMT. These timing offsets are caused
by varying cable lengths from PMT to the TDC.

« To obtain the time offsets we need to solve the following linear combinations:
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tL_tR:_ZCl—I_CL_CR (3) - I >
tL+tR=2tO+CL+CL +C, (4)

n

« By calculating mean channel from eq. (4) and intercept of fit of eq. (3) we get left and right corrected time
whereas the slope of eq. (3) is use to calculate the velocity of the particle in scintillator.
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TDC Channel

TDC Channel

Slope [channel/m]

Scintillator timing calibration

15

52 Left - Right wvs. Track Projection ¥: Paddle 186

2 f ndfl G569 ) 56

10

& IIII|IIII|IIII|IIII|IIII|IIII

pl 2591 = 0.021
pl 31.91 = 0357

+

-0:2 -IJI.‘I [1] DI.1
Track Projection ¥ [m]

52 Left + Right vs. Track Projection ¥: Paddle 16

1
0.z 0.3

2785

2780

2T7TS

W IIII|IIII|IIII|IIII|IIII|IIII

‘2775]

60

-IJI,Z -l]l,‘l 1] DI.1
Track Projection ¥ [m]

1
L1 - 0.3

Slope from Left-Right Difference vs. Paddle

¥2 / ndf

55
S0
45
40
35

o]8)

395.8/15
32.43 £ 0.05368

C_ =1.23354e+08 m/s !!!

30
25
2

£|

2 a 6 8 10 12
Paddle Number

94 16

14



Energy Loss correction

=E

beam

>
. Charge patrticle loses energy when it goes through a material. B<E/'=E o HE

-For incoming electron we corrected beam energy by calculating reaction vertex dependence of average energy loss
using Beth-Bloch formula

-For scattered electron the energy loss is both angle and reaction vertex dependence

»  Clearly for incoming electron energy loss is linear with reaction vertex and for scattered electron energy loss is flat along the
cylindrical part and decreasing along the tip.
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Target boiling study

Localized boiling can cause the uncertainties in cryogenic target density.

LH2 and carbon were used in this study. As carbon is a solid we should see no variation of yield with current.

A range of 9-60uA beam current was used. The higher the current higher the risk of boiling, Whereas the smaller the raster size higher will be the boiling.

Two types of analysis has been made:

- Scalar analysis: Scalar rate was normalized to beam current plotted against current

- Yield analysis: No. of good events determined by PID and one track cut are normalized by beam charge, tracking efficiency and live time plotted

against beam current.
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Charge normalized yield

Scalar rate normalized with current

Target Boiling

Yield analysis
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Conclusion

Took few production data from 12 GeV commissioning of GMP in spring
2016

Beamline instruments were calibrated using the commissioning data
- The BPMs are calibrated against harps up to 1.5%
- The BCM is calibrated against unser to an accuracy of 0.39%

In the study of tracking efficiency with simple PID selection we have seen
some cosmic contamination at higher beam energies. We developing
some timing cuts that can provide cleaner election selection.

Target boiling study has done up to 60UA.

lonization energy loss correction has applied to both incoming and

scattered electron.
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Energy loss correction

Mean rate of energy loss (Stopping power )for an electron is:
i = Kglngi s Fle-0(py),

o TR IIm,¢*

Where,
T—(2t41)In2
Flt)= 1-p+

1: Kinetic energy of particle in the unit of m,¢*
A: atomic mass of the absorber
+=2nN,r'm 1A

=0.1535 MeVg 'em’, for A = 1gmol”™*
z: atomic number of incident particle
Z: atomic number of absorber

T, max.transferable energy
[ characterstic ionization constant material dependent

3(py): density effect correction
X = ps, mass thicknes, where, s is the length

Ionization constant:
L (12+Z)eV.
Z Z

For Hydrogen Z =1,
So, I =19 ¢eV.

Maximum transferable kinetic energy: T, =

2m, CZBZ yz

For incoming electron
E

Where,
Bz = V_2 = P—2 = 1
c® E’ m?
1+—
p
Since, m, <P, f~1.
For m, = m,

m,c’~ 0.511 MeV

me me

2 —

YTE,
~2.057x10’
©0.511%10°
= 4025.44

o

For scattered electron

_P
YTE

o

_1.225x10°

~ 0.511%10°
= 2397.26

For incoming electron T, ~ 2X2056.44MeV, So, Tt = 8048.88
For scattered electron T, ~ 2X1224.49MeV, So, T = 4792.52

dE Ax

Average ionization energy loss =
X

2
=—0.896813x7.5X0.0723
= —0.486 MeV

X =log,,(yp) = 3.6048
For H, X, = 0.4759, X, = 1.9215,

-C = 3.2632
0 =4.6052 X +C As, X>X_

= 4.6052X3.6048 — 3.2632
= 13.338
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