Kinematics Calculation of the Feasibility of Λ-P Scattering Experiment Using Tagged Photon Beam at ELPH

> By Bishnu Pandey Hampton University/Jlab Advisor: Dr. Liguang Tang Date: 11/19/2016

Introduction

- The Λ particle was discovered in early 1950s but we don't have sufficient data to explain the Λ-N interaction.
- Bubble chamber data taken between 1959 to 1975, is so limited for confirming the correctness of the nuclear Λ models.

To obtain direct Λ -p scattering data with better quality and higher statistics. The kinematics calculation is to study the feasibility of such an experiment at ELPH.

Schematics

$$\gamma + p \rightarrow K^+ + \Lambda$$

- 1.3 GeV electrons are incident on a radiator to produce photons.
- Outgoing photons interact with protons in the LH target, producing positively charged Kaon and Λ particles in pairs.
- These Λ particles will play in a role as Λ beam.

Kinematics with assumed conditions

$$E_{\gamma} = 0.68 - 1.25 GeV$$

 $K_p^+ = 0.1 - 0.68 GeV/c$

Production of Λ particle

The Λ production kinematics calculation gives the correlations between Λ momentum and energy of the tagged photons as well as momentum of tagged kaons. Selection of ΔE_{γ} and ΔP_{K} can then be used to optimize the desired P_{Λ} range.

For E_{γ} = 0.68 to 1.25 GeV, Λ particles are produced in the momentum range of 0 to 1.2 GeV/c

Λ-p elastic scattering

In the first step momentum and angle of scattered Λ' are calculated. Then, by using the cosine law, momentum and angle of scattered proton are calculated.

$$\begin{aligned} P_{p'}^2 &= P_{\Lambda}^2 + P_{\Lambda'}^2 - 2P_{\Lambda}P_{\Lambda'}cos\theta_{\Lambda} \\ cos\theta_p &= \frac{P_{\Lambda}^2 + P_{p'}^2 - P_{\Lambda'}^2}{2P_{\Lambda}P_{p'}} \end{aligned}$$

Decay of A particle

$$\Lambda \rightarrow p + \pi^{-}$$

Center of mass frame

$$E_{p}^{*} = \frac{m_{\Lambda}^{2} + m_{p}^{2} - m_{\pi}^{2}}{2m_{\Lambda}}$$
$$P_{p}^{*} = \sqrt{E_{p}^{*2} - m_{p}^{2}}$$

By using the Lorentz transformation, the center of mass momentum is changed into lab momentum.

Lab frame

$$\begin{split} P_p &= \sqrt{P_L^2 + P_T^2} \\ tan\theta_p &= \frac{\beta_p^* \sin \theta_p^*}{\gamma_{\Lambda}(\beta_p^* \cos \theta_p^* + \beta_{\Lambda})} \\ \end{split}$$
 Where, $-1 \leq \cos \theta_p^* \leq 1$

Result

- The kinematics simulation studied dependence of P_{Λ} to E_{γ} and P_{K} with assumed kaon solid angle acceptance ($\Delta \Omega_{K} \approx 11 msr$), so that the experiment can be optimized by the desired P_{Λ} range.
- Studied capability of the separating Λ -p scattering events from Λ decay events when only the protons are detected.

Thank you