Measurement of the Elastic Form Factor Ratio $\mu_{\mathrm{p}} \mathrm{G}_{\mathrm{E}} / \mathrm{G}_{\mathrm{M}}$ using Electron Scattering Spin Asymmetries

Thesis by: Jessica Campbell Jefferson Lab / Dalhousie University May 2018

Jefferson Lab
- Thomas Jefferson National Accelerator Facility

Background

- Modern model of atom by the 1930s
- Nucleons believed to structure-less
- Measurement of

$\mu_{\mathrm{p}}=2.79 \mu_{\mathrm{N}} \rightarrow$ proton internal structure

Background

- Nucleons consist of quarks
- QCD at high and low Q 2

Quarks in state of confinement
Further apart - sensitive to charge radius Interaction between quarks is strong Complicated fields

Quarks are asymptotically free
Close together
No force between quarks
Probing small spatial distributions - Probing quarks

- As a consequence...

Background

- Electron scattering as a tool
- e^{-}interacts with nucleus through EM interaction
- Interaction is weak and is dominated by OPE
$-e^{-} p^{+}$scattering expressed in terms of G_{E} and G_{M}
- What are form factors?
- How does electron scattering work?
- How are form factors measured?

Form Factors

- Form factors are defined by the Fourier transform of the spatial charge and magnetic current densities of the nucleon

$$
G_{E, M}\left(Q^{2}\right)=\int \rho(\vec{r})_{E, M} e^{i \vec{q} \vec{r}} d^{3} r
$$

- Form Factors:
$-F_{1}\left(Q^{2}\right)$ - Dirac form factor
$-F_{2}\left(Q^{2}\right)$ - Pauli form factor
- Sachs Form Factors
$-G_{E}$ - distribution of electric charge
- G_{M} - distribution of magnetization

$$
\begin{gathered}
G_{E}=F_{1}-\tau \kappa F_{2} \\
G_{M}=F_{1}+\kappa F_{2} \\
Q^{2}=0 . \\
G_{E}^{p}(0)=1 \quad G_{M}^{p}(0)=\mu_{p} \\
G_{E}^{n}(0)=0 \quad G_{M}^{n}(0)=\mu_{n}
\end{gathered}
$$

Elastic Electron Scattering

$$
\begin{aligned}
& q^{\mu}=(\omega, \vec{q}) \\
& \omega=E-E^{\prime} \\
& \vec{q}=\vec{k}-\vec{k}^{\prime} \\
& q^{2}=-4 E E^{\prime} \sin ^{2}\left(\theta_{e} / 2\right) \\
& Q^{2}=-q^{2}=-\left(\omega^{2}-\vec{q}^{2}\right)
\end{aligned}
$$

- Formula for e-p scattering cross section:

$$
\frac{d \sigma}{d \Omega}=\left(\frac{d \sigma}{d \Omega}\right)_{\text {Mott }} \cdot \frac{E^{\prime}}{E}\left[\frac{G_{E}^{2}+\tau G_{M}^{2}}{1+\tau}+2 \tau G_{M}^{2} \tan ^{2} \frac{\theta}{2}\right]
$$

Structure is the variation in the EM form factors

How Form Factors were Measured?

- Rosenbluth Technique:
- Elastic scattering cross-section is measured
- Techniques uses different beam energies and angles for a fixed Q^{2}.
- How do we extract the form factors from Rosenbluth Method?

$$
\begin{aligned}
\sigma_{\text {red }} & =(1+\tau) \frac{\epsilon}{\tau} \frac{d \sigma / d \Omega}{(d \sigma / d \Omega)_{M o t t}}=G_{M}^{2}+\frac{\epsilon}{\tau} G_{E}^{2} \\
\varepsilon & =\varepsilon\left(\tau, \theta_{\mathrm{e}}\right) \text { is virtual photon polarization }
\end{aligned}
$$

Background

- Rosenbluth Technique:
- Technique shows that both $G_{E}{ }^{P}$ and $G_{M}{ }^{P}$ follow the dipole parameterization $\left(\mathrm{G}_{\mathrm{D}}\right)$

The form factors divided by G_{D} appear to remain close to 1

$$
G_{D}=\left(a+\frac{Q^{2}}{\lambda_{D}^{2}}\right)^{-2} \quad G_{E}^{p} \approx G_{D}, \text { and } G_{M}^{p, n} \approx \mu_{p, n} G_{D} \quad G_{E}^{n} \approx 0 \quad G_{E}^{p}\left(Q^{2}\right) \approx \frac{G_{M}^{p}\left(Q^{2}\right)}{\mu_{p} / \mu_{N}} \approx \frac{G_{M}^{n}\left(Q^{2}\right)}{\mu_{n} / \mu_{N}}=G_{D}\left(Q^{2}\right)
$$

- Technique started to show deviations from the dipole formula for the nucleon form factors.

Background

- Advances in technology usher new generation of experiments
- Depend on spin degrees of freedom
- Distinct advantages over traditional crosssection measurements:
- Increased sensitivity
- Systematic errors: luminosity, acceptance, detector efficiency
- What are these techniques?

Measurement Techniques

- Recoil Polarization
- Double Spin Asymmetry

$$
A=\frac{\sigma_{+}-\sigma_{-}}{\sigma_{+}+\sigma_{-}}=\frac{\Delta}{\Sigma} \longrightarrow \begin{aligned}
& \sigma(h)=\Sigma+h \Delta \quad h= \pm 1 . \\
& A_{\text {raw }}=P_{b} P_{t} f A_{\text {phys }}
\end{aligned} \xrightarrow{ } \quad \begin{aligned}
& \text { phys }=\frac{1}{P_{b} P_{t} f} \frac{\sigma_{+}-\sigma_{-}}{\sigma_{+}+\sigma_{-}}=\frac{1}{P_{b} P_{t} f} \frac{\Delta}{\Sigma}
\end{aligned}
$$

How do we find the FFR?

$$
\begin{aligned}
& \mu_{P} \frac{G_{E}^{P}}{G_{M}^{P}}=-\mu_{P} \frac{a\left(\tau_{1}, \theta_{1}\right) \cos \left[\theta_{1}^{*}\right]-\frac{f_{2}}{f_{1}} \Lambda a\left(\tau_{2}, \theta_{2}\right) \cos \left[\theta_{2}^{*}\right]}{\cos \left[\phi_{1}^{*}\right] \sin \left[\theta_{1}^{*}\right]-\frac{f_{2}}{f_{1}} \Lambda \cos \left[\phi_{2}^{*}\right] \sin \left[\theta_{2}^{*}\right]} \quad \begin{array}{l}
\text { 1:RHRS } \\
2: \text { LHRS }
\end{array} \\
& a\left(\tau_{n}, \theta_{n}\right)=\sqrt{\tau_{n}\left(1+\left(1+\tau_{n}\right) \tan ^{2}\left[\theta_{n} / 2\right]\right) \quad \Lambda=R=\frac{A_{1}}{A_{2}} \quad \tau=\frac{Q^{2}}{4 M_{p}^{2}}}=\$ \text {, } \quad l
\end{aligned}
$$

- Single Spin Asymmetry

$$
\frac{G_{E}}{G_{M}}=-\frac{b}{2 A_{p}} \sin \left[\theta^{*}\right] \cos \left[\phi^{*}\right]+\sqrt{\frac{b^{2}}{4\left(A_{p}^{2}\right)} \sin ^{2}\left[\theta^{*}\right] \cos ^{2}\left[\phi^{*}\right]-\frac{a}{\left(A_{p}\right)} \cos \left[\theta^{*}\right]-c}
$$

Background

Recent measurements of $\mu \mathrm{G}^{\mathrm{E}} / \mathrm{G}^{\mathrm{P}}{ }_{\mathrm{M}}$ using recoil polarization at high Q^{2} can deviate dramatically from the un-polarized data

Now generally accepted that two-photon-exchange processes (TPE) mostly account for the discrepancy at high Q^{2} using the Rosenbluth extraction of $\mu G_{E}{ }_{E} / G_{M}$

Rosenbluth Polarization

Background

- Interest in low Q^{2}
- Semi-phenomenological fits
- Recent experiments with discrepancies
- Experiments:
- BLAST
- LEDEX
- The Result: Need to carry out new high precision measurements
- Thesis focuses on DSA and Single arm measurement

Motivation

- High Q^{2} accepted that p^{+}FFR decreases smoothly as Q^{2} increases
- $\mathrm{Q}^{2}<1 \mathrm{GeV}^{2}$ less conclusive
- Key: Slope of FF as $\mathrm{Q}^{2} \rightarrow 0$ is related to size of proton

Motivation

- The Proton Radius Puzzle
- Techniques to determine proton radius:
- Elastic Electron Scattering
- Muonic Hydrogen Lamb Shift
- Atomic Hydrogen Lamb Shift

- Proton Radius Puzzle
- the inconsistency between the proton charge radius was determined from muonic hydrogen and electron-proton systems: atomic hydrogen and e-p elastic scattering
- Results from Muonic Hydrogen are smaller
- Want high precision results at low Q ${ }^{2}$

Experimental Set-up and Kinematics

- Measure p^{+}elastic FFR: Jefferson Lab at Newport News, USA $Q^{2} \rightarrow 0.01-0.08 \mathrm{GeV}^{2}$
- The experiment utilized: Two High Resolution Spectrometers (HRS) used to detect $\theta \sim 6.0^{\circ}$
- Beam energies were: $1.1,1.7, \& 2.2 \mathrm{GeV}$.
- CEBAF: Continuous Electron Beam Accelerator Facility

Hall A Equipment

- Polarized beam passes through fast/slow raster's
- Two Chicane Magnets
- Electrons scattered off the polarized NH_{3} target
- Bent by the Septum Magnets
- Enters the two HRS arms
- Detected by the detector package - Similar to Mass Spectroscopy:
- QQDQ Magnet
- Vertical Drift Chambers

- Scintillators
- Between runs Moller measurements are taken to determine the beam polarization

Analysis

- Standard Approach:
- Reconstruction of particle trajectories
- Does not include target field which complicates the process
- Solution:
- Simulation used for trajectories between target and septum magnet
- Optics matrix used for trajectories between septum magnet to focal plane
- Reconstruction Approach RHRS:
- Could not use standard approach:
- Loss of BPM data
- Issues with magnets (especially septum magnet)

Analysis

What is the focal plane?
What are the reaction components?

Analysis

Predominately the hydrogen elastic reaction components

What is the focal plane?
What are the reaction components?

Analysis

RHRS Real Data Position Reconstructed to
Target Coordinate System

Indication that events map back to two interaction points \rightarrow Physically Impossible

Analysis

- The approach:
- Process focal plane momenta distributions
- Why choose momentum?
- HRS p-res = 10^{-4}
- Use a MC simulation to simulate events for the reaction components to fit the to data
- If done properly:
- Should account for overall background
- Select elastic H events for asymmetry measurements

Analysis

- Fitting process:
- Momentum distributions of measured data
- Simulate reaction components: elastic H, He, N, and Inelastic He, N

$$
h_{k}\left[P_{m}\right]
$$

- Each RC is transformed as a function of the momentum by individually shifting β_{k}, scaling γ_{k}, and skewing α_{k} the RC: $H_{k}\left[P_{m}\right]=\gamma_{k} h_{k}\left[\alpha_{k}\left(P_{m}-\beta_{k}\right)\right]$
- Final fit model: $H\left[P_{m}\right]=\sum_{k} H_{k}\left[P_{m}\right]$

Analysis

- Fit Process:
- initial placement of each RC prior to fitting a run list
- How do we define a run list?

Run	Target	HWP
List	Polarization	Status
NI	Negative	In
NO	Negative	Out
PI	Positive	In
PO	Positive	Out
S	Negative	Out

Fit Results

Fit of LHRS Reaction Components for Helicity $=+1$

Fit Results

Fit Results

Fit Results

Asymmetries

LHRS Physical Asymmetry Comparison Plots for Elastic H

Physical Asymmetry Plots for Elastic H

Independent Analysis
Asymmetry Results

Results

Able to extract results for 2.2 GeV for LHRS and RHRS NI and NO run lists

- LHRS: self consistent within experimental uncertainty
- RHRS: not self consistent

Energy (GeV)	Method	Run List	FFR	Δ FFR
2.2	DSA	NI	0.138	0.012
		NO	0.169	0.019
	LHRS	NI	1.142	0.023
		NO	1.153	0.025
		Avg	1.147	0.017
	RHRS	NI	0.802	0.022
		NO	0.860	0.025
		Avg	0.831	0.017

- DSA: discrepant results

Results

Kinematics kept constants and ratio of asymmetries is varied to generate this plot

Results

Energy (GeV)	Method	Run List	FFR	Δ FFR
2.2	DSA	NI	0.138	0.012
		NO	0.169	0.019
	LHRS	NI	1.142	0.023
		NO	1.153	0.025
	Avg	1.147	0.017	
	RHRS	NI	0.802	0.022
		NO	0.860	0.025
	Avg	0.831	0.017	

Errors on order of LEDEX and BLAST Experiments

LHRS confirmed with independent analysis
One reliable FFR measurement

Results

- Conclusions:
- Able to extract reliable asymmetries using this fitting method
- Single independent result at lowest attempted Q^{2}
- Single Arm LHRS and RHRS FFR not in agreement \rightarrow points to a problem in the results, either:
- 1. Uncertainties are under estimated or
- 2. RHRS results unreliable
- Option 1 less likely than Option 2
- Final Conclusion:
- Able to produce one reliable FFR result using LHRS where asymmetries were confirmed through an independent analysis
- New Technique for extracting FFR

Acknowledgements

Dr. Adam Sarty, Doug Higinbothem, and Moshe Friedman

