

Measurement of the Elastic Form Factor Ratio $\mu_p G_E/G_M$ using Electron Scattering Spin Asymmetries

Thesis by: Jessica Campbell Jefferson Lab / Dalhousie University May 2018

- Modern model of atom by the 1930s
- Nucleons believed to structure-less
- Measurement of µ_p = 2.79µ_N → proton internal structure

- Nucleons consist of quarks
- QCD at high and low Q²

Quarks in state of confinement Further apart – sensitive to charge radius Interaction between quarks is strong Complicated fields

• As a consequence...

Quarks are asymptotically free Close together No force between quarks Probing small spatial distributions - Probing quarks

- Electron scattering as a tool
 - e⁻ interacts with nucleus through EM interaction
 - Interaction is weak and is dominated by OPE
 - $-e^{-}p^{+}$ scattering expressed in terms of G_{E} and G_{M}
 - What are form factors?
 - How does electron scattering work?
 - How are form factors measured?

Form Factors

 Form factors are defined by the Fourier transform of the spatial charge and magnetic current densities of the nucleon

$$G_{E,M}(Q^2) = \int
ho(ec r)_{E,M} \, e^{iec q ec r} \, d^3 r$$

- Form Factors:
 - $F_1(Q^2) Dirac$ form factor
 - $F_2(Q^2) Pauli$ form factor
- Sachs Form Factors
 - G_E distribution of electric charge
 - $G_{M} distribution of magnetization$

 $G_E = F_1 - \tau \kappa F_2$ $G_M = F_1 + \kappa F_2$ $Q^2 = 0.$ $G_E^p(0) = 1 \quad G_M^p(0) = \mu_p$ $G_E^n(0) = 0 \quad G_M^n(0) = \mu_n$

Elastic Electron Scattering

 $q^{\mu} = (\omega, \vec{q})$ $\omega = E - E'$ $\vec{q} = \vec{k} - \vec{k}'$

$$q^2 = -4 E E' \sin^2 (\theta_e/2)$$

 $Q^2 = -q^2 \ = -(\omega^2 - \vec{q}^{\,2})$

Jefferson Lab

• Formula for e-p scattering cross section:

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{\text{Mott}} \cdot \frac{E'}{E} \left[\frac{G_E^2 + \tau G_M^2}{1 + \tau} + 2\tau G_M^2 \tan^2 \frac{\theta}{2}\right]$$

where G and G form factors take into account the finite size of the proton. $\overset{}{\mathsf{E}}$

Structure is the variation in the EM form factors

How Form Factors were Measured?

- Rosenbluth Technique:
 - Elastic scattering cross-section is measured
 - Techniques uses different beam energies and angles for a fixed Q².
 - How do we extract the form factors from Rosenbluth Method?

$$\sigma_{red} = (1+\tau) \, \frac{\epsilon}{\tau} \, \frac{d\sigma/d\Omega}{(d\sigma/d\Omega)_{Mott}} = G_M^2 + \frac{\epsilon}{\tau} \, G_E^2$$

 $\varepsilon = \varepsilon (\tau, \theta_e)$ is virtual photon polarization

- Rosenbluth Technique:
 - Technique shows that both G_E^P and G_M^P follow the dipole parameterization (G_D)

The form factors divided by G_D appear to remain close to 1

 $G_D = (a + \frac{Q^2}{\lambda_D^2})^{-2} \qquad G_E^p \approx G_D, \text{ and } G_M^{p,n} \approx \mu_{p,n} G_D \qquad G_E^n \approx 0 \qquad G_E^p(Q^2) \approx \frac{G_M^p(Q^2)}{\mu_p/\mu_N} \approx \frac{G_M^n(Q^2)}{\mu_n/\mu_N} = G_D(Q^2)$

 Technique started to show deviations from the dipole formula for the nucleon form factors.

- Advances in technology usher new generation of experiments
- Depend on spin degrees of freedom
- Distinct advantages over traditional crosssection measurements:
 - Increased sensitivity
 - Systematic errors: luminosity, acceptance, detector efficiency
- What are these techniques?

Measurement Techniques

- Recoil Polarization
- Double Spin Asymmetry

$$\sigma(h) = \Sigma + h\Delta \qquad h = \pm 1.$$

$$A = \frac{\sigma_{+} - \sigma_{-}}{\sigma_{+} + \sigma_{-}} = \frac{\Delta}{\Sigma} \qquad A_{raw} = P_{b}P_{t}f A_{phys} \qquad A_{phys} = \frac{1}{P_{b}P_{t}f} \frac{\sigma_{+} - \sigma_{-}}{\sigma_{+} + \sigma_{-}} = \frac{1}{P_{b}P_{t}f} \frac{\Delta}{\Sigma}$$
How do we find the FFR?
$$\mu_{P} \frac{G_{E}^{P}}{G_{M}^{P}} = -\mu_{P} \frac{a(\tau_{1}, \theta_{1})\cos\left[\theta_{1}^{*}\right] - \frac{f_{2}}{f_{1}}\Lambda a(\tau_{2}, \theta_{2})\cos\left[\theta_{2}^{*}\right]}{\cos\left[\phi_{1}^{*}\right]\sin\left[\theta_{1}^{*}\right] - \frac{f_{2}}{f_{1}}\Lambda \cos\left[\phi_{2}^{*}\right]\sin\left[\theta_{2}^{*}\right]} \qquad 1:RHRS$$

$$a(\tau_{n}, \theta_{n}) = \sqrt{\tau_{n}\left(1 + (1 + \tau_{n})\tan^{2}\left[\theta_{n}/2\right]\right)} \qquad \Lambda = R = \frac{A_{1}}{A_{2}} \qquad \tau = \frac{Q^{2}}{4M_{p}^{2}}$$

• Single Spin Asymmetry

$$\frac{G_E}{G_M} = -\frac{b}{2A_p} \sin[\theta^*] \cos[\phi^*] + \sqrt{\frac{b^2}{4A_p^2}} \sin^2[\theta^*] \cos^2[\phi^*] - \frac{a}{A_p} \cos[\theta^*] - c$$

11

Recent measurements of $\mu G^{P}{}_{E}/G^{P}{}_{M}$ using recoil polarization at high Q² can deviate dramatically from the un-polarized data

Now generally accepted that two-photon-exchange processes (TPE) mostly account for the discrepancy at high Q² using the Rosenbluth extraction of $\mu G^{P}{}_{E}/G^{P}{}_{M}$

- Interest in low Q²
 - Semi-phenomenological fits
 - Recent experiments with discrepancies
- Experiments:
 - BLAST
 - LEDEX
- The Result: Need to carry out new high precision measurements
- Thesis focuses on DSA and Single arm measurement

Motivation

13

- High Q² accepted that p⁺ FFR decreases smoothly as Q² increases
- Q² < 1 GeV² less conclusive
- Key: Slope of FF as Q² → 0 is related to size of proton

Motivation

- The Proton Radius Puzzle
- Techniques to determine proton radius:
 - Elastic Electron Scattering
 - Muonic Hydrogen Lamb Shift
 - Atomic Hydrogen Lamb Shift
- Proton Radius Puzzle
 - the inconsistency between the proton charge radius was determined from muonic hydrogen and electron-proton systems: atomic hydrogen and e-p elastic scattering
 - Results from Muonic Hydrogen are smaller
 - Want high precision results at low Q²

Experimental Set-up and Kinematics

- $Q^2 \rightarrow 0.01-0.08 \text{ GeV}^2$
- The experiment utilized: • **Two High Resolution** Spectrometers (HRS) used to detect $\theta \sim 6.0^{\circ}$
- Beam energies were: 1.1,1.7, & 2.2 GeV.
- **CEBAF:** Continuous • **Electron Beam Accelerator Facility**

Hall A Equipment

- Polarized beam passes through fast/slow raster's
- Two Chicane Magnets
- Electrons scattered off the polarized NH₃ target
- Bent by the Septum Magnets
- Enters the two HRS arms
- Detected by the detector package – Similar to Mass Spectroscopy:
 - QQDQ Magnet
 - Vertical Drift Chambers
 - Scintillators
- Between runs Moller measurements are taken to determine the beam polarization

- Standard Approach:
 - Reconstruction of particle trajectories
 - Does not include target field which complicates the process
 - Solution:
 - Simulation used for trajectories between target and septum magnet
 - Optics matrix used for trajectories between septum magnet to focal plane
- Reconstruction Approach RHRS:
 - Could not use standard approach:
 - Loss of BPM data
 - Issues with magnets (especially septum magnet)

What is the focal plane? What are the reaction components?

Predominately the hydrogen elastic reaction components

What is the focal plane? What are the reaction components?

Indication that events map back to two interaction points \rightarrow Physically Impossible

- The approach:
 - Process focal plane momenta distributions
 - Why choose momentum?
 - HRS p-res = 10⁻⁴
 - Use a MC simulation to simulate events for the reaction components to fit the to data
 - If done properly:
 - Should account for overall background
 - Select elastic H events for asymmetry measurements

- Fitting process:
 - Momentum distributions of measured data
 - Simulate reaction components: elastic H, He, N, and Inelastic He, N

 $h_k[P_m]$

- Each RC is transformed as a function of the momentum by individually shifting β_k , scaling γ_k , and skewing α_k the RC: $H_k[P_m] = \gamma_k h_k[\alpha_k (P_m - \beta_k)]$

- Final fit model:
$$H[P_m] = \sum_k H_k[P_m]$$

- Fit Process:
 - initial placement of each RC prior to fitting a run list
- How do we define a run list?

Run	Target	HWP
List	Polarization	Status
NI	Negative	In
NO	Negative	Out
\mathbf{PI}	Positive	In
PO	Positive	Out
S	Negative	Out

Asymmetries

Able to extract results for 2.2 GeV for LHRS and RHRS NI and NO run lists

- LHRS: self consistent within experimental uncertainty
- RHRS: not self consistent within uncertainty
- DSA: discrepant results

Energy (GeV)	Method	Run List	\mathbf{FFR}	Δ FFR
2.2	DSA	NI	0.138	0.012
		NO	0.169	0.019
	LHRS	NI	1.142	0.023
		NO	1.153	0.025
		Avg	1.147	0.017
	RHRS	NI	0.802	0.022
		NO	0.860	0.025
		Avg	0.831	0.017

Kinematics kept constants and ratio of asymmetries is varied to generate this plot

Energy (GeV)	Method	Run List	\mathbf{FFR}	Δ FFR
2.2	DSA	NI	0.138	0.012
		NO	0.169	0.019
	LHRS	NI	1.142	0.023
		NO	1.153	0.025
		Avg	1.147	0.017
	RHRS	NI	0.802	0.022
		NO	0.860	0.025
		Avg	0.831	0.017

Errors on order of LEDEX and BLAST Experiments

LHRS confirmed with independent analysis

One reliable FFR measurement

- Conclusions:
 - Able to extract reliable asymmetries using this fitting method
 - Single independent result at lowest attempted Q²
 - Single Arm LHRS and RHRS FFR not in agreement → points to a problem in the results, either:
 - 1. Uncertainties are under estimated or
 - 2. RHRS results unreliable
 - Option 1 less likely than Option 2
- Final Conclusion:
 - Able to produce one reliable FFR result using LHRS where asymmetries were confirmed through an independent analysis
 - New Technique for extracting FFR

Acknowledgements

Dr. Adam Sarty, Doug Higinbothem, and Moshe Friedman

One University. One World. Yours.

