Determination of the Polarization Observables C_{x}, C_{z}, and P_{y} for Final-State Interactions in the reaction $\vec{\gamma} d \rightarrow K^{+} \vec{\Lambda} n$

Tongtong Cao

Advisor: Dr. Yordanka Ilieva

Objective of This Work

To determine polarization observables C_{x}, C_{z}, and P_{y} for the final-state interactions in the reaction $\vec{\gamma} d \rightarrow K^{+} \vec{\Lambda} n$.

Step 1: $\vec{\gamma} p \rightarrow K^{+} \vec{\Lambda}$

Step 2: $\vec{\Lambda} n \rightarrow \vec{\Lambda} n$

Study dynamics of $\wedge n$ scattering

Outline

- Introduction: Why is the $\wedge n$ dynamics important?
- Experimental Facility: Beam source and the detection system
- Data Analysis: Selection of the reaction and of yields
- Results: One-fold and two-fold differential estimates of the observables
- Discussion: What have we learned?
- Summary

Introduction

The Strong Interaction

The coupling constant in QCD, α_{s}, depends on the scale of the strong interaction.

Figure from: A. Deur et al., Physics Letters B 665, 349(2008).

The Baryon-Baryon Interaction

Examples of low-energy phenomena

- Many low-energy phenomena can be described in terms of baryon-baryon interaction considering baryons to be elementary particles.
- Baryon-Baryon Interactions:
- Nucleon-nucleon interaction
- Hyperon-nucleon interaction
- Hyperon-hyperon interaction
- If baryons are non-relativistic, baryonbaryon interactions can be described by potentials.

The Hyperon-Nucleon Interaction

The understanding of both hyperon-nucleon (YN) and nucleon-nucleon (NN) potentials is necessary to have a comprehensive picture of the strong interaction.

- Composition of dense nuclear matter (neutron stars interior).
- Many-body calculations of hypernuclei.

YN potential models: Meson-exchange models, Chiral effective field theory.

How to Constrain Hyperon-Nucleon Potentials

Dynamics of $\vec{\gamma} d \rightarrow K^{+} \vec{\Lambda} n$

Λn elastic scattering \rightarrow constraints on YN potentials through model interpretation of observables.

Definition of Experimental Observables

General polarized differential cross section for hyperon photoproduction off the nucleon.

$$
\frac{d \sigma^{ \pm}}{d \Omega}=\frac{d \sigma}{d \Omega_{0}}\left(1 \pm \alpha P_{c i r c} C_{x} \cos \theta_{x} \pm \alpha P_{c i r c} C_{z} \cos \theta_{z}+\alpha P_{y} \cos \theta_{y}\right)
$$

Λ self-analyzing power: $\alpha=0.642 \pm 0.013$

Theoretical Studies of $\vec{\gamma} d \rightarrow K^{+} \vec{\Lambda} n$

- Calculations exist for single and double polarization observables as well as the cross section.
- Two YN potentials, Nijmegen NSC97f and NSC89, lead to very different predictions of polarization observables at some kinematics.
- Advantage: NSC97f and NSC89 both reproduce the binding energy of the hypertriton.
- Exclusive hyperon photoproduction off the deuteron can place unique constraints on $Y N$ potential parameters

Figure from: K. Miyagawa et al., Phys. Rev. C 74, 034002 (2006).

Theoretical Studies of $\vec{\gamma} d \rightarrow K^{+} \vec{\Lambda} n$

Dispersion Integral Method

- Allows to extract a spin-average YN scattering length from $\wedge n$ invariant mass distributions.
- Applied to cross section data of

$$
p p \rightarrow K^{+} X
$$

Spin-average $\wedge p$ scattering length:

$$
\mathrm{a}=-1.5 \pm 0.15 \pm 0.3 \mathrm{fm}
$$

- Similar uncertainties expected for analysis of photoproduction data.
- $1 p$ scattering length by ESC-model:

$$
a_{1 s 0}=-2.20 \pm 1.10 f m ; a_{3 s 1}=-1.75 \pm 0.10 \mathrm{fm}
$$

-

Experimental Facility

The Continuous Electron Beam Accelerator Facility (CEBAF)

- Simultaneously provides electron beams to halls A, B, and C
- Polarization: Up to 85%
- Energy: Up to 6 GeV
- Currently: 12 GeV upgrade has been completed and a new hall D is in service

The Hall-B Photon Tagger

Figure from: D. I. Sober et al., Nucl. Instr. Meth. A 440, 263(2000).

The CEBAF Large Acceptance Spectrometer (CLAS)

Speed of a Particle: $\beta_{\text {meas }}=\frac{l_{s c}}{c t_{s c}}$

The E06-103 Experiment (g13)

- Circularly polarized photon beam (g13a)
- $\mathrm{E}_{\mathrm{e}}=1.987 \mathrm{GeV}$; 2.649 GeV
- Electron beam polarization: [77\%, 85\%]
- Photon beam polarization: [27\%, 80\%]
- Target: LD 2 , unpolarized, 40-cm long

Data Analysis

Particle Identification (PID)

- Events with two positively-charged and one negatively-charged particles were selected for analysis of $\vec{\gamma} d \rightarrow K^{+} \vec{\Lambda} n$.
- PID control variable

$$
\Delta \beta=\beta_{\text {meas }}-\beta_{\text {calc }}=\beta_{\text {meas }}-\sqrt{\frac{p^{2}}{m^{2}+p^{2}}}
$$

$\mathrm{p}:[0.7,0.8] \mathrm{GeV} / \mathrm{c}$

10

1

Photon Selection

Electron beam delivered as bunches every 2.004 ns from CEBAF.
High beam current, wide tagger TDC readout window.
On average 14 photons were recorded for each event.

$$
\Delta t=t_{v}-t_{\gamma}=\left(t_{s c}-\frac{l_{s c}}{c \beta_{c a l c}}\right)-\left(t_{T A G R}+\frac{z+20(c m)}{c}\right)
$$

Extraction of Final-State Interaction Events

Results

Observable-Extraction Method

The maximum likelihood method was used to extract the observables.
Probability density function defined from the polarized differential cross section:

$$
L_{i}=\frac{d \sigma}{d \Omega_{0}}\left(1 \pm \alpha P_{c i r c}^{i} C_{x} \cos \theta_{x}^{i} \pm \alpha P_{c i r c}^{i} C_{z} \cos \theta_{z}^{i}+\alpha P_{y} \cos \theta_{y}^{i}\right)
$$

Total likelihood is the product of the likelihoods for all individual events:

$$
\begin{aligned}
\log L=b & +\sum_{i=1}^{n^{+}} \log \left[\left(1+\alpha P_{\text {circ }}^{i} C_{x} \cos \theta_{x}^{i}+\alpha P_{\text {circ }}^{i} C_{z} \cos \theta_{z}^{i}+\alpha P_{y} \cos \theta_{y}^{i}\right) w^{i}\right] \\
& +\sum_{j=1}^{n^{-}} \log \left[\left(1-\alpha P_{\text {circ }}^{j} C_{x} \cos \theta_{x}^{j}-\alpha P_{\text {circ }}^{j} C_{z} \cos \theta_{z}^{j}+\alpha P_{y} \cos \theta_{y}^{j}\right) w^{j}\right]
\end{aligned}
$$

Axis Convention

Data are binned in $E_{\gamma}, \theta_{\Lambda}^{\prime}, p_{K}, \theta_{K}$, and $I M_{A n}$.

One-fold Differential Estimates Bin Setup

Bin-width is chosen so that all bins have similar statistics.

One-fold Differential Estimates

- The observables have a weaker dependence on E_{γ} than on other kinematics variables.

Statistical uncertainties:

- $C_{x}:[0.020,0.045]$
- Cz: [0.024, 0.051]
- Py: [0.016, 0.029]

Two-fold differential estimates Bin Setup in $I M_{\Lambda n}$ and $\theta_{\Lambda}^{\prime}$

Two-fold differential estimates
$C_{x}\left(I M_{\Lambda n}, \theta_{\Lambda}^{\prime}\right), C_{z}\left(I M_{\Lambda n}, \theta_{\Lambda}^{\prime}\right)$, and $P_{y}\left(I M_{\Lambda n}, \theta_{\Lambda}^{\prime}\right)$

- C_{x} is small and varies around 0 .
- Overall, $C z$ decreases as θ_{A}^{\prime} increases.
$\mathrm{IM}_{\Lambda n}:[2.17,2.23]\left(\mathrm{GeV} / \mathrm{c}^{2}\right) \mathrm{IM}_{\Lambda n}:[2.23,2.31]\left(\mathrm{GeV} / \mathrm{c}^{2}\right) \cdot P y$ shows different
 variation tendency as θ_{A}^{\prime} increases for different $I M_{A n}$ bins.

Systematic Uncertainties

Source	C_{x}	C_{z}	P_{y}
CLAS Acceptance	5.5%	0.3%	3.5%
Fiducial Cut	0.1%	0.3%	0.1%
Photon Polarization	4.1%	4.1%	0%
PID	2.7%	$2.7 . \%$	0.2%
Vertex Cut	1.4%	0%	0.1%
Photon Selection	0.1%	0.3%	0.1%
IM Cut	1.4%	0.7%	0.3%
MP Cut	0.6%	0.2%	0.1%
MM Cut	1.6%	3.2%	2.1%
Λ Self-analyzing Power	2.0%	2.0%	2.0%
Total	8.1%	6.2%	4.6%

Discussion

Discussion: Comparison to CLAS g1c Results

C_{x} and C_{z} from Robert K. Bradford and P_{y} from John W.C. McNabb

- Dataset: CLAS g1c
- Reaction: $\vec{\gamma} p \rightarrow K^{+} \vec{\Lambda}$

Comparison Between QF and FSI

- Cx: At lower photon energy, there is a big difference between QF and FSI. At higher photon energy, the differences are small.
- Cz: QF values are close to 1 , and are systematically larger than FSI.
- $\quad P y$: FSI values are larger than QF values for all E_{γ}.

Effect of Missing Momentum Cut

Effect of the Quasi-free Mechanism

- Observables are extracted from two simulated samples:
- Sample 1: Clean final-state-interaction events
- Sample 2: Sample 1 plus a small sample of quasi-free events
- Sample 2 is smeared with 12% of the quasi-free mechanism

Theoretical Predictions and Data

K. Miyagawa et al., Phys. Rev. C 74, 034002 (2006).

Data for $\wedge n$ Scattering Length Determination

Offer an opportunity to extract a spin-average $\wedge \mathrm{n}$ scattering length using Gasparyan's method.

Contribution of QF in FSI Sample

Cut $(\mathrm{GeV} / \mathrm{c})$	δ	f	$p_{F S I}^{\text {lost }}$
0.20	1.27%	31.39%	10.19%
0.25	1.86%	18.78%	15.09%
0.30	2.53%	11.83%	20.85%
0.35	3.26%	7.85%	27.44%
0.40	4.04%	4.94%	32.69%

$\delta:$ FSI contribution for data sample with missing momentum less than cut point.
f : QF contribution for data sample with missing momentum larger than cut point. $p_{F S I}^{l o s t}$: How much percent of FSI events will be lost after applying missing momentum cut.

Summary

- First estimates for the polarization observables C_{x}, C_{z}, and P_{y} for the finalstate interactions in $\vec{\gamma} d \rightarrow K^{+} \vec{\Lambda} n$ were determined.
- One-fold, two-fold, and four-fold differential estimates were obtained.
- FSI and QF were separated, and the corresponding observables were extracted.
- Effect of FSI on the observables were studied.
- Data points of this work will be used to constrain free parameters of YN potentials and to extract a spin-average value of $\wedge n$ scattering length.

Backup Slides

Data Analysis: Vertex Determination

Distance Of Closest Approach

Vertex Cut

Data Analysis: Photon Polarization

The electron polarization for some special runs were measured by the M ϕ ller polarimeter.

The polarization of the photon beam was calculated using the Maximon and Olson relation

$$
P_{c i r}=\frac{E_{\gamma}\left(E+\frac{1}{3} E^{\prime}\right) P_{e}}{E^{2}+E^{\prime 2}-\frac{2}{3} E E^{\prime}}
$$

Background Subtraction:

$\mathrm{E}_{\mathrm{\gamma}}$ vs MM

Background Subtraction: Procedure of Simulation

- Generator for different channels

Channel	First step	Second step
Quasi-free for signal	$\gamma p \rightarrow K^{+} \Lambda$	n is spectator
π^{0} mediated for signal	$\gamma n \rightarrow \pi^{0} n$	$\pi^{0} p \rightarrow K^{+} \Lambda$
π^{+}mediated for signal	$\gamma p \rightarrow \pi^{+} n$	$\pi^{+} n \rightarrow K^{+} \Lambda$
Kn re-scattering for signal	$\gamma p \rightarrow K^{+} \Lambda$	$K^{+} n \rightarrow K^{+} n$
Λ re-scattering for signal	$\gamma p \rightarrow K^{+} \Lambda$	$\Lambda n \rightarrow \Lambda n$
$\Sigma \mathrm{n}$ re-scattering for Σ production	$\gamma p \rightarrow K^{+} \Sigma$	$\Sigma n \rightarrow \Sigma n$
Quasi-free for Σ production	$\gamma p \rightarrow K^{+} \Sigma$	$\Sigma \rightarrow \Lambda \gamma$
Quasi-free for $\Sigma^{* 0}$ production	$\gamma p \rightarrow K^{+} \Sigma^{* 0}$	$\Sigma^{* 0} \rightarrow \Lambda \pi$
Quasi-free for Σ^{*-} production	$\gamma n \rightarrow K^{+} \Sigma^{*-}$	$\Sigma^{*-} \rightarrow \Lambda \pi^{-}$

- Raw data after generated data processed through GSIM
- Skimmed data after filtering raw data

Background Subtraction:
 Comparison Between Simulated and Real Data

Background Subtraction: Distribution of Accidental Events

MM for different accidental tracks:
Accidental kaon: $\sqrt{\left(\tilde{p}_{\gamma}+\tilde{p}_{d}-\tilde{p}_{K_{\text {ace }}}-\tilde{p}_{p}-\tilde{p}_{\pi^{-}}\right)^{2}}$
Accidental proton: $\sqrt{\left(\tilde{p}_{\gamma}+\tilde{p}_{d}-\tilde{p}_{K}-\tilde{p}_{p_{\text {acc }}}-\tilde{p}_{\pi^{-}}\right)^{2}}$ Accidental pion: $\sqrt{\left(\tilde{p}_{\gamma}+\tilde{p}_{d}-\tilde{p}_{K}-\tilde{p}_{p}-\tilde{p}_{\pi_{a c c}}\right)^{2}}$

- The accidental track was produced randomly to replace the corresponding track of our reaction, such as kaon, proton and pion.
- The missing mass was then recalculated using the information of the accidental track.

Background Subtraction:

An Example for One Kinematic Bin

$$
M M=\sqrt{\left(\widetilde{p}_{\gamma}+\widetilde{p}_{d}-\widetilde{p}_{K^{+}}-\widetilde{p}_{p}-\widetilde{p}_{\pi^{-}}\right)^{2}}
$$

Extraction of C_{x}, C_{z}, and P_{y}

- The maximum likelihood method was used to extract the observables.

Probability density function defined from the polarized cross section:
$L_{i}=c^{+,-}\left(1 \pm \alpha P_{\text {circ }} C_{x} \cos \theta_{x} \pm \alpha P_{\text {circ }} C_{z} \cos \theta_{z}+\alpha P_{y} \cos \theta_{y}\right)$
Total likelihood is the product of the likelihoods for all individual events:

$$
\begin{aligned}
\log L=b+ & \sum_{i=1}^{n^{+}} \log \left[\left(1+\alpha P_{\text {circ }}^{i} C_{x} \cos \theta_{x}^{i}+\alpha P_{\text {circ }}^{i} C_{z} \cos \theta_{z}^{i}+\alpha P_{y} \cos \theta_{y}^{i}\right) w^{i}\right] \\
& \sum_{j=1}^{n^{-}} \log \left[\left(1-\alpha P_{\text {circ }}^{j} C_{x} \cos \theta_{x}^{j}-\alpha P_{\text {circ }}^{j} C_{z} \cos \theta_{z}^{j}+\alpha P_{y} \cos \theta_{y}^{j}\right) w^{j}\right]
\end{aligned}
$$

- The maximum likelihood method has advantages compared to binned methods.
- Simultaneous extraction of polarization observables.
- Reliable extraction even with a small number of events.
- Bias is negligibly small, while bias of observables extracted from a binned method is much larger.

Extraction of C_{x}, C_{z}, and P_{y}

The maximum likelihood method was used to extract the observables.
Probability density function defined from the polarized cross section:
$L_{i}=c^{+,-}\left(1 \pm \alpha P_{\text {circ }} C_{x} \cos \theta_{x} \pm \alpha P_{\text {circ }} C_{z} \cos \theta_{z}+\alpha P_{y} \cos \theta_{y}\right)$
Total likelihood is the product of the likelihoods for all individual events:

$$
\begin{aligned}
& \log L=b+ \sum_{i=1}^{n^{+}} \log \left[\left(1+\alpha P_{c i r c}^{i} C_{x} \cos \theta_{x}^{i}+\alpha P_{c i r c}^{i} C_{z} \cos \theta_{z}^{i}+\alpha P_{y} \cos \theta_{y}^{i}\right) w^{i}\right] \\
& \sum_{j=1}^{n^{-}} \log \left[\left(1-\alpha P_{c i r c}^{j} C_{x} \cos \theta_{x}^{j}-\alpha P_{c i r c}^{j} C_{z} \cos \theta_{z}^{j}+\alpha P_{y} \cos \theta_{y}^{j}\right) w^{j}\right]
\end{aligned}
$$

Observable-Extraction Methods

- One-dimensional fit:

Asym $=\frac{Y^{+}-Y^{-}}{Y^{+}+Y^{-}}=\frac{\iint \frac{d \sigma^{+}}{d \Omega} d\left(\cos \theta_{y}\right) d\left(\cos \theta_{z / x}\right)-\iint \frac{d \sigma^{-}}{d \Omega} d\left(\cos \theta_{y}\right) d\left(\cos \theta_{z / x}\right)}{\iint \frac{d \sigma^{+}}{d \Omega} d\left(\cos \theta_{y}\right) d\left(\cos \theta_{z / x}\right)+\iint \frac{d \sigma^{-}}{d \Omega} d\left(\cos \theta_{y}\right) d\left(\cos \theta_{z / x}\right)}=\alpha P_{c i r c} C_{x / z} \cos \theta_{x / z}$

- Two-dimensional fit:

$$
\text { Asym }=\frac{Y^{+}-Y^{-}}{Y^{+}+Y^{-}}=\frac{\left.\int \frac{d \sigma^{+}}{d \Omega} d\left(\cos \theta_{y}\right)\right)-\int \frac{d \sigma^{-}}{d \Omega} d\left(\cos \theta_{y}\right)}{\left.\int \frac{d \sigma^{+}}{d \Omega} d\left(\cos \theta_{y}\right)\right)+\int \frac{d \sigma^{-}}{d \Omega} d\left(\cos \theta_{y}\right)}=\alpha P_{c i r c} C_{x} \cos \theta_{x}+\alpha P_{c i r c} C_{z} \cos \theta_{z}
$$

- Maximum likelihood Method:

$$
P D F=\frac{d \sigma}{d \Omega}_{\mid \text {unpol }}\left(1 \pm \alpha P_{\text {circ }} C_{x} \cos \theta_{x} \pm \alpha P_{c i r c} C_{z} \cos \theta_{z}+\alpha P_{y} \cos \theta_{y}\right)
$$

Results for C_{x} and C_{z} from Different Methods

Comparison With g1c Results

$\cos \theta_{K}:[0.35,0.55]$
C_{x} and C_{z} from Robert K. Bradford P_{y} from John W.C. McNabb

- Dataset: g1c
- Reaction: $\vec{\gamma} p \rightarrow K^{+} \vec{\Lambda}$

Simulation Study to Understand Different Methods

A study was used to evaluate potential bias of the maximum likelihood method and the binned methods.

- 6000 different experiments, with 10^{6} events in each experiment, were generated according to the differential polarized cross section with realistic values of $C_{x^{\prime}} C_{z}$, and P_{y} for $\vec{\gamma} p \rightarrow K^{+} \Lambda$.
- Generated data were processed through GSIM and gpp.
- After raw data were skimmed, the observables were extracted using the maximum likelihood method and the binned methods.

Simulation Study to Compare Different Methods

Examples of 1D Fit

$E_{\gamma}:[1.5875,1.6875] \mathrm{GeV}$ and $\cos \theta_{K}:[0.35,0.55]$

$\cos \theta_{x}$

Why is the Bias Small for C_{z} from 1D Fit?

In the spherical coordinate system:
$\left\{\begin{array}{l}\cos \theta_{x}=\sin \theta \cos \phi \\ \cos \theta_{y}=\sin \theta \sin \phi \\ \cos \theta_{z}=\cos \theta\end{array}\right.$

$$
\begin{gathered}
\cos ^{2} \theta_{x}+\cos ^{2} \theta_{y}+\cos ^{2} \theta_{z}=1 \\
\theta_{x}, \theta_{y}, \text { and } \theta_{z} \text { are not independent. }
\end{gathered}
$$

Event yield: $Y^{ \pm}(\theta, \phi)=N_{\gamma}^{ \pm} N_{T} \sigma^{ \pm}(\theta, \phi) A(\theta, \phi)$
Integral over $\phi: Y^{ \pm}(\theta)=c\left(A(\theta) \pm \alpha P_{\text {circ }} C_{x} \sin \theta A_{x}(\theta) \pm \alpha P_{\text {circ }} C_{z} \cos \theta A(\theta)+\alpha P_{y} \sin \theta A_{y}(\theta)\right)$

$$
\begin{aligned}
& A(\theta)=\int_{0}^{2 \pi} A(\theta, \phi) \mathrm{d} \phi ; A_{x}(\theta)=\int_{0}^{2 \pi} A(\theta, \phi) \cos \phi \mathrm{d} \phi ; \quad A_{y}(\theta)=\int_{0}^{2 \pi} A(\theta, \phi) \sin \phi \mathrm{d} \phi \\
& A_{x}(\theta)=\int_{0}^{2 \pi} A(\theta, \phi) \cos \phi \mathrm{d} \phi<\int_{0}^{2 \pi} A(\theta, \phi)|\cos \phi| \mathrm{d} \phi<|\cos \phi|_{\max } \int_{0}^{2 \pi} A(\theta, \phi) \mathrm{d} \phi=\int_{0}^{2 \pi} A(\theta, \phi) \mathrm{d} \phi=A(\theta)
\end{aligned}
$$

Asymmetry: Asym $=\frac{Y^{+}-Y^{-}}{Y^{+}+Y^{-}}=\frac{\alpha P_{\text {circ }} C_{x} \sin \theta A_{x}(\theta)+\alpha P_{\text {circ }} C_{z} \cos \theta A(\theta)}{A(\theta)+\alpha P_{y} \sin \theta A_{y}(\theta)}$
Generally, $\left|C_{x}\right| \ll\left|C_{z}\right|,\left|P_{y}\right|<\left|C_{z}\right|$
Therefore, A sym $\approx \alpha P_{\text {circ }} C_{z} \cos \theta_{z}$

Why is the Bias Large for C_{x} from 1D Fit?

Spherical coordinate system for the conv

$$
\left\{\begin{array}{l}\cos \theta_{x}=\cos \theta \\ \cos \theta_{y}=\sin \theta \cos \phi \\ \cos \theta_{z}=\sin \theta \sin \phi\end{array}\right.
$$

Asymmetry: A sym $=\frac{Y^{+}-Y^{-}}{Y^{+}+Y^{-}}=\frac{\alpha P_{\text {circ }} C_{x} \cos \theta A(\theta)+\alpha P_{\text {circ }} C_{z} \sin \theta A_{z}(\theta)}{A(\theta)+\alpha P_{y} \sin \theta A_{y}(\theta)}$

In general, C_{x} is small relative to C_{z} and P_{y}, so C_{z} and P_{y} terms do not cancel.
Therefore, the asymmetry for C_{x} is not a linear function of $\cos \theta_{x}$.

- The effect of acceptance cannot be ignored in 1D fit, especially for C_{x}.
- The situation with P_{y} is somewhat in-between C_{x} and C_{z} if it's extracted by 1D fit.
- 2D fitting can reduce the effect of the acceptance to some extent.

Effect of Missing Momentum Cut

Results: Axis Convention of the Quasi-free Mechanism

Results: Results for the Quasi-free

 Mechanism

Results: One-fold Differential Estimate of C_{x} for the Final-State Interactions

Results: One-fold Differential Estimate of C_{z} for the Final-State Interactions

Results: One-fold Differential Estimate of P_{y} for the Final-State Interactions

Two-fold differential estimates

Results: Two-fold differential estimates

$C_{x}\left(p_{K}, \theta_{A}^{\prime}\right), C_{z}\left(p_{K}, \theta_{A}^{\prime}\right)$, and $P_{y}\left(p_{K}, \theta_{A}^{\prime}\right)$

Results: Two-fold differential estimates

$$
C_{x}\left(\theta_{K}, \theta_{\Lambda}^{\prime}\right), C_{z}\left(\theta_{K}, \theta_{\Lambda}^{\prime}\right), \text { and } P_{y}\left(\theta_{K}, \theta_{\Lambda}^{\prime}\right)
$$

Results: Two-fold differential estimates Bin Setup in E_{γ} and $\theta_{\Lambda}^{\prime}$

Discussion: Effect of Missing Momentum Cut

The missing momentum is cut within different ranges: $0.2-0.1$ $\mathrm{GeV} / c, 0.05-0.1 \mathrm{GeV} / c$, and $0-0.05 \mathrm{GeV} / c$.

Discussion: Examples of 1D Fit

$$
\text { Asym }=\frac{Y^{+}-Y^{-}}{Y^{+}+Y^{-}}=\frac{\iint \frac{d \sigma^{+}}{d \Omega} d\left(\cos \theta_{y}\right) d\left(\cos \theta_{z / x}\right)-\iint \frac{d \sigma^{-}}{d \Omega} d\left(\cos \theta_{y}\right) d\left(\cos \theta_{z / x}\right)}{\iint \frac{d \sigma^{\prime}}{d \Omega} d\left(\cos \theta_{y}\right) d\left(\cos \theta_{z / x}\right)+\iint \frac{d-}{d \Omega} d\left(\cos \theta_{y}\right) d\left(\cos \theta_{z / x}\right)}=\alpha P_{\text {circ }} C_{x / z} \cos \theta_{x /}
$$

Statistical Uncertainties

A study by simulations is used to test if statistical uncertainties of the observables extracted by a computer program are reliable.

