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What are we made out of? Standard Model

Reference : http://www.physik.uzh.ch/groups/serra/StandardModel.html

http://www.pha.jhu.edu/~dfehling/

How small are they?
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Micrograph of a nanowire curled into a loop in front of 
a strand of human hair https://www.quora.com/What-size-are-the-particles-of-an-atom-in-relation-to-its-size

A line of billion 
protons will be 

approximately the 
size of the diameter 

of a hair!!!!

http://
news.stanford.edu/
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So, what kinds of quark combinations exist in “Nature”
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Color

Baryons What is a “Baryon” or “Baryon State”?
q

q
qA configuration of quarks which consists of 3 quarks

Let’s build some baryons
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We need more quantum numbers (labels which can have certain values) to specify baryon 
states

When the configuration of three quarks have minimum energy, we call it “ground state” 
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Perturbative expansion in QCD gauge coupling is 
only possible at high energies

Behavior of QuarksSpin-
flavor

composi-
tion of
excited
baryons
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A brief introduction to 1/Nc expansion

(a) QCD running coupling constant

(arXiv:hep-ex/0606035)

QCD is the theory of strong interactions which is the SU(3) gauge theory of
quarks and gluons.

Perturbative expansion in QCD gauge coupling is only possible at high energy.

t’Hooft (G.’t Hooft, Nucl,Phys,B72,461) suggested the generalization of QCD from SU(3)
gauge theory to SU(Nc) gauge theory

1/Nc is a hidden expansion parameter in QCD.

Nc quarks, and N2
c � 1 gluons.
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Asymptotic freedom!!!

LQCD =  ̄f (i ⇥D � mf) f �
1

4
tr (GG)

So, how do we solve this?

Effective Theories

PROBING QUANTUM CHROMODYNAMICS WITH EFFECTIVE THEORIES
Jose L. Goity

Physics Department, Hampton University and
Theory Center, Jefferson Lab
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Figure 9.2: Left: Summary of measurements of αs(M
2
Z), used as input for the

world average value; Right: Summary of measurements of αs as a function of the
respective energy scale Q. Both plots are taken from Ref. 172.
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Asymptotic freedom

Confinement

Chirality

Gives 95% of the visible mass of Universe

Chiral condensation
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•Effective theories give an increasingly precise description of 

QCD in terms of an expansion in small quantities

•Give powerful means of organizing physical effects in order 

of importance leading to understanding

•Give relations among observable quantities which serve as 

precise tests of QCD
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Parity

Low energy effective theory: chiral effective theory

chiral symmetry

Low energy representation of QCD with hadronic degrees of freedom

ALO(⇤0 � ⇥⇥) = i
�

4⇤F�

⌅E · ⌅B

�LO(⇥0 � ��) = 7.7 eV �NLO(⇥0 � ��) = 8.1 eV

�Exp(⇥
0 � ��) = 7.82 ± 0.14 ± 0.17 eV PRIMEX

Precision test of QCD

P
o
S
(
C
D
0
9
)
0
0
5

Light quark masses H. Leutwyler

0

0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1

1

mu!md

0 0

5 5

10 10

15 15

20 20

25 25

ms!md

"PT fails "PT must
be reordered

Q from # decay 
MILC 09
PACS-CS 08
RBC/UKQCD 08
PDG 08
RBC 07
Bijnens & Ghorbani 07
Namekawa & Kikukawa 06
MILC 04
Nelson, Fleming & Kilcup 03
Gao, Yan & Li 97
Kaiser 97
Leutwyler 96
Schechter et al. 93
Donoghue, Holstein & Wyler 92
Gerard 90
Cline 89
Gasser and Leutwyler 82
Langacker & Pagels 79
Weinberg 77
Gasser & Leutwyler 75

Figure 3: Ratios of the light quark masses

from the experimental information concerning the decay # → 3$ . Since the electromagnetic con-
tributions to this transition are suppressed, this determination of Q is less sensitive to the uncer-
tainties therein. A comprehensive analysis of this decay is under way [15]. The gray elliptic band
in Figure 3 corresponds to the range Q = 22.3± 0.8, which in my opinion is a fair assessment of
the current knowledge based on # → 3$ . The MILC results for the quark mass ratios [7] imply
Q = 21.7± 1.1 and are thus consistent with the above value, but those obtained by the RBC col-
laboration [16], which are based on a simulation with Nf = 2, disagree with it, as they correspond
to Q= 26.1±1.2.

The position on the ellipse cannot be determined on the basis of phenomenology alone. The
expansion in powers of 1/Nc does give a theoretical handle. Unfortunately, however, the bound
I had obtained in that framework [17] receives large corrections from higher orders [18]. The
experimental information about the width of the decays # → %% and # ′ → %% can be used to bring
the 1/Nc expansion under better control. The resulting pattern for the masses and mixing angles
of the pseudoscalar nonet implies ms/mud = 26.6± 1.6 [18], indicating that the corrections to the
value ms/mud = 25.9 that follows from the leading order ratios (4.1) are small.

The lattice results for ms/mud are slightly higher. Adding the quoted errors3 in quadrature, the
MILC result reads ms/mud = 27.4(2) [7]. As a check on the convergence of the expansion in this
case, it is instructive to evaluate the NLO formula,4

ms
mud

=
NLO 2M2

K
M2
$

{
1−8M

2
K −M2

$

F2$
(2L8−L5)+µ$ −µ#

}
−1 , (4.3)

where the chiral logarithms stand for µP = M2
P ℓn(M2

P/µ
2)/(32$2F2$ ). For the relevant combina-

tion of effective coupling constants at running scale µ = M# , the MILC collaboration quotes the
value 2L8−L5 = −0.48(8)(21)×10−3. This leads to ms/mud =

NLO 28.1(0.5)(1.2). Although the un-
certainty in the couplings still leaves room for contributions from higher orders, the NLO formula
does represent a decent approximation.

3These do not account for the uncertainties in the electromagnetic self-energies discussed in section 3.
4The constant F$ can be replaced by F0 – the operation merely affects the size of the NNLO corrections.
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Figure 2: Mass of the strange quark, in the MS scheme at running scale µ = 2 GeV. Except for some of the
early estimates, disks indicate sum rule determinations, while squares represent lattice results.

found for the decay constants. It turns out that, in the !PT representation for the masses, the NLO
contributions from the valence quarks and from the Dirac determinant are of opposite sign and
roughly cancel. Accordingly, the Gell-Mann-Oakes-Renner formula describes the dependence of
M2
K on ms quite well, on the entire range between the chiral limit and the physical value of ms:

despite the fact that the mass of the strange quark is about 27 times heavier than the mean of u and
d, the departure from linearity is remarkably small. I will return to the convergence properties of
the expansion in section 4, in connection with the quark mass ratio ms/mud .

Note also that the numbers obtained at NLO are unambiguous only up to contributions of
higher order. Although this only matters beyond NLO, the convergence appears to favour the rep-
resentation obtained by expressing the corrections in terms of the masses and decay constants of
the Nambu-Goldstone bosons rather than the quark masses and couplings occurring in the effective
Lagrangian. At least in part, this can be understood from the fact that the properties of !PT are
governed by the infrared singularities of QCD. Since the position of these singularities is deter-
mined by the masses of the Nambu-Goldstone bosons, expressing the formulae in terms of these
before truncating the series ensures that the singularities are sitting at the proper place, ab initio.

The progress in the numerical simulation of QCD with light dynamical quarks is impressive,
but Figure 2 shows that the lattice determinations of ms do not yet yield a satisfactory picture (for
some of the lattice entries, only the statistical error is shown, because an estimate for the systematic
error is lacking). One of the problems may arise from nonperturbative renormalization effects –
some of the collaborations still use perturbative renormalization. Also, since ms is often taken
in the vicinity of the physical value, while mud is substantially larger than in nature, the mass of
the kaon is too large for the NLO formulae of !PT to yield a good basis for the extrapolation to
the physical values. Within the present uncertainties, the lattice results confirm the values of ms
found on the basis of QCD sum rules. It does not take much courage to predict that the progress
being made with lattice simulations of light dynamical quarks will soon lead to a significantly more
precise determination of ms.
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because in the latter case the discussed cancellations reduce the M� dependence, while the

lack of such cancellations for the loop contribution to the masses is magnified by Nc. The

combined fits are displayed in Fig 3, which shows the LO to NNLO fits of LQCD results

from the PACS-CS and LHP collaborations.
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FIG. 3: Combined fits to PACS-CS [35] and LHP [42] corresponding to the results shown in the first

row of Table I. The diamonds depict the physical values. The fits correspond to: LO (long-dashed

line), NLO (short-dashed line) and NNLO (solid line). The bands correspond to the theoretical

68% confidence interval.

The following remarks on the fits are in order:

1. All fitted LECs are of natural size when the renormalization scale is taken to be

µ � m⇥.

2. Parameters appearing at lower orders, namely m0, g̊A and CHF , remain stable at higher

orders, except c1 that changes by more than the estimated 30% when increasing the

order in � of the fit by one unit.

3. For baryon masses, LQCD data and physical point values are consistent even at LO,

where with only three parameters one can extrapolate to the physical values and get

a good fit up to M� � 350 MeV as shown in Fig. 3. For larger values of M� an

approximate linear fit is consistent [34] in the range Mphys
� < M� < 450 MeV. Since at

LO there are contributions to the baryon masses which are proportional to Nc c1M
2
� ,

20

Axial-vector couplings in 1/Nc - ChPT A. Calle Cordón

Table 1: The LECs in the table correspond to the choice of the renormalization scale µ = 700 MeV. The
baryon masses extrapolated to the physical point are mN = 963(15) MeV, and m� = 1212(15) MeV. The last
three columns show the extrapolation to the physical point of the axial couplings.

�2
DOF g̊A m0 CHF c1 µ2 z1 CA

1 CA
2 CA

3 gA(M⇥ ) CA
5 (M⇥ ) g1(M⇥ )

[MeV ] [MeV ] [MeV�1] [MeV�1] [MeV�2] [MeV�2]

2.0 1.54(3) 262(8) 172(11) 0.0025(1) �0.0003(2) �1.0(1)⇥10�6 �6(2)⇥10�7 �0.24(5) �0.14(8) 1.17(2) 0.91(2) 0.59(2)
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Figure 2: Combined at NNLO to the masses and axial coupling of the ETM collaboration [14, 15, 16]. The
diamonds depict the physical values. The bands correspond to the theoretical 68% confidence interval.

The � width is used to determine the physical value of CA
5 according to: ⇥�⌅N⇥ =

CA2
5

6⇥F2
⇥
((mN �

m�)2 �M2
⇥)3/2, which upon using ⇥Exp

�⌅N⇥ = 116� 120 MeV, gives CA
5 ⇤ 1.05 ± 0.01. As empha-

sized in [4] this corresponds vis-a-vis the nucleon axial coupling to a remarkably small deviation
from the SU(4) symmetry limit. One can see that the LQCD results show for the �N axial coupling
a similar deficit when extrapolated to the physical point as it occurs for the N axial coupling. The
cusp observed in the axial couplings involving the � are due to the opening of the � ⌅ N⇥ channel.
Its location is not the physical one because the baryon masses in the loop are the ones at O(⇤ ).

To O(⇤ 3) for the masses and O(⇤ 2) for the axial couplings, and fitting to results in the range
up to M⇥ ⇤ 500 MeV, the results obtained are displayed in Table 1 and in Fig. 2. The rather
flat behavior of the lattice results for the axial couplings within the mass range considered here is

5

Axial-vector couplings in 1/Nc - ChPT A. Calle Cordón

Table 1: The LECs in the table correspond to the choice of the renormalization scale µ = 700 MeV. The
baryon masses extrapolated to the physical point are mN = 963(15) MeV, and m� = 1212(15) MeV. The last
three columns show the extrapolation to the physical point of the axial couplings.

�2
DOF g̊A m0 CHF c1 µ2 z1 CA

1 CA
2 CA

3 gA(M⇥ ) CA
5 (M⇥ ) g1(M⇥ )

[MeV ] [MeV ] [MeV�1] [MeV�1] [MeV�2] [MeV�2]

2.0 1.54(3) 262(8) 172(11) 0.0025(1) �0.0003(2) �1.0(1)⇥10�6 �6(2)⇥10�7 �0.24(5) �0.14(8) 1.17(2) 0.91(2) 0.59(2)
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Figure 2: Combined at NNLO to the masses and axial coupling of the ETM collaboration [14, 15, 16]. The
diamonds depict the physical values. The bands correspond to the theoretical 68% confidence interval.

The � width is used to determine the physical value of CA
5 according to: ⇥�⌅N⇥ =

CA2
5

6⇥F2
⇥
((mN �

m�)2 �M2
⇥)3/2, which upon using ⇥Exp

�⌅N⇥ = 116� 120 MeV, gives CA
5 ⇤ 1.05 ± 0.01. As empha-

sized in [4] this corresponds vis-a-vis the nucleon axial coupling to a remarkably small deviation
from the SU(4) symmetry limit. One can see that the LQCD results show for the �N axial coupling
a similar deficit when extrapolated to the physical point as it occurs for the N axial coupling. The
cusp observed in the axial couplings involving the � are due to the opening of the � ⌅ N⇥ channel.
Its location is not the physical one because the baryon masses in the loop are the ones at O(⇤ ).

To O(⇤ 3) for the masses and O(⇤ 2) for the axial couplings, and fitting to results in the range
up to M⇥ ⇤ 500 MeV, the results obtained are displayed in Table 1 and in Fig. 2. The rather
flat behavior of the lattice results for the axial couplings within the mass range considered here is
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Table 1: The LECs in the table correspond to the choice of the renormalization scale µ = 700 MeV. The
baryon masses extrapolated to the physical point are mN = 963(15) MeV, and m� = 1212(15) MeV. The last
three columns show the extrapolation to the physical point of the axial couplings.

�2
DOF g̊A m0 CHF c1 µ2 z1 CA

1 CA
2 CA

3 gA(M⇥ ) CA
5 (M⇥ ) g1(M⇥ )

[MeV ] [MeV ] [MeV�1] [MeV�1] [MeV�2] [MeV�2]

2.0 1.54(3) 262(8) 172(11) 0.0025(1) �0.0003(2) �1.0(1)⇥10�6 �6(2)⇥10�7 �0.24(5) �0.14(8) 1.17(2) 0.91(2) 0.59(2)
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Figure 2: Combined at NNLO to the masses and axial coupling of the ETM collaboration [14, 15, 16]. The
diamonds depict the physical values. The bands correspond to the theoretical 68% confidence interval.

The � width is used to determine the physical value of CA
5 according to: ⇥�⌅N⇥ =

CA2
5

6⇥F2
⇥
((mN �

m�)2 �M2
⇥)3/2, which upon using ⇥Exp

�⌅N⇥ = 116� 120 MeV, gives CA
5 ⇤ 1.05 ± 0.01. As empha-

sized in [4] this corresponds vis-a-vis the nucleon axial coupling to a remarkably small deviation
from the SU(4) symmetry limit. One can see that the LQCD results show for the �N axial coupling
a similar deficit when extrapolated to the physical point as it occurs for the N axial coupling. The
cusp observed in the axial couplings involving the � are due to the opening of the � ⌅ N⇥ channel.
Its location is not the physical one because the baryon masses in the loop are the ones at O(⇤ ).

To O(⇤ 3) for the masses and O(⇤ 2) for the axial couplings, and fitting to results in the range
up to M⇥ ⇤ 500 MeV, the results obtained are displayed in Table 1 and in Fig. 2. The rather
flat behavior of the lattice results for the axial couplings within the mass range considered here is
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FIG. 1: The energies obtained for each symmetry channel of isospin 1
2 baryons are shown based on

the 2.64fm3 Nf = 2 lattice QCD data for mπ = 400 MeV (left panel) and mπ = 572 MeV (right

panel). The scale shows energies in Mev and errors are indicated by the vertical size of the box.

The gold open boxes show Nπ threshold states.

form-factors. First exploratory results have been obtained in Ref. [22] for the excited nucleon

P11 − N transition using a very simple basis of operators. The main result is shown in

Figure 2. The low Q2 region for F2(Q
2), at these very large unphysical pion masses shows

large deviations from experiment, consistent with many statements that the pion cloud

effects are stronger in excited state systems compared to the ground states. However, these

first preliminary results are very encouraging given the very limited operator basis. Work

is underway now using the previously developed full basis of nucleon operators for a more

accurate computation of the excited nucleon form-factors at much smaller pion masses using

the Nf = 2 + 1 configurations already produced. In addition, the ground and excited

state hyperon transition form-factors will also be computed. It is not clear what kind of

statistical accuracy that might be achieved - it is very sensitive to the system of interest,

what excited level, and what Q2 (many are available in one calculation). The results in
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respective energy scale Q. Both plots are taken from Ref. 172.
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Figure 3: Ratios of the light quark masses

from the experimental information concerning the decay # → 3$ . Since the electromagnetic con-
tributions to this transition are suppressed, this determination of Q is less sensitive to the uncer-
tainties therein. A comprehensive analysis of this decay is under way [15]. The gray elliptic band
in Figure 3 corresponds to the range Q = 22.3± 0.8, which in my opinion is a fair assessment of
the current knowledge based on # → 3$ . The MILC results for the quark mass ratios [7] imply
Q = 21.7± 1.1 and are thus consistent with the above value, but those obtained by the RBC col-
laboration [16], which are based on a simulation with Nf = 2, disagree with it, as they correspond
to Q= 26.1±1.2.

The position on the ellipse cannot be determined on the basis of phenomenology alone. The
expansion in powers of 1/Nc does give a theoretical handle. Unfortunately, however, the bound
I had obtained in that framework [17] receives large corrections from higher orders [18]. The
experimental information about the width of the decays # → %% and # ′ → %% can be used to bring
the 1/Nc expansion under better control. The resulting pattern for the masses and mixing angles
of the pseudoscalar nonet implies ms/mud = 26.6± 1.6 [18], indicating that the corrections to the
value ms/mud = 25.9 that follows from the leading order ratios (4.1) are small.

The lattice results for ms/mud are slightly higher. Adding the quoted errors3 in quadrature, the
MILC result reads ms/mud = 27.4(2) [7]. As a check on the convergence of the expansion in this
case, it is instructive to evaluate the NLO formula,4

ms
mud

=
NLO 2M2

K
M2
$

{
1−8M

2
K −M2

$

F2$
(2L8−L5)+µ$ −µ#

}
−1 , (4.3)

where the chiral logarithms stand for µP = M2
P ℓn(M2

P/µ
2)/(32$2F2$ ). For the relevant combina-

tion of effective coupling constants at running scale µ = M# , the MILC collaboration quotes the
value 2L8−L5 = −0.48(8)(21)×10−3. This leads to ms/mud =

NLO 28.1(0.5)(1.2). Although the un-
certainty in the couplings still leaves room for contributions from higher orders, the NLO formula
does represent a decent approximation.

3These do not account for the uncertainties in the electromagnetic self-energies discussed in section 3.
4The constant F$ can be replaced by F0 – the operation merely affects the size of the NNLO corrections.
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Figure 2: Mass of the strange quark, in the MS scheme at running scale µ = 2 GeV. Except for some of the
early estimates, disks indicate sum rule determinations, while squares represent lattice results.

found for the decay constants. It turns out that, in the !PT representation for the masses, the NLO
contributions from the valence quarks and from the Dirac determinant are of opposite sign and
roughly cancel. Accordingly, the Gell-Mann-Oakes-Renner formula describes the dependence of
M2
K on ms quite well, on the entire range between the chiral limit and the physical value of ms:

despite the fact that the mass of the strange quark is about 27 times heavier than the mean of u and
d, the departure from linearity is remarkably small. I will return to the convergence properties of
the expansion in section 4, in connection with the quark mass ratio ms/mud .

Note also that the numbers obtained at NLO are unambiguous only up to contributions of
higher order. Although this only matters beyond NLO, the convergence appears to favour the rep-
resentation obtained by expressing the corrections in terms of the masses and decay constants of
the Nambu-Goldstone bosons rather than the quark masses and couplings occurring in the effective
Lagrangian. At least in part, this can be understood from the fact that the properties of !PT are
governed by the infrared singularities of QCD. Since the position of these singularities is deter-
mined by the masses of the Nambu-Goldstone bosons, expressing the formulae in terms of these
before truncating the series ensures that the singularities are sitting at the proper place, ab initio.

The progress in the numerical simulation of QCD with light dynamical quarks is impressive,
but Figure 2 shows that the lattice determinations of ms do not yet yield a satisfactory picture (for
some of the lattice entries, only the statistical error is shown, because an estimate for the systematic
error is lacking). One of the problems may arise from nonperturbative renormalization effects –
some of the collaborations still use perturbative renormalization. Also, since ms is often taken
in the vicinity of the physical value, while mud is substantially larger than in nature, the mass of
the kaon is too large for the NLO formulae of !PT to yield a good basis for the extrapolation to
the physical values. Within the present uncertainties, the lattice results confirm the values of ms
found on the basis of QCD sum rules. It does not take much courage to predict that the progress
being made with lattice simulations of light dynamical quarks will soon lead to a significantly more
precise determination of ms.
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because in the latter case the discussed cancellations reduce the M� dependence, while the

lack of such cancellations for the loop contribution to the masses is magnified by Nc. The

combined fits are displayed in Fig 3, which shows the LO to NNLO fits of LQCD results

from the PACS-CS and LHP collaborations.
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FIG. 3: Combined fits to PACS-CS [35] and LHP [42] corresponding to the results shown in the first

row of Table I. The diamonds depict the physical values. The fits correspond to: LO (long-dashed

line), NLO (short-dashed line) and NNLO (solid line). The bands correspond to the theoretical

68% confidence interval.

The following remarks on the fits are in order:

1. All fitted LECs are of natural size when the renormalization scale is taken to be

µ � m⇥.

2. Parameters appearing at lower orders, namely m0, g̊A and CHF , remain stable at higher

orders, except c1 that changes by more than the estimated 30% when increasing the

order in � of the fit by one unit.

3. For baryon masses, LQCD data and physical point values are consistent even at LO,

where with only three parameters one can extrapolate to the physical values and get

a good fit up to M� � 350 MeV as shown in Fig. 3. For larger values of M� an

approximate linear fit is consistent [34] in the range Mphys
� < M� < 450 MeV. Since at

LO there are contributions to the baryon masses which are proportional to Nc c1M
2
� ,

20

Axial-vector couplings in 1/Nc - ChPT A. Calle Cordón

Table 1: The LECs in the table correspond to the choice of the renormalization scale µ = 700 MeV. The
baryon masses extrapolated to the physical point are mN = 963(15) MeV, and m� = 1212(15) MeV. The last
three columns show the extrapolation to the physical point of the axial couplings.

�2
DOF g̊A m0 CHF c1 µ2 z1 CA

1 CA
2 CA

3 gA(M⇥ ) CA
5 (M⇥ ) g1(M⇥ )

[MeV ] [MeV ] [MeV�1] [MeV�1] [MeV�2] [MeV�2]

2.0 1.54(3) 262(8) 172(11) 0.0025(1) �0.0003(2) �1.0(1)⇥10�6 �6(2)⇥10�7 �0.24(5) �0.14(8) 1.17(2) 0.91(2) 0.59(2)
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Figure 2: Combined at NNLO to the masses and axial coupling of the ETM collaboration [14, 15, 16]. The
diamonds depict the physical values. The bands correspond to the theoretical 68% confidence interval.
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5 ⇤ 1.05 ± 0.01. As empha-

sized in [4] this corresponds vis-a-vis the nucleon axial coupling to a remarkably small deviation
from the SU(4) symmetry limit. One can see that the LQCD results show for the �N axial coupling
a similar deficit when extrapolated to the physical point as it occurs for the N axial coupling. The
cusp observed in the axial couplings involving the � are due to the opening of the � ⌅ N⇥ channel.
Its location is not the physical one because the baryon masses in the loop are the ones at O(⇤ ).

To O(⇤ 3) for the masses and O(⇤ 2) for the axial couplings, and fitting to results in the range
up to M⇥ ⇤ 500 MeV, the results obtained are displayed in Table 1 and in Fig. 2. The rather
flat behavior of the lattice results for the axial couplings within the mass range considered here is
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Table 1: The LECs in the table correspond to the choice of the renormalization scale µ = 700 MeV. The
baryon masses extrapolated to the physical point are mN = 963(15) MeV, and m� = 1212(15) MeV. The last
three columns show the extrapolation to the physical point of the axial couplings.
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diamonds depict the physical values. The bands correspond to the theoretical 68% confidence interval.
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cusp observed in the axial couplings involving the � are due to the opening of the � ⌅ N⇥ channel.
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baryon masses extrapolated to the physical point are mN = 963(15) MeV, and m� = 1212(15) MeV. The last
three columns show the extrapolation to the physical point of the axial couplings.
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Figure 2: Combined at NNLO to the masses and axial coupling of the ETM collaboration [14, 15, 16]. The
diamonds depict the physical values. The bands correspond to the theoretical 68% confidence interval.
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⇥)3/2, which upon using ⇥Exp

�⌅N⇥ = 116� 120 MeV, gives CA
5 ⇤ 1.05 ± 0.01. As empha-

sized in [4] this corresponds vis-a-vis the nucleon axial coupling to a remarkably small deviation
from the SU(4) symmetry limit. One can see that the LQCD results show for the �N axial coupling
a similar deficit when extrapolated to the physical point as it occurs for the N axial coupling. The
cusp observed in the axial couplings involving the � are due to the opening of the � ⌅ N⇥ channel.
Its location is not the physical one because the baryon masses in the loop are the ones at O(⇤ ).

To O(⇤ 3) for the masses and O(⇤ 2) for the axial couplings, and fitting to results in the range
up to M⇥ ⇤ 500 MeV, the results obtained are displayed in Table 1 and in Fig. 2. The rather
flat behavior of the lattice results for the axial couplings within the mass range considered here is
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FIG. 1: The energies obtained for each symmetry channel of isospin 1
2 baryons are shown based on

the 2.64fm3 Nf = 2 lattice QCD data for mπ = 400 MeV (left panel) and mπ = 572 MeV (right

panel). The scale shows energies in Mev and errors are indicated by the vertical size of the box.

The gold open boxes show Nπ threshold states.

form-factors. First exploratory results have been obtained in Ref. [22] for the excited nucleon

P11 − N transition using a very simple basis of operators. The main result is shown in

Figure 2. The low Q2 region for F2(Q
2), at these very large unphysical pion masses shows

large deviations from experiment, consistent with many statements that the pion cloud

effects are stronger in excited state systems compared to the ground states. However, these

first preliminary results are very encouraging given the very limited operator basis. Work

is underway now using the previously developed full basis of nucleon operators for a more

accurate computation of the excited nucleon form-factors at much smaller pion masses using

the Nf = 2 + 1 configurations already produced. In addition, the ground and excited

state hyperon transition form-factors will also be computed. It is not clear what kind of

statistical accuracy that might be achieved - it is very sensitive to the system of interest,

what excited level, and what Q2 (many are available in one calculation). The results in
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Figure 3: Ratios of the light quark masses

from the experimental information concerning the decay # → 3$ . Since the electromagnetic con-
tributions to this transition are suppressed, this determination of Q is less sensitive to the uncer-
tainties therein. A comprehensive analysis of this decay is under way [15]. The gray elliptic band
in Figure 3 corresponds to the range Q = 22.3± 0.8, which in my opinion is a fair assessment of
the current knowledge based on # → 3$ . The MILC results for the quark mass ratios [7] imply
Q = 21.7± 1.1 and are thus consistent with the above value, but those obtained by the RBC col-
laboration [16], which are based on a simulation with Nf = 2, disagree with it, as they correspond
to Q= 26.1±1.2.

The position on the ellipse cannot be determined on the basis of phenomenology alone. The
expansion in powers of 1/Nc does give a theoretical handle. Unfortunately, however, the bound
I had obtained in that framework [17] receives large corrections from higher orders [18]. The
experimental information about the width of the decays # → %% and # ′ → %% can be used to bring
the 1/Nc expansion under better control. The resulting pattern for the masses and mixing angles
of the pseudoscalar nonet implies ms/mud = 26.6± 1.6 [18], indicating that the corrections to the
value ms/mud = 25.9 that follows from the leading order ratios (4.1) are small.

The lattice results for ms/mud are slightly higher. Adding the quoted errors3 in quadrature, the
MILC result reads ms/mud = 27.4(2) [7]. As a check on the convergence of the expansion in this
case, it is instructive to evaluate the NLO formula,4

ms
mud

=
NLO 2M2

K
M2
$

{
1−8M

2
K −M2

$

F2$
(2L8−L5)+µ$ −µ#

}
−1 , (4.3)

where the chiral logarithms stand for µP = M2
P ℓn(M2

P/µ
2)/(32$2F2$ ). For the relevant combina-

tion of effective coupling constants at running scale µ = M# , the MILC collaboration quotes the
value 2L8−L5 = −0.48(8)(21)×10−3. This leads to ms/mud =

NLO 28.1(0.5)(1.2). Although the un-
certainty in the couplings still leaves room for contributions from higher orders, the NLO formula
does represent a decent approximation.

3These do not account for the uncertainties in the electromagnetic self-energies discussed in section 3.
4The constant F$ can be replaced by F0 – the operation merely affects the size of the NNLO corrections.
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Figure 2: Mass of the strange quark, in the MS scheme at running scale µ = 2 GeV. Except for some of the
early estimates, disks indicate sum rule determinations, while squares represent lattice results.

found for the decay constants. It turns out that, in the !PT representation for the masses, the NLO
contributions from the valence quarks and from the Dirac determinant are of opposite sign and
roughly cancel. Accordingly, the Gell-Mann-Oakes-Renner formula describes the dependence of
M2
K on ms quite well, on the entire range between the chiral limit and the physical value of ms:

despite the fact that the mass of the strange quark is about 27 times heavier than the mean of u and
d, the departure from linearity is remarkably small. I will return to the convergence properties of
the expansion in section 4, in connection with the quark mass ratio ms/mud .

Note also that the numbers obtained at NLO are unambiguous only up to contributions of
higher order. Although this only matters beyond NLO, the convergence appears to favour the rep-
resentation obtained by expressing the corrections in terms of the masses and decay constants of
the Nambu-Goldstone bosons rather than the quark masses and couplings occurring in the effective
Lagrangian. At least in part, this can be understood from the fact that the properties of !PT are
governed by the infrared singularities of QCD. Since the position of these singularities is deter-
mined by the masses of the Nambu-Goldstone bosons, expressing the formulae in terms of these
before truncating the series ensures that the singularities are sitting at the proper place, ab initio.

The progress in the numerical simulation of QCD with light dynamical quarks is impressive,
but Figure 2 shows that the lattice determinations of ms do not yet yield a satisfactory picture (for
some of the lattice entries, only the statistical error is shown, because an estimate for the systematic
error is lacking). One of the problems may arise from nonperturbative renormalization effects –
some of the collaborations still use perturbative renormalization. Also, since ms is often taken
in the vicinity of the physical value, while mud is substantially larger than in nature, the mass of
the kaon is too large for the NLO formulae of !PT to yield a good basis for the extrapolation to
the physical values. Within the present uncertainties, the lattice results confirm the values of ms
found on the basis of QCD sum rules. It does not take much courage to predict that the progress
being made with lattice simulations of light dynamical quarks will soon lead to a significantly more
precise determination of ms.
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because in the latter case the discussed cancellations reduce the M� dependence, while the

lack of such cancellations for the loop contribution to the masses is magnified by Nc. The

combined fits are displayed in Fig 3, which shows the LO to NNLO fits of LQCD results

from the PACS-CS and LHP collaborations.
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FIG. 3: Combined fits to PACS-CS [35] and LHP [42] corresponding to the results shown in the first

row of Table I. The diamonds depict the physical values. The fits correspond to: LO (long-dashed

line), NLO (short-dashed line) and NNLO (solid line). The bands correspond to the theoretical

68% confidence interval.

The following remarks on the fits are in order:

1. All fitted LECs are of natural size when the renormalization scale is taken to be

µ � m⇥.

2. Parameters appearing at lower orders, namely m0, g̊A and CHF , remain stable at higher

orders, except c1 that changes by more than the estimated 30% when increasing the

order in � of the fit by one unit.

3. For baryon masses, LQCD data and physical point values are consistent even at LO,

where with only three parameters one can extrapolate to the physical values and get

a good fit up to M� � 350 MeV as shown in Fig. 3. For larger values of M� an

approximate linear fit is consistent [34] in the range Mphys
� < M� < 450 MeV. Since at

LO there are contributions to the baryon masses which are proportional to Nc c1M
2
� ,

20
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Table 1: The LECs in the table correspond to the choice of the renormalization scale µ = 700 MeV. The
baryon masses extrapolated to the physical point are mN = 963(15) MeV, and m� = 1212(15) MeV. The last
three columns show the extrapolation to the physical point of the axial couplings.

�2
DOF g̊A m0 CHF c1 µ2 z1 CA

1 CA
2 CA

3 gA(M⇥ ) CA
5 (M⇥ ) g1(M⇥ )

[MeV ] [MeV ] [MeV�1] [MeV�1] [MeV�2] [MeV�2]

2.0 1.54(3) 262(8) 172(11) 0.0025(1) �0.0003(2) �1.0(1)⇥10�6 �6(2)⇥10�7 �0.24(5) �0.14(8) 1.17(2) 0.91(2) 0.59(2)
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Figure 2: Combined at NNLO to the masses and axial coupling of the ETM collaboration [14, 15, 16]. The
diamonds depict the physical values. The bands correspond to the theoretical 68% confidence interval.

The � width is used to determine the physical value of CA
5 according to: ⇥�⌅N⇥ =

CA2
5

6⇥F2
⇥
((mN �

m�)2 �M2
⇥)3/2, which upon using ⇥Exp

�⌅N⇥ = 116� 120 MeV, gives CA
5 ⇤ 1.05 ± 0.01. As empha-

sized in [4] this corresponds vis-a-vis the nucleon axial coupling to a remarkably small deviation
from the SU(4) symmetry limit. One can see that the LQCD results show for the �N axial coupling
a similar deficit when extrapolated to the physical point as it occurs for the N axial coupling. The
cusp observed in the axial couplings involving the � are due to the opening of the � ⌅ N⇥ channel.
Its location is not the physical one because the baryon masses in the loop are the ones at O(⇤ ).

To O(⇤ 3) for the masses and O(⇤ 2) for the axial couplings, and fitting to results in the range
up to M⇥ ⇤ 500 MeV, the results obtained are displayed in Table 1 and in Fig. 2. The rather
flat behavior of the lattice results for the axial couplings within the mass range considered here is
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Table 1: The LECs in the table correspond to the choice of the renormalization scale µ = 700 MeV. The
baryon masses extrapolated to the physical point are mN = 963(15) MeV, and m� = 1212(15) MeV. The last
three columns show the extrapolation to the physical point of the axial couplings.
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Figure 2: Combined at NNLO to the masses and axial coupling of the ETM collaboration [14, 15, 16]. The
diamonds depict the physical values. The bands correspond to the theoretical 68% confidence interval.

The � width is used to determine the physical value of CA
5 according to: ⇥�⌅N⇥ =

CA2
5

6⇥F2
⇥
((mN �

m�)2 �M2
⇥)3/2, which upon using ⇥Exp

�⌅N⇥ = 116� 120 MeV, gives CA
5 ⇤ 1.05 ± 0.01. As empha-

sized in [4] this corresponds vis-a-vis the nucleon axial coupling to a remarkably small deviation
from the SU(4) symmetry limit. One can see that the LQCD results show for the �N axial coupling
a similar deficit when extrapolated to the physical point as it occurs for the N axial coupling. The
cusp observed in the axial couplings involving the � are due to the opening of the � ⌅ N⇥ channel.
Its location is not the physical one because the baryon masses in the loop are the ones at O(⇤ ).

To O(⇤ 3) for the masses and O(⇤ 2) for the axial couplings, and fitting to results in the range
up to M⇥ ⇤ 500 MeV, the results obtained are displayed in Table 1 and in Fig. 2. The rather
flat behavior of the lattice results for the axial couplings within the mass range considered here is
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Table 1: The LECs in the table correspond to the choice of the renormalization scale µ = 700 MeV. The
baryon masses extrapolated to the physical point are mN = 963(15) MeV, and m� = 1212(15) MeV. The last
three columns show the extrapolation to the physical point of the axial couplings.
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Figure 2: Combined at NNLO to the masses and axial coupling of the ETM collaboration [14, 15, 16]. The
diamonds depict the physical values. The bands correspond to the theoretical 68% confidence interval.

The � width is used to determine the physical value of CA
5 according to: ⇥�⌅N⇥ =

CA2
5

6⇥F2
⇥
((mN �

m�)2 �M2
⇥)3/2, which upon using ⇥Exp

�⌅N⇥ = 116� 120 MeV, gives CA
5 ⇤ 1.05 ± 0.01. As empha-

sized in [4] this corresponds vis-a-vis the nucleon axial coupling to a remarkably small deviation
from the SU(4) symmetry limit. One can see that the LQCD results show for the �N axial coupling
a similar deficit when extrapolated to the physical point as it occurs for the N axial coupling. The
cusp observed in the axial couplings involving the � are due to the opening of the � ⌅ N⇥ channel.
Its location is not the physical one because the baryon masses in the loop are the ones at O(⇤ ).

To O(⇤ 3) for the masses and O(⇤ 2) for the axial couplings, and fitting to results in the range
up to M⇥ ⇤ 500 MeV, the results obtained are displayed in Table 1 and in Fig. 2. The rather
flat behavior of the lattice results for the axial couplings within the mass range considered here is
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FIG. 1: The energies obtained for each symmetry channel of isospin 1
2 baryons are shown based on

the 2.64fm3 Nf = 2 lattice QCD data for mπ = 400 MeV (left panel) and mπ = 572 MeV (right

panel). The scale shows energies in Mev and errors are indicated by the vertical size of the box.

The gold open boxes show Nπ threshold states.

form-factors. First exploratory results have been obtained in Ref. [22] for the excited nucleon

P11 − N transition using a very simple basis of operators. The main result is shown in

Figure 2. The low Q2 region for F2(Q
2), at these very large unphysical pion masses shows

large deviations from experiment, consistent with many statements that the pion cloud

effects are stronger in excited state systems compared to the ground states. However, these

first preliminary results are very encouraging given the very limited operator basis. Work

is underway now using the previously developed full basis of nucleon operators for a more

accurate computation of the excited nucleon form-factors at much smaller pion masses using

the Nf = 2 + 1 configurations already produced. In addition, the ground and excited

state hyperon transition form-factors will also be computed. It is not clear what kind of

statistical accuracy that might be achieved - it is very sensitive to the system of interest,

what excited level, and what Q2 (many are available in one calculation). The results in
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mean life time ⇡ 1031years

mean life time ⇡ 1031years

Baryon Mean life time
Proton ⇡ 1031 years
Neutron 880.3±1.1 s
Lambda (2.632 ± 0.020) ⇥ 10�10 s
Sigma (0.8018 ± 0.0026) ⇥ 10�10s
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R

Aa =
1

2
hAa�ai

Considering the second term,

B†T ah�0�
aiB = B†T ah

✓
1

2

�
u†(i@0 + r0)u + u(i@0 + l0)u

†�
◆
�aiB

=
1

2

�
B†T ah

�
iu†@0u + u†r0u + iu@0u

† + ul0u
†��aiB

�

=
1

2

�
B†T ah

�
iu†@0u + iu@0u

† + u†r0u + ul0u
†��aiB

�
(2)

And,

u = exp(
i⇧

2F⇡
)

⇧ = ⇡a�a

u = 1 + i
⇧

2F⇡
� 1

8

⇧2

F 2
⇡

� i⇧3

48F 3
⇡

+
⇧4

384F 4
⇡

· · · (3)

u† = 1 � i
⇧

2F⇡
� 1

8

⇧2

F 2
⇡

+
i⇧3

48F 3
⇡

+
⇧4

384F 4
⇡

· · · (4)

@0u = i
@0⇧

2F⇡
� 1

8

@0⇧
2

F 2
⇡

� i@0⇧
3

48F 3
⇡

+
@0⇧

4

384F 4
⇡

· · · (5)

@0u
† = �i

@0⇧

2F⇡
� 1

8

@0⇧
2

F 2
⇡

+
i@0⇧

3

48F 3
⇡

+
@0⇧

4

384F 4
⇡

· · · (6)

1

1.2 Second Term (L
(2)
B )

L
(2)
B = g̊AB†uiaGiaB

=
1

2
g̊AB†Trhui�aiGiaB

=
1

2
g̊AB†Trh

�
u†(i@i + ri)u � u(i@i + li)u

†��aiGiaB

=
1

2
g̊AB†Trh

�
iu†@iu + u†riu � iu@iu

† � uliu
†��aiGiaB

=
1

2
g̊AB†Trh

�
i(u†@iu � u@iu

†) + u†riu � uliu
†��aiGiaB

(22)

In the above steps the following definition is used,

Aa =
1

2
Trh⌧aAi

Analogously,

uia =
1

2
Trh�auii

u = 1 + i
⇧

2F⇡
� 1

8

⇧2

F 2
⇡

� i⇧3

48F 3
⇡

+
⇧4

384F 4
⇡

· · · (23)

u† = 1 � i
⇧

2F⇡
� 1

8

⇧2

F 2
⇡

+
i⇧3

48F 3
⇡

+
⇧4

384F 4
⇡

· · · (24)

@iu = i
@i⇧

2F⇡
� 1

8

@i⇧
2

F 2
⇡

� i@i⇧
3

48F 3
⇡

+
@i⇧

4

384F 4
⇡

· · · (25)

@iu
† = �i

@i⇧

2F⇡
� 1

8

@i⇧
2

F 2
⇡

+
i@i⇧

3

48F 3
⇡

+
@i⇧

4

384F 4
⇡

· · · (26)

And,

u†@iu =

✓
1 � i

⇧

2F⇡
� 1

8

⇧2

F 2
⇡

+
i⇧3

48F 3
⇡

+
⇧4

384F 4
⇡

◆✓
i
@i⇧

2F⇡
� 1

8

@i⇧
2

F 2
⇡

� i@i⇧
3

48F 3
⇡

+
@i⇧

4

384F 4
⇡

◆

= i
@i⇧

2F⇡
� 1

8

@i⇧
2

F 2
⇡

� i@i⇧
3

48F 3
⇡

+
@i⇧

4

384F 4
⇡

+
⇧@i⇧

4F 2
⇡

+
i⇧@i⇧

2

16F 3
⇡

� ⇧@i⇧
3

96F 4
⇡

� i⇧2@i⇧

16F 3
⇡

+

+
⇧2@i(⇧

2)

64F 4
⇡

� ⇧3@i⇧

96F 4
⇡

(27)

u@iu
† =

✓
1 + i

⇧

2F⇡
� 1

8

⇧2

F 2
⇡

� i⇧3

48F 3
⇡

+
⇧4

384F 4
⇡

◆✓
�i

@i⇧

2F⇡
� 1

8

@i⇧
2

F 2
⇡

+
i@i⇧

3

48F 3
⇡

+
@i⇧

4

384F 4
⇡

◆

= �i
@i⇧

2F⇡
� 1

8

@i⇧
2

F 2
⇡

+
i@i⇧

3

48F 3
⇡

+
@i⇧

4

384F 4
⇡

+
⇧@i⇧

4F 2
⇡

� i⇧@i⇧
2

16F 3
⇡

� ⇧@i⇧
3

96F 4
⇡

+
i⇧2@i⇧

16F 3
⇡

+

+
⇧2@i(⇧

2)

64F 4
⇡

+
⇧3@i⇧

96F 4
⇡

(28)
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1 Baryon Lagrangian

LB = B†
(

iD0 + g̊AuiaGia − CHF

Nc

−→
S 2 − c1

2
Ncχ+

)
B

1.1 First Term (L
(1)
B )

L
(1)
B = iB†D0B

= iB†(∂0 − iΓ0)B

= iB†∂0B + B†Γ0B (1)

Considering the second term,

B†Γ0B = B†
(

1

2

(
u†(i∂0 + r0)u + u(i∂0 + l0)u

†)
)

B

=
1

2

(
B† (iu†∂0u + u†r0u + iu∂0u

† + ul0u
†)B

)

=
1

2

(
B† (iu†∂0u + iu∂0u

† + u†r0u + ul0u
†)B

)
(2)

And,

u = 1 + i
πaIa

Fπ
− 1

2

(πaIa)2

F 2
π

+ · · · (3)

u† = 1 − i
πaIa

Fπ
− 1

2

(πaIa)2

F 2
π

+ · · · (4)

For simplicity, let’s consider φ = πaIa. Where Ia = λa

2 Therefore,

u = 1 + i
φ

Fπ
− 1

2

φ2

F 2
π

+ · · · (5)

u† = 1 − i
φ

Fπ
− 1

2

φ2

F 2
π

+ · · · (6)

∂0u = i
∂0φ

Fπ
− 1

2

∂0(φ
2)

F 2
π

+ · · · (7)

∂0u
† = −i

∂0φ

Fπ
− 1

2

∂0(φ
2)

F 2
π

+ · · · (8)

And,

u†∂0u =

(
1 − i

φ

Fπ
− 1

2

φ2

F 2
π

)(
i
∂0φ

Fπ
− 1

2

∂0(φ
2)

F 2
π

)

= i
∂0φ

Fπ
− 1

2

∂0(φ
2)

F 2
π

+
φ∂0φ

F 2
π

+ i
1

2

φ∂0(φ
2)

F 3
π

− i
1

2

φ2∂0φ

F 3
π

+
1

4

φ2∂0(φ
2)

F 4
π

(9)

1

Baryon Fields

Meson Fields

O(N0
c ), and Gia = O(Nc). While infinitesimal SU(4) transformations generated by Ia

correspond to the usual isospin transformations when acting on pions, the ones generated

by X ia a↵ect only the baryons (one can define these generators to not a↵ect the pion field as

shown in Appendix B). The e↵ective Lagrangian can be systematically written as a power

series in the low energy expansion or Chiral expansion, and simultaneously in 1/Nc. It is

most convenient to write the Lagrangian to be manifestly chiral invariant as is usually done.

The low energy constants (LECs) will themselves admit an expansion in powers of 1/Nc.

For the HBChPT expansion the large mass of the expansion is taken to be the spin-flavor

singlet component of the baryon masses, M0 = Nc m0 (m0 can be considered here to be a

LEC defined in the chiral limit and which will have itself an expansion in 1/Nc). To O(1/Nc)

baryon masses will read [25, 26]:

mB(S) = M0 +
CHF

Nc

S(S + 1) + c1 Nc M2
⇡ + · · · . (4)

The baryon mass splittings due to the hyperfine term, second term in Eq. (4), must be

considered to be a small energy scale. It becomes necessary to establish of what order that

term is in the low energy expansion, as it naturally appears in combinations with powers

of M⇡ when loop diagrams are calculated. This fact makes that the low energy and 1/Nc

expansions do not commute [30, 47], and the natural way to proceed is therefore to link the

two expansions. For the purpose of organizing the e↵ective Lagrangian it is convenient to

established the link between the two expansions. In the real world with Nc = 3 the �� N

mass splitting is about 300 MeV, and therefore it is reasonable to count that quantity as

O(p) in the low energy expansion: the expansion where 1/Nc = O(p) = O(⇠) will be adopted

in what follows, and it will be called ⇠-expansion. This power counting corresponds to the so

called small scale expansion (SSE) [13], now consistently implemented in the context of the

1/Nc expansion. Whenever appropriate, it will be indicated which aspects of the analysis

are general and which are only valid in that expansion. Up to O(⇠) the baryon e↵ective

Lagrangian reads:

L(1)
B = B†

✓
iD0 + g̊AuiaG

ia � CHF

Nc

Ŝ2 � c1

2
Nc �+

◆
B, (5)

where g̊A is the axial coupling in the chiral and large Nc limits (it has to be rescaled by a

factor 5/6 to coincide with the usual axial coupling as defined for the nucleon), �+ is the

source containing the quark masses: specifically �+ = 2M2
⇡ + · · · (see Appendix C ). Here

6

mean life time ⇡ 1031years

mean life time ⇡ 1031years

Baryon Mean life time
Proton ⇡ 1031 years
Neutron 880.3±1.1 s
Lambda (2.632 ± 0.020) ⇥ 10�10 s
Sigma (0.8018 ± 0.0026) ⇥ 10�10s

L(Lagrangian) = x0LLO + x1LNLO + x2LNNLO + x3LNNNLO + .... (1)

Baryon Mass =
lX

i=1

Cih(Baryon State)|Mass Operatori|(Baryon State) i (2)

LB(⇠), LB(⇠2), LB(⇠3)

2

Baryon Masses

p0

k

Baryon Baryon

Meson

Intermediate 
Baryon

p0

k

p0

k

m0 = O(Nc) is the spin-flavor singlet mass of the baryon.

VII. ONE LOOP CORRECTION TO THE SELF ENERGY

Here we give the results obtained to the one loop contribution to the baryon self energy.

The self energy is given by:

�⌃(Nc, S, Y, I, p0) = i
g̊2

A

F 2
⇡

3 + 2✏

9
I1(Nc, p

0, S, Y, I, S 0, Y 0, I 0, a, ✏)

⇥ hSY I, Nc | Gia | S 0Y 0I 0, NcihS 0Y 0I 0, Nc | Gia | SY I, Nci (30)

Where:

I1(Nc, p
0, S, Y, I, S 0, Y 0, I 0, a, ✏) =

i

16⇡2

✓
(�✏ � log

M2
a

µ2
)�m (3M2

a � 2�m2) + �m(5M2
a � 4�m2)

+ 2⇡(M2
a � �m2)3/2 + 4(�m2 � M2

a )3/2 arctan

 
�mp

�m2 � M2
a

!!
(31)

where

�✏ ⌘ 1

✏
� �E + log 4⇡

�m ! �M(S 0Y 0I 0, Nc) � �M(SY I, Nc) � p0 (32)

A. Self energy counterterms

The counterterm Lagrangians are included in the L1,2,3 given above. Counterterms of

higher order in ⇠ are set to vanish as they go beyond the order of the calculations.

The UV divergent pieces of the self energy are explicitly calculated and yield:

�⌃UV = �
CHF g̊2

A�✏

⇣
9Nc

2((Nc + 6)�0
+ + �̃+) � 16CHF

2(Nc + 6)(5Ŝ2 + 3)
⌘

768⇡2F⇡
2Nc

2

�
g̊2

A�✏ p0
⇣
16C2

HF (Nc + 6)(2Ŝ2 + 3) � 3Nc
2((Nc + 6)�0

+ + �̃+)
⌘

512⇡2F⇡
2Nc

= �⌃MUV
+ p0�ZUV (33)

The WF renormalization factor is defined by:

�Z =
@

@p0
�⌃ (34)
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Baryon Mass =
lX

i=1

Cih(Baryon State)|Mass Operatori|(Baryon State) i (2)

LB(⇠), LB(⇠2), LB(⇠3)

MB =
1

⇠
M0Nc + ⇠CHF

Ŝ2

Nc
+

�
⇠2�⌃F � ⇠2Ct⌃2 � ⇠3Ct⌃3

�

(1 � ⇠�ZF + ⇠CtZ)

MB =
1

⇠
M0Nc + ⇠CHF

Ŝ2

Nc
+ (1 + ⇠�ZF + ⇠CtZ)

�
⇠2�⌃F � ⇠2Ct⌃2 � ⇠3Ct⌃3

�

1 Fits to the masses : Case 2: �M = �⌃R

(1��ZR)

General equation,

MB =
1

⇠
NcM0 + ⇠

CHF

Nc
Ŝ2 + ⇠

C1

2
Nc�

0
+

+

0
@
�⌃F � ⇠2

h
µ1�̃+ + �µ1�̃+ + �CHF

N2
c

Ŝ2 + �C1

2 �0
+

i
� ⇠3

h
µ0

2

Nc
�0

+Ŝ2 + µ2

Nc
�̃+Ŝ2 + µ3

Nc
�̃a

+SiGia
i

1 � ⇠�ZF + ⇠
⇣

w1

Nc
+ w2

Nc
Ŝ2 + z0Nc�0

+

⌘

1
A

(3)

Mapping the coe�cients,
M0 CHF C1 µ1 �µ1 �CHF �C1 w1 w2 z0 µ0

2 µ2 µ3

c[1] c[2] c[4] c[3] c[5] c[6] c[7] c[8] c[9] c[10] c[11] c[12] c[13]
300 300 0.002 0.002 0.002 0.002 0.002 1 1 4 ⇥ 10�6 0.002 0.002 0.002

1.1 Fits to the masses of order ⇠3 using ⇠2�⌃ and ⇠�Z

Mathematica code (R1004.nb)
�2= [MeV] Baryon Fitted Mass [MeV] �⌃F �⌃F + ct. Ct�⌃ �ZF �ZF + ct. Ct�Z

c[1] N
c[2] ⇤
c[3] ⌃
c[7] ⌅
c[9] � i
c[10] 3.49514 ⇥ 10�6 ⌃⇤ i
c[11] ⌅⇤ i
c[12] ⌦
c[13]
GMO
ES1
ES2
ES3

ES1-ES2
ES2-ES3

2

Where,

Baryon Mass =
lX

i=1

Cih(Baryon State)|Mass Operatori|(Baryon State) i (2)

LB(⇠), LB(⇠2), LB(⇠3)

MB =
1

⇠
M0Nc + ⇠CHF

Ŝ2

Nc
+

�
⇠2�⌃F � ⇠2Ct⌃2 � ⇠3Ct⌃3

�

(1 � ⇠�ZF + ⇠CtZ)

MB =
1

⇠
M0Nc + ⇠CHF

Ŝ2

Nc
+ (1 + ⇠�ZF + ⇠CtZ)

�
⇠2�⌃F � ⇠2Ct⌃2 � ⇠3Ct⌃3

�

1 Fits to the masses : Case 2: �M = �⌃R

(1��ZR)

General equation,

MB =
1

⇠
NcM0 + ⇠

CHF

Nc
Ŝ2 + ⇠

C1

2
Nc�

0
+

+

0
@
�⌃F � ⇠2

h
µ1�̃+ + �µ1�̃+ + �CHF

N2
c

Ŝ2 + �C1

2 �0
+

i
� ⇠3

h
µ0

2

Nc
�0

+Ŝ2 + µ2

Nc
�̃+Ŝ2 + µ3

Nc
�̃a

+SiGia
i

1 � ⇠�ZF + ⇠
⇣

w1

Nc
+ w2

Nc
Ŝ2 + z0Nc�0

+

⌘

1
A

(3)

Mapping the coe�cients with their natural sizes (in MeV),
M0 CHF C1 µ1 �µ1 �CHF �C1 w1 w2 z0 µ0

2 µ2 µ3

c[1] c[2] c[4] c[3] c[5] c[6] c[7] c[8] c[9] c[10] c[11] c[12] c[13]
300 300 0.002 0.002 0.002 0.002 0.002 1 1 4 ⇥ 10�6 0.002 0.002 0.002

1.1 Fits to the masses of order ⇠3 using ⇠2�⌃ and ⇠�Z

Mathematica code (R1004.nb)
�2= [MeV] Baryon Fitted Mass [MeV] �⌃F �⌃F + ct. Ct�⌃ �ZF �ZF + ct. Ct�Z

c[1] N
c[2] ⇤
c[3] ⌃
c[7] ⌅
c[9] � i
c[10] 3.49514 ⇥ 10�6 ⌃⇤ i
c[11] ⌅⇤ i
c[12] ⌦
c[13]
GMO
ES1
ES2
ES3

ES1-ES2
ES2-ES3

2

�2=31.89 [MeV] Baryon Fitted Mass [MeV] �⌃F �⌃F + ct. Ct�⌃ �ZF �ZF + ct. Ct�Z

c[1] 318.87 N
c[2] 247.03 ⇤
c[3] 0.00015 ⌃
c[7] -0.00083 ⌅
c[9] � i
c[10] 3.49514 ⇥ 10�6 ⌃⇤ i
c[11] ⌅⇤ i
c[12] ⌦
c[13]
GMO
ES1
ES2
ES3

ES1-ES2
ES2-ES3

Gell-Mann-Okubo Relation for Octets

(3M⇤ + M⌃) � (MN + M⌅) = 0 (4)

M⌃⇤ � M� = M⌅⇤ � M⌃⇤ = M⌦ � M⌅⇤ (5)

3

�2=31.89 [MeV] Baryon Fitted Mass [MeV] �⌃F �⌃F + ct. Ct�⌃ �ZF �ZF + ct. Ct�Z

c[1] 318.87 N
c[2] 247.03 ⇤
c[3] 0.00015 ⌃
c[7] -0.00083 ⌅
c[9] � i
c[10] 3.49514 ⇥ 10�6 ⌃⇤ i
c[11] ⌅⇤ i
c[12] ⌦
c[13]
GMO
ES1
ES2
ES3

ES1-ES2
ES2-ES3

Gell-Mann-Okubo Relation for Octets

(3M⇤ + M⌃) � (MN + M⌅) = 0 (4)

M⌃⇤ � M� = M⌅⇤ � M⌃⇤ = M⌦ � M⌅⇤ (5)

3

Gell-Mann-Okubo (GMO) Relation Equal Spacing (ES) Relation

Preliminary Results

Baryon Mass =
lX

i=1

Cih(Baryon State)|Mass Operatori|(Baryon State) i (2)

LB(⇠), LB(⇠2), LB(⇠3)

MB =
1

⇠
M0Nc + ⇠CHF

Ŝ2

Nc
+

�
⇠2�⌃F � ⇠2Ct⌃2 � ⇠3Ct⌃3

�

(1 � ⇠�ZF + ⇠CtZ)

MB =
1

⇠
M0Nc + ⇠CHF

Ŝ2

Nc
+ (1 + ⇠�ZF + ⇠CtZ)

�
⇠2�⌃F � ⇠2Ct⌃2 � ⇠3Ct⌃3

�

1 Fits to the masses : Case 2: �M = �⌃R

(1��ZR)

General equation,

MB =
1

⇠
NcM0 + ⇠

CHF

Nc
Ŝ2 + ⇠

C1

2
Nc�

0
+

+

0
@
�⌃F � ⇠2

h
µ1�̃+ + �µ1�̃+ + �CHF

N2
c

Ŝ2 + �C1

2 �0
+

i
� ⇠3

h
µ0

2

Nc
�0

+Ŝ2 + µ2

Nc
�̃+Ŝ2 + µ3

Nc
�̃a

+SiGia
i

1 � ⇠�ZF + ⇠
⇣

w1

Nc
+ w2

Nc
Ŝ2 + z0Nc�0

+

⌘

1
A

(3)

Mapping the coe�cients with their natural sizes (in MeV),
M0 CHF C1 µ1 �µ1 �CHF �C1 w1 w2 z0 µ0

2 µ2 µ3

c[1] c[2] c[4] c[3] c[5] c[6] c[7] c[8] c[9] c[10] c[11] c[12] c[13]
300 300 0.002 0.002 0.002 0.002 0.002 1 1 4 ⇥ 10�6 0.002 0.002 0.002

318.87 247.03 0 0.00015 0 0 -0.00083 0 -1.85 6.35 ⇥ 10�6 -0.0018 -0.00089 -0.00029

1.1 Fits to the masses of order ⇠3 using ⇠2�⌃ and ⇠�Z

Mathematica code (R1004.nb)

Baryon Fitted Mass [MeV] �⌃F �⌃F + ct. Ct�⌃ �ZF �ZF + ct. Ct�Z

N
⇤
⌃
⌅
� i
⌃⇤ i
⌅⇤ i
⌦

GMO
ES1
ES2
ES3

ES1-ES2
ES2-ES3

2

Fitted masses with partial contributions

Baryon Mass =
lX

i=1

Cih(Baryon State)|Mass Operatori|(Baryon State) i (2)

LB(⇠), LB(⇠2), LB(⇠3)

MB =
1

⇠
M0Nc + ⇠CHF

Ŝ2

Nc
+

�
⇠2�⌃F � ⇠2Ct⌃2 � ⇠3Ct⌃3

�

(1 � ⇠�ZF + ⇠CtZ)

MB =
1

⇠
M0Nc + ⇠CHF

Ŝ2

Nc
+ (1 + ⇠�ZF + ⇠CtZ)

�
⇠2�⌃F � ⇠2Ct⌃2 � ⇠3Ct⌃3

�

1 Fits to the masses : Case 2: �M = �⌃R

(1��ZR)

General equation,

MB =
1

⇠
NcM0 + ⇠

CHF

Nc
Ŝ2 + ⇠

C1

2
Nc�

0
+

+

0
@
�⌃F � ⇠2

h
µ1�̃+ + �µ1�̃+ + �CHF

N2
c

Ŝ2 + �C1

2 �0
+

i
� ⇠3

h
µ0

2

Nc
�0

+Ŝ2 + µ2

Nc
�̃+Ŝ2 + µ3

Nc
�̃a

+SiGia
i

1 � ⇠�ZF + ⇠
⇣

w1

Nc
+ w2

Nc
Ŝ2 + z0Nc�0

+

⌘

1
A

(3)

Mapping the coe�cients with their natural sizes (in MeV),
M0 CHF C1 µ1 �µ1 �CHF �C1 w1 w2 z0 µ0

2 µ2 µ3

c[1] c[2] c[4] c[3] c[5] c[6] c[7] c[8] c[9] c[10] c[11] c[12] c[13]
300 300 0.002 0.002 0.002 0.002 0.002 1 1 4 ⇥ 10�6 0.002 0.002 0.002

318.87 247.03 0 0.00015 0 0 -0.00083 0 -1.85 6.35 ⇥ 10�6 -0.0018 -0.00089 -0.00029

1.1 Fits to the masses of order ⇠3 using ⇠2�⌃ and ⇠�Z

�2 = 31.89, Pion mass = 139 Mev, Kaon Mass = 250 MeV
Baryon Mass [MeV] Fitted Mass [MeV] �⌃F �⌃F + ct. Ct�⌃ �ZF �ZF + ct. Ct�Z

N 938 931.35 -3.21 61.09 64.30 -0.96 0.40 1.36
⇤ 1116 1126.05 -80.05 22.46 102.51 -0.77 0.59 1.36
⌃ 1189 1192.32 -168.80 -100.79 68.01 -0.76 0.59 1.36
⌅ 1315 1308.27 -202.64 -79.16 123.47 -0.58 0.78 1.36
� 1228 - 50i 1227.25 - 44.93i -72.80 - 30.33i -18.26 - 30.33i 54.54 0.10 - 0.54i -0.38 - 0.54i -0.48
⌃⇤ 1383 - 18i 1384.92 - 24.13i -90.94 - 25.27i 174.17 - 25.27i 265.11 0.37 - 0.45i -0.11 - 0.45i -0.48
⌅⇤ 1532 - 5i 1530.4 - 4.75i -109.48 - 15.16i 366.20 - 15.16i 475.69 0.53 - 0.27i 0.05 - 0.27i -0.48
⌦ 1672 1672.43 -128.44 557.81 686.26 0.58 0.10 -0.48

GMO 31 91.23 2.74 2.74 0 0.005 0.005 0
ES1 155 157.67 -18.13 192.43 210.57 0.27 0.27 0
ES2 149 145.48 -18.54 192.02 210.57 0.16 0.16 0
ES3 140 142.02 -18.95 191.61 210.57 0.05 0.05 0

ES1-ES2 6 12.18 0.41 0.41 0 0.11 0.11 0
ES2-ES3 9 3.45 0.41 0.41 0 0.11 0.11 0

2

Fits to 
Lattice 
QCD 

masses 

LQCD data from : C. Alexandrou et. al (PHYSICAL REVIEW D 90, 074501 (2014))
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