Kinematics Calculation of the Feasibility of Λ-P Scattering Experiment Using Tagged Photon Beam at ELPH

By Bishnu Pandey Hampton UniversitylJlab

Advisor: Dr. Liguang Tang

Date: 11/19/2016

Jefferson Lab

Introduction

- The ^ particle was discovered in early 1950s but we don't have sufficient data to explain the \wedge - N interaction.
- Bubble chamber data taken between 1959 to 1975, is so limited for confirming the correctness of the nuclear \wedge models.

Goal

To obtain direct \wedge-p scattering data with better quality and higher statistics. The kinematics calculation is to study the feasibility of such an experiment at ELPH.

Schematics

- 1.3 GeV electrons are incident on a radiator to produce photons.
- Outgoing photons interact with protons in the LH target, producing positively charged Kaon and \wedge particles in pairs.
- These \wedge particles will play in a role as \wedge beam.

Kinematics with assumed conditions

$$
\begin{aligned}
& E_{\gamma}=0.68-1.25 G e V \\
& K_{p}^{+}=0.1-0.68 G e V / c
\end{aligned}
$$

Production of \wedge particle

$$
\begin{aligned}
& \overrightarrow{P_{\gamma}}=\overrightarrow{P_{K^{+}}}+\overrightarrow{P_{\Lambda}} \\
& \overrightarrow{P_{\Lambda}}=\overrightarrow{P_{\gamma}}-\overrightarrow{P_{K^{+}}}
\end{aligned}
$$

Production of \wedge particle - Cont.

The \wedge production kinematics calculation gives the correlations between Λ momentum and energy of the tagged photons as well as momentum of tagged kaons. Selection of ΔE_{γ} and ΔP_{K} can then be used to optimize the desired P_{Λ} range.

For $E_{\gamma}=0.68$ to 1.25 GeV , \wedge particles are produced in the momentum range of 0 to $1.2 \mathrm{GeV} / \mathrm{c}$

^-p elastic scattering

$$
\Lambda+p \rightarrow \Lambda^{\prime}+p^{\prime}
$$

$$
\begin{aligned}
& \overrightarrow{P_{\Lambda}}+\overrightarrow{P_{p}}=\overrightarrow{P_{\Lambda^{\prime}}}+\overrightarrow{P_{p^{\prime}}} \\
& E_{\Lambda}+E_{p}=E_{\Lambda^{\prime}}+E_{P^{\prime}}
\end{aligned}
$$

In the first step momentum and angle of scattered \wedge^{\prime} are calculated. Then, by using the cosine law, momentum and angle of scattered proton are calculated.

$$
\begin{aligned}
& P_{p^{\prime}}^{2}=P_{\Lambda}^{2}+P_{\Lambda^{\prime}}^{2}-2 P_{\Lambda} P_{\Lambda^{\prime}} \cos \theta_{\Lambda} \\
& \cos \theta_{p}=\frac{P_{\Lambda}^{2}+P_{p^{\prime}}^{2}-P_{\Lambda^{\prime}}^{2}}{2 P_{\Lambda} P_{p^{\prime}}}
\end{aligned}
$$

Decay of Λ particle

$\Lambda \rightarrow p+\pi^{-}$

Center of mass frame

$$
\begin{aligned}
& E_{p}^{*}=\frac{m_{\Lambda}^{2}+m_{p}^{2}-m_{\pi}^{2}}{2 m_{\Lambda}} \\
& P_{p}^{*}=\sqrt{E_{p}^{* 2}-m_{p}^{2}}
\end{aligned}
$$

By using the Lorentz transformation, the center of mass momentum is changed into lab momentum.

Lab frame

$P_{p}=\sqrt{P_{L}^{2}+P_{T}^{2}}$
$\tan \theta_{p}=\frac{\beta_{p}^{*} \sin \theta_{p}^{*}}{\gamma_{\Lambda}\left(\beta_{p}^{*} \cos \theta_{p}^{*}+\beta_{\Lambda}\right)}$

Where, $\quad-1 \leq \cos \theta_{p}^{*} \leq 1$

Result

Conclusion

- The kinematics simulation studied dependence of P_{Λ} to E_{γ} and P_{K} with assumed kaon solid angle acceptance ($\left.\Delta \Omega_{K} \approx 11 \mathrm{msr}\right)$, so that the experiment can be optimized by the desired P_{Λ} range.
- Studied capability of the separating $\wedge-p$ scattering events from \wedge decay events when only the protons are detected.

Thank you

