Status of GMp Experiment

Nuclear physics group meeting October 10, 2017

Thir Gautam Hampton University

Preview

- Highlights:
 - \rightarrow Better than 2% statistics
 - \rightarrow High Q²(up to 16 GeV/c²)

→ Relatively low ϵ : the contributions from G_E^p is smaller than those for the large ϵ SLAC data

 \rightarrow Multiple kinematic settings over the range of Q^2

- Calibration of detectors is complete
- First iteration of optics calibration is nearly complete
- Preliminary results for first pass is done
- We project data analysis to be completed at the end of this year

Outline

- Physics and experimental goals of GMp
- Hall A beamline, spectrometer and detectors
- Statistics collected
- Status of analysis
- Elastic Cross section extraction procedure
- Spectrometer optics study
- Preliminary results (Data/MC method)

Proton magnetic form factor

- Form factors encode electric and magnetic structure of the target
 - → At low Q², form factors characterize the spatial distribution of electric charge and magnetization current in the nucleon

 $|\text{Form Factor}|^2 = \frac{\sigma(\text{Structured object})}{\sigma(\text{Point like object})}$

$$\mathcal{J}_{\text{proton}} = e\bar{N}(p') \left[\gamma^{\mu} F_1(Q^2) + \frac{i\sigma^{\mu\nu}q_{\nu}}{2M} F_2(Q^2) \right] N(p)$$
$$G_E = F_1 - \tau F_2 \qquad G_M = F_1 + F_2$$

 In one photon exchange approximation the cross-section in *ep* scattering when written in terms of G^p_M and G^p_E takes the following form:

$$\frac{d\sigma}{d\Omega} = \sigma_{Mott} \frac{\epsilon (G_E^p)^2 + \tau (G_M^p)^2}{\epsilon (1 + \tau)}, \quad \sigma_{Mott} = \frac{\alpha^2 \cos^2 \frac{\theta}{2}}{4E^2 \sin^4 \frac{\theta}{2}} \frac{E'}{E}$$
Where,
$$\tau = \frac{Q^2}{4M^2}, \quad \epsilon = [1 + 2(1 + \tau) \tan^2(\frac{\theta}{2})]^{-1}$$

Goals of GMp experiment as approved

- Precision measurement of the elastic *ep* cross-section in the Q² range of 7-14 GeV² and extraction of proton magnetic form factors
- >To improve the precision of prior measurement at high Q^2
- >To provide insight into scaling behavior of the form factors at high Q^2

Statistical: Better than 2%

Systematic: Point to point: 0.8-1.1% Normalization: 1.0-1.3% Total Error Budget: 1.2 -2.6%

Need a good control on:

- •Beam charge
- •Beam position
- •Scattering angle, target density, ...

Hall A arms and beamline transport

Hall A beamline, spectrometer and detectors

- \rightarrow RHRS SOS Quad is replaced by new quad
- \rightarrow The SOS Quad is installed in LHRS
- \rightarrow VDC is used for tracking information
- → Straw Chamber(SC) is used to reduce systematic on VDC tracking efficiency
- \rightarrow Cherenkov and calorimeter are used for particle identification
- \rightarrow S0, S2m are used for trigger and timing

Detector package

Calorimeter

S2m

GMp Status of Analysis

System Calibration:

- → Beamline component Calibration (done)
- → PID detector calibration (done)
- → Tracking detector(VDC, Straw chamber) calibration (done)
- \rightarrow Timining (s0, s2m) calibration (done)
- → Optics calibration first iteration (nearly completed)

Data Analysis:

- \rightarrow Target boiling analysis (done)
- → HRS acceptance studies (ongoing, 75% complete)
- → Tracking, trigger efficiencies, DAQ livetime (done)
- → First pass data analysis (nearly completed)
- → Second pass analysis with a goal of 2% measurement (ongoing)
- → Rediative correction analysis (nearly completed)

GMp collected statistics

Summary of GMp collected data (I)

Spring 2015:

E _{beam} (GeV)	HRS	P ₀ (GeV/c)	$\Theta_{_{\mathrm{HRS}}}$ (deg)	Q^2 (GeV/c) ²	Events(k)
2.06	R	1.15	48.7	1.65	157
2.06	L	1.22	45.0	1.51	386
2.06	L	1.44	35.0	1.1	396
2.06	L	1.67	25.0	0.66	405

Spring 2016:

E _{beam} (GeV)	HRS	P ₀ (GeV/c)	$\Theta_{_{\mathrm{HRS}}}$ (deg)	Q ² (GeV/c) ²	Events(k)
4.48	R	1.55	52.9	5.5	108
8.84	R	2.10	48.8	12.7	8
8.84	L	2.50	43.0	11.9	11
11.02	R	2.20	48.8	16.5	0.7

Summary of GMp collected data (II)

Fall 2016:

E _{beam} (GeV)	HRS	P ₀ (GeV/c)	Θ_{HRS} (deg)	Q ² (GeV/c) ²	Events(k)
2.22	R	1.23	48.8	1.86	356
2.22	L	1.37	42.0	1.57	2025
8.52	L	2.53	42.0	11.2	18.9
8.52	L	3.26	34.4	9.8	57.6
8.52	L	3.69	30.9	9.0	11.6
6.42	L	3.22	30.9	5.9	48.6
6.42	L	2.16	44.5	8.0	27.2
6.42	L	3.96	24.3	4.5	30.5
6.42	L	2.67	37.0	7.0	41.4
6.42	R	1.59	55.9	9.0	11.6
8.52	R	2.06	48.6	12.1	11
8.52	R	1.80	53.5	12.6	3.4
10.62	R	2.17	48.8	15.8	3.6

Elastic cross section extraction procedure

• Cross section
$$\frac{d\sigma}{d\Omega}^{data}(\theta) = \int dE' \frac{N^{data}(E',\theta) - N_{BG}(E',\theta)}{\mathcal{L}^{data}.\epsilon.LT} \cdot \frac{RC^{data}}{A^{data}(E',\theta)}$$

• Reduce Cross section:

$$\sigma_{\rm red} = \frac{d\sigma}{d\Omega} \frac{\epsilon(1+\tau)}{\sigma_{\rm Mott}} = \frac{4E^2 \sin^4 \frac{\theta}{2}}{\alpha^2 \cos^2 \frac{\theta}{2}} \frac{E}{E'} \epsilon(1+\tau) \frac{d\sigma}{d\Omega}$$

- Parameters:
- N_{data}: Number of scattered electron detected
- N_{BG} : Events from background processes
- \mathcal{L} : Integrated luminosity
- ϵ : Correction for efficiencies

- LT : Live time correction
- $A(E',\theta)$: Spectrometer acceptance
- RC : Radiative correction factor
- E : Beam energy
- θ : Scattering angle

- $\mathcal{L} = \frac{n_e n_p}{a} = \frac{Q}{e} \rho L \frac{Z}{A} N_A$
- a : Target area
- n_e: Number of electron beams
- $n_{_{D}}$: Number of targets
- A : Atomic mass of target
- L : Length of the target

Elastic cross section (Monte Carlo Ratio Method)

$$\frac{d\sigma}{d\Omega}^{data}(\theta) = \int dE' \frac{N^{data}(E',\theta) - N_{BG}(E',\theta)}{\mathcal{L}^{data}.\epsilon.LT} \cdot \frac{RC^{data}}{A^{data}(E',\theta)} \longrightarrow (1)$$

$$\frac{d\sigma}{d\Omega}^{mod}(\theta) = \int dE' \frac{N^{MC}(E',\theta)}{\mathcal{L}^{MC}} \cdot \frac{RC^{MC}}{A^{MC}(E',\theta)} \longrightarrow (2)$$

$$\frac{d\sigma}{d\Omega}^{data}(\theta)/\frac{d\sigma}{d\Omega}^{mod}(\theta) = \frac{\int^{E_{max}} (N^{data}(E',\theta) - N_{BG}(E',\theta))dE'}{\int^{E_{max}} N^{MC}dE'} \cdot \frac{A^{MC}(E',\theta)}{A^{data}(E',\theta)} \cdot \frac{RC^{data}}{RC^{MC}}$$

Assuming acceptance and radiative contributions are correctly modeled:

$$\frac{d\sigma}{d\Omega}^{data}(\theta) = \frac{d\sigma}{d\Omega}^{mod}(\theta) \cdot \frac{Y^{data}}{Y^{MC}} \longrightarrow (3)$$

Elastic cross section extraction procedure

• Cross section
$$\frac{d\sigma}{d\Omega}^{data}(\theta) = \int dE' \frac{N^{data}(E',\theta) - N_{BG}(E',\theta)}{\mathcal{L}^{data}\epsilon LT} \cdot \frac{RC^{data}}{A^{data}(E',\theta)}$$
• Reduce Cross section:
$$\sigma_{red} = \frac{d\sigma}{d\Omega} \frac{\epsilon(1+\tau)}{\sigma_{Mott}} = \frac{4E^2 \sin^4 \frac{\theta}{2}}{\alpha^2 \cos^2 \frac{\theta}{2}} \frac{E}{E'} \epsilon(1+\tau) \frac{d\sigma}{d\Omega}$$

• Parameters:

- N_{data}: Number of scattered electron detected
- N_{BG} : Events from background processes
- \mathcal{L} : Integrated luminosity
- ϵ : Correction for efficiencies

- LT : Live time correction
- $A(E',\theta)$: Spectrometer acceptance
- RC : Radiative correction factor
- E : Beam energy
- θ : Scattering angle

$$\mathcal{L} = \frac{n_e n_p}{a} = \frac{Q}{e} \rho L \frac{Z}{A} N_A$$

- a : Target area
- n_e: Number of electron beams
- n_n: Number of targets
- A : Atomic mass of target
- L : Length of the target

Beam charge calibration

- Multiple instruments of charge measurement: Unser and two BCMs
- The Unser monitor were calibrated by using a precise current source and provided an absolute reference during BCM calibrations
- Calibration coefficients from multiple measurement have negligible drift within uncertainties
- Beam current determination is much better than 1%
- Estimated Current uncertainty in GMp experiment is ~0.06 μA

Target boiling studies

- Target used: 15 cm LH2 target in Loop2 and single foil carbon target
- Carbon target is used to separate possible rate systematic from boiling
 - \rightarrow Range of beam current: 3-67 μA
 - → Raster size: 2×2 mm²

Coordinate systems

Optics Calibration spring 16 (LHRS)

- Two data sets for optics calibration:
 - → Multi-foil target + sieve: inelastic electron events, vertex and angle calibration

Sieve on LHRS spring 2016

→ LH2 target: elastic electron events for momentum calibration

Run no:	<u>Delta (%)</u>	<u>P (GeV)</u>
12755	-4	2.183
12759	-2	2.141
12763	0	2.099
12767	2	2.057
12788	4	2.015

Hole size:

big hole = 0.24 inch small hole = 0.16 inch

Distance of sieve from target = 1.18 m

Optics optimization

 Process of finding a matrix that can reconstruct focal plane quantities into target quantities

 $W_{tg} = [\text{optics matirx}] W_{fp}$

- Theoretical values are obtained form survey and geometry whereas, experimental values are obtained from focal plane quantities
- All target variables calculated from survey are assumed to be actual value of event (W⁰)
- The experimental target variable: $W(x_{tg}, \theta_{tg}, y_{tg}, \phi_{tg})$

$$W = \sum C_W^{jkl} \cdot x_{fp}^i \cdot \theta_{fp}^j \cdot y_{fp}^k \cdot \phi_{fp}^l$$

And,

$$\chi^2 = \sum_{s} \left[\frac{W - W^0}{\sigma_w^s} \right]^2$$

• The optics tensor C_{jkl}^{w} are determined from a χ^2 minimization in which events are reconstructed as close as possible to the known position of the corresponding foil target

Vertex Calibration:

- Blue lines indicate the real foil target positions
- Δ shows the difference between the data Gaussian fitting center and real position

Angle Calibration

 \rightarrow Crosses indicate the reconstructed average track center

→ Positions at the sieve plane are reconstructed by θ_{tar} and Φ_{tar}

21

hole position

Momentum Calibration

- We took delta scans at ±4%, ±2% and 0% dipole setting
- Clearly, the optimization readout is in the order of 10⁻⁴

Elastic cross section extraction procedure

• Cross section
$$\frac{d\sigma}{d\Omega}^{data}(\theta) = \int dE' \frac{N^{data}(E',\theta) - N_{BG}(E',\theta)}{\mathcal{L}^{data}E} \cdot \frac{RC^{data}}{A^{data}(E',\theta)}$$
• Reduce Cross section:
$$\sigma_{red} = \frac{d\sigma}{d\Omega} \frac{\epsilon(1+\tau)}{\sigma_{Mott}} = \frac{4E^2 \sin^4 \frac{\theta}{2}}{\alpha^2 \cos^2 \frac{\theta}{2}} \frac{E}{E'} \epsilon(1+\tau) \frac{d\sigma}{d\Omega}$$

• Parameters:

- N_{data}: Number of scattered electron detected
- N_{BG}: Events from background processes
- \mathcal{L} : Integrated luminosity
- ϵ : Correction for efficiencies

- LT : Live time correction
- $A(E',\theta)$: Spectrometer acceptance
- RC : Radiative correction factor
- E : Beam energy
- θ : Scattering angle

- $\mathcal{L} = \frac{n_e n_p}{a} = \frac{Q}{e} \rho L \frac{Z}{A} N_A$
- a : Target area
- n_e : Number of electron beams
- $n_{_{D}}$: Number of targets
- A : Atomic mass of target
- L : Length of the target

Particle identification analysis

- \rightarrow We did particle identification studies using Cherenkov and calorimeter
- → Got preliminary PID efficiency at one pass and the cuts were set to select good electrons

Particle identification analysis

Elastic cross section extraction procedure

• Cross section
$$\frac{d\sigma}{d\Omega}^{data}(\theta) = \int dE' \frac{N^{data}(E',\theta) - N_{BG}(E',\theta)}{\mathcal{L}^{data}.\epsilon.LT} \underbrace{\frac{RC^{data}}{A^{data}(E',\theta)}}_{A^{data}(E',\theta)}$$
• Reduce Cross section:
$$\sigma_{red} = \frac{d\sigma}{d\Omega} \frac{\epsilon(1+\tau)}{\sigma_{Mott}} = \frac{4E^2 \sin^4 \frac{\theta}{2}}{\alpha^2 \cos^2 \frac{\theta}{2}} \frac{E}{E'} \epsilon(1+\tau) \frac{d\sigma}{d\Omega}$$

• Parameters:

- N_{data}: Number of scattered electron detected
- N_{BG}: Events from background processes
- Integrated luminosity
- ϵ : Correction for efficiencies

- LT : Live time correction
- $A(E',\theta)$: Spectrometer acceptance
- RC : Radiative correction factor
- E : Beam energy
- θ : Scattering angle

- $\mathcal{L} = \frac{n_e n_p}{a} = \frac{Q}{e} \rho L \frac{Z}{A} N_A$
- a : Target area
- n_e: Number of electron beams
- $n_{_{D}}$: Number of targets
- A : Atomic mass of target
- L : Length of the target

Spectrometer acceptance

• The acceptance function is calculated generating Monte Carlo events and taking the ratio of the number of detected to the number of generated in each bin in phase space:

$$A(\delta, \theta) = \frac{N_{rec}(\delta, \theta)}{N_{Gen}(\delta, \theta)} \qquad \qquad \theta = \arccos \left[\cos \left(x'_{tg} \right) \cos \left(\theta_0 - y'_{tg} \right) \right] \\ \delta = \frac{P - p_0}{P_0}$$

• The effective solid angle for uniform generation is given by:

$$\Delta \Omega_{eff}(\delta, \theta) = N_{rec}(\delta, \theta) \frac{\Delta \Omega^{tot}(\delta, \theta)}{N_{gen}^{tot}} = A(\delta, \theta) \Omega_{gen}(\delta, \theta)$$

• Both generated and reconstructed data were binned in small δ and θ bins. For HRS, a δ range of ±6% was used and binned in 30 bins and θ is of (-37,37) mrad was binned in 30 bins. The acceptance correction is applied in bin by bin basis in (δ , θ).

Spectrometer acceptance

 $\Delta \theta = \theta - \theta_0$

Elastic cross section extraction procedure

• Cross section
$$\frac{d\sigma}{d\Omega}^{data}(\theta) = \int dE' \frac{N^{data}(E',\theta) - N_{BG}(E',\theta)}{\mathcal{L}^{data}.\epsilon.LT} \cdot \frac{RC^{data}}{A^{data}(E',\theta)}$$
• Reduce Cross section:
$$\sigma_{red} = \frac{d\sigma}{d\Omega} \frac{\epsilon(1+\tau)}{\sigma_{Mott}} = \frac{4E^2 \sin^4 \frac{\theta}{2}}{\alpha^2 \cos^2 \frac{\theta}{2}} \frac{E}{E'} \epsilon(1+\tau) \frac{d\sigma}{d\Omega}$$

• Parameters:

- N_{data}: Number of scattered electron detected
- N_{BG}: Events from background processes
- Integrated luminosity
- ϵ : Correction for efficiencies

- LT : Live time correction
- $A(E',\theta)$: Spectrometer acceptance
- RC : Radiative correction factor
- E : Beam energy
- θ : Scattering angle

- $\mathcal{L} = \frac{n_e n_p}{a} = \frac{Q}{e} \rho L \frac{Z}{A} N_A$
- a : Target area
- n_e : Number of electron beams
- $n_{_{D}}$: Number of targets
- A : Atomic mass of target
- L : Length of the target

Radiative Correction

- Internal: Occur inside actual scattering vertex such as vaccum polarization, vertex and internal Bremsstrahlung during collisions
- External: Caused by secondary scattering from the rest of the material in the target, such as Bremsstrahlung and straggling effect due to ionization The experimental cross section:

$$rac{d\sigma}{d\Omega}^{expt} = C_{rad} rac{d\sigma}{d\Omega}^{born}$$

Where, for $0.67 < C_{rad} < 0.78$

$$C_{rad} = \exp(\delta_{int} + \delta'_{int} + \delta_{ext})$$

Kinematic	RC Direct	RC from SIMC
K3-6	0.7461	0.7484
K3-7	0.7510	0.7518
K3-8	0.7579	0.7697
K3-9	0.7695	0.7936
K4-9	0.7165	0.7276
K4-10	0.7191	0.7304
K4-11	0.72584	0.7373
K4-12	0.7322	0.7582

W(GEV)

Elastic cross section (Monte Carlo Ratio Method)

$$\frac{d\sigma}{d\Omega}^{data}(\theta) = \int dE' \frac{N^{data}(E',\theta) - N_{BG}(E',\theta)}{\mathcal{L}^{data}.\epsilon.LT} \cdot \frac{RC^{data}}{A^{data}(E',\theta)} \longrightarrow (1)$$

$$\frac{d\sigma}{d\Omega}^{mod}(\theta) = \int dE' \frac{N^{MC}(E',\theta)}{\mathcal{L}^{MC}} \cdot \frac{RC^{MC}}{A^{MC}(E',\theta)} \longrightarrow (2)$$

$$\frac{d\sigma}{d\Omega}^{data}(\theta)/\frac{d\sigma}{d\Omega}^{mod}(\theta) = \frac{\int^{E_{max}} (N^{data}(E',\theta) - N_{BG}(E',\theta))dE'}{\int^{E_{max}} N^{MC}dE'} \cdot \frac{A^{MC}(E',\theta)}{A^{data}(E',\theta)} \cdot \frac{RC^{data}}{RC^{MC}}$$

Assuming acceptance and radiative contributions are correctly modeled:

$$\frac{d\sigma}{d\Omega}^{data}(\theta) = \frac{d\sigma}{d\Omega}^{mod}(\theta) \cdot \frac{Y^{data}}{Y^{MC}} \longrightarrow (3)$$

e-p Data vs Monte Carlo

- → In MC the transport function generated by the program COSY infinity were used to model the particle trajectory
- \rightarrow The hit positions at each aperture plane were checked and a flag was set if the particle is blocked
- → The simulated events were generated uniformly in the phase space and then weighted by the physics cross section
- \rightarrow Improvement of optics and model of spectrometer are ongoing

Data vs MC Comparision

Data: (W Peak - 938)(MeV)

Improvement of Optics Calibration (Fall 2016)

E=6.42 GeV, θ=44.5 degree, E'=2.15 GeV

Before improvement

After improvement

¹²C Fall 2016 (Inelastic)

- \rightarrow Took data on single foil carbon target to study the acceptance of the spectrometer
- → Used single arm simulation which gives an uniformly distributed phase space for carbon target without physics weighting
- \rightarrow Used external code to get physics weighting which is the ratio of born cross section to radiative

e-p Data vs Monte Carlo

- \rightarrow Shapes are consistent at very different kinematics
- \rightarrow The discrepancy observed in high delta probably comes from spectrometer model

Quasi elastic Kinematics

Preliminary Results (Data/MC method)

• Preliminary cross-section results presented below with 5% uncertainty (total)

JLab E012-07-108, *e-p* elastic cross section

Summary

- 12 GeV GMp experiment data taking completed successfully
- Equipment operated stably and satisfactorily
- First pass data replay is close to completion
- First iteration of optics is ongoing
- Projected milestones:
 - \rightarrow First publication to be submitted by the end of 2017

GMp collaboration

- Hall A collaboration, physics staff, technical staff, accelerator team and shift taker
- Spokesperson: J. Arrington, E. Christy, S. Gilad, V. Sulkosky, B. Wojtsekhowski (contact)
- Postdoc: Kalyan Allada (MIT)
- Graduate students: Thir Gautam (Hampton U.), Longwu Ou (MIT), Barak Schmookler (MIT), Yang Wang (W&M)

Thank you everybody!