The PEPPo Concept

• The PEPPo (Polarized Electrons for Polarized Positrons) experiment was conducted in the injector of the CEBAF accelerator at JLab to demonstrate a new technique for the production of **polarized positrons**.

$$\overrightarrow{\mathbf{e}} \rightarrow \overrightarrow{\gamma} \rightarrow \overrightarrow{\mathbf{e}}$$

• It involves a two-step process:

 Creation of circularly polarized photons from the bremsstrahlung produced by longitudinally polarized electrons in a hi-Z target.

 Followed by the creation of polarized e+e- pairs via the pair production from these circularly polarized photons within the same target. **PEPPo Experimental setup**

For more on the PEPPo experiment: See Grames talk on Thursday

Compton Transmission Polarimetry

- Electrons or Positrons radiate polarized photons by Bremsstrahlung in reconversion target. The photons transmitted by the magnetized iron core of the analyzing magnet are detected in 9 crystals of photon calorimeter and are read by PMTs
- The measurement of the beam (positron or electron) polarization is essentially obtained from the transmission asymmetry (A_T) of the number of transmitted bremsstrahlung photons for oppositely polarized target or beam polarization orientations.

Compton Transmission Polarimeter

• Reconversion target

2 mm × 48 mm diameter **tungsten composite** (Densimet D17K) with 90.5% W,7% Ni and 2.5% Cu.

Analyzing magnet
 The core of the analyzing magnet is

 a magnetized iron cylinder target
 that is 7.5 cm long and 5 cm
 diameter

Photon calorimeter
 9 (60 x 60 x 280 mm) Cesium
 Iodide crystals doped with Thallium
 CsI(TI) arranged in 3 × 3 array
 configuration.

CsI(TI) crystals are coupled to Hamamatsu R6236 PMTs operated at -1.5kV

 The signal from the PMTs are fed into JLab custom made FADC250 module which samples signals at 250 MHz.

Analyzing magnet

The iron core target is equipped with 3 pick-up coils measuring the magnetic flux generated by the magnet current variation (ramping-up, polarity reversal).

The magnetic field of the analyzing magnet was modeled in OPERA 2D and compared to field values measured experimentally with the pick up coils.

Analyzing power simulation

- A model of the PEPPo polarimeter has been developed within the GEANT4 framework, starting from E-166 Collaboration earlier work.
- The analyzing power of the polarimeter can be experimentally measured with a known polarized beam or simulated with GEANT4.
- The simulated energy deposited into each crystal is processed according to the data read-out electronics method

Simulation of 5.34MeV/c pencil beam e⁺ beam

6

Energy Integrated Asymmetry

- Electron data are recorded in energy integrated mode.
- The energy integrated method is suitable for the **high rate** condition of the electron.
- The total energy deposited in each crystal during the time corresponding to a single helicity state of the initial electron beam is recorded.

Helicity frequency=30Hz Helicity delay= 8windows

Helicity pattern=quartet (+--+ or - + + -)

Calibration of Compton to Mott

PEPPo took advantage of the existing experimental capabilities that uniquely define with precision the CEBAF polarized electron beam at creation.

Electron physics asymmetry measurement.

Combining experimental asymmetries measured for each analyzing magnet polarity and each laser polarization orientation allows to cancel-out eventual false asymmetries and isolate physics asymmetries.

P _e . (MeV/c)	Mode	I _e . @ T2
3.08	Int.	60 pA
4.02	Int.	23 pA
5.34	Int.	25 pA
6.25	Int.	10 pA
7.19	Int.	10 pA

Electron Measured vs. Simulation The calibration of the analyzing power of the polarimeter relies on the comparison between experimental and simulated electron analyzing power.

- The comparison between experimental and simulated analyzing power allows to benchmark the GEANT4 physics packages
- Agreement between simulation and measurement is best for central crystal; outer crystals demonstrate greatest difference at largest energies
- Beam position was unknown during the experiment, thus simulation could not reproduce exact conditions

Beam position sensitivity

Simulation of 5.34MeV/c pencil beam e beam

Simulating the analyzing power at **different positions** along the Y axis (fixed along X axis) **reveals** a **sensitivity** to beam position

While the analyzing power for the **central** crystal remain **steady** throughout the scan, the values **for other crystals varies** depending on the **position** of the **beam**

Simulated Positron Analyzing power

Positron analyzing power simulation: 3.08 - 7.19MeV/c.

- Positron analyzing power is obtained directly from simulation.
- The main difference between electrons and positrons is the annihilation reaction.

Simulated Positron Analyzing power

GEANT4 simulations allow to link the measured electron analyzing power to the expected positron analyzing power of the PEPPo Compton transmission polarimeter.

Summary

- The electron beam was used to study and calibrate the Compton transmission polarimeter analyzing power.
- Geant4 simulation of the central crystal agreed very well with measurements.
- Sensitivity of outer crystals in simulation may explain difference between measurement and model.
- The positron analyzing power was obtained directly from the simulation of the central crystal.