$\begin{array}{c} Measurement\ of\ the\\ Proton\ Form\ Factor\ Ratio,\ G^P_{\ E}/G^P_{\ M}\\ from\\ Double\ Spin\ Asymmetries \end{array}$

Spin Asymmetries of the Nucleon Experiment (E07-003)

Outline

- Introduction
- Physics Motivation
- Detector Setup & Polarized Target
- Data Analysis
- Future Work/Conclusion

Anusha Liyanage

Advisor: Dr. Michael Kohl

Introduction

From the elastic scattering of electron from the proton target,

The four-momentum transfer squared,

$$Q^{2} = -q^{2} = 4EE'\sin^{2}\left(\frac{\Theta}{2}\right)$$
$$E - E' = \frac{Q^{2}}{2M}$$

$$G_E^P(q^2)$$
 and $G_M^P(q^2)$

- Elastic,
- Electric and Magnetic Form Factors (Sachs form factors)
- Provide the information on the spatial distribution of electric charge and magnetic moment within the proton
- \blacksquare Are functions of the four-momentum transfer squared, q^2

At
$$low |q^2|$$

$$G_E(q^2) \approx G_E(\overline{q}^2) = \int e^{i\overline{q}\cdot\overline{r}} \rho(\overline{r}) d^3\overline{r}$$

$$G_M(q^2) \approx G_M(\overline{q}^2) = \int e^{i\overline{q}\cdot\overline{r}} \mu(\overline{r}) d^3\overline{r}$$

At
$$q^2 = 0$$

 $G_E(0) = \int \rho(\bar{r}) d^3 \bar{r} = 1$
 $G_M(0) = \int \mu(\bar{r}) d^3 \bar{r} = \mu_P = +2.79$

transforms of the charge, $\rho(r)$ and magnetic moment, $\mu(r)$ distributions in Breit

Physics Motivation

- Dramatic discrepancy between Rosenbluth and recoil polarization technique.
- Multi-photon exchange considered the best candidate for the explanation

• Double-Spin Asymmetry is an Independent Technique to verify the discrepancy

Detector Setup/Polarized Target

- C, CH₂ and NH₃
- ullet Dynamic Nuclear Polarization (DNP) polarized the protons in the NH $_3$ target up to 90% at

1 K Temperature5 T Magnetic Field

- Temperature is maintained by immersing the entire target in the liquid He bath
- Used microwaves to excite spin flip

transitions

(55 GHz - 165 GHz)

 Polarization measured using NMR coils

- Used only perpendicular magnetic field configuration for the elastic data
- Average target polarization is $\sim 70 \%$
- Average beam polarization is $\sim 73 \%$

Elastic Kinematics

(From HMS Spectrometer)

Spectrometer mode	Coincidence	Coincidence	Single Arm
HMS Detects	Proton	Proton	Electron
E Beam GeV	4.72	5.89	5.89
P _{HMS} GeV/c	3.58	4.17	4.40
O _{HMS} (Deg)	22.30	22.00	15.40
Q^2 $(GeV/c)^2$	5.17	6.26	2.20
Total Hours (h)	~40 (~44 runs)	~155 (~135 runs)	~12 (~15 runs)
e-p Events	~113	~824	-

Data Analysis

PART I: Electrons in HMS

$$\overrightarrow{e}$$
 \overrightarrow{p} $\longrightarrow \overrightarrow{e}$ \overrightarrow{p}

By knowing the incoming beam energy, E and the scattered electron angle, heta

$$E' = E / \left(1 + \frac{2E\sin^2(\theta/2)}{M}\right)$$

$$Q^2 = 4EE'\sin^2(\frac{\theta}{2})$$

$$W^2 = M^2 - Q^2 + 2M(E - E')$$

Extract the electrons

Used only Electron selection cuts.

of Cerenkov photoelectrons > 2
$$E_{sh}/E' > 0.7$$

$$Abs(P-P_{c}/P_{c}) < 8$$

- Cerenkov cut
- Calorimeter cut
- HMS Momentum Acceptance cut

Here,

P/E' - Detected electron momentum/energy at HMS

P_c - Central momentum of HMS

 E_{sh} - Total measured shower energy of a chosen electron track by HMS Calorimeter

PART I: Continued.....

The raw asymmetry, A_r

$$A_r = \frac{N^+ - N^-}{N^+ + N^-}$$

$$\Delta A_r = \frac{2\sqrt{N^+}\sqrt{N^-}}{(N^+ + N^-)\sqrt{(N^+ + N^-)}}$$

$$N^+$$
 / N^- = Charge normalized counts for the +/-
helicity

 $\Delta A_r = \text{Error on the raw asymmetry}$
 $P_B P_T = \text{Beam and Target polarization}$
 $N_c = A \text{ correction term}$

Need dilution factor, f and backgrounds

in order to determine the

physics asymmetry,

$$A_p = \frac{A_r}{f P_B P_T} + N_C$$

and
$$G_E^p/G_M^p$$

(at Q²=2.2 (GeV/c)²)

Determination of the Dilution Factor

What is the Dilution Factor?

The dilution factor is the ratio of the yield from scattering off free protons(protons from H in NH₃) to that from the entire target (protons from N, H and He)

Dilution Factor, $F = \frac{Yield_{Data} - Yield_{MC}}{Yield_{Data}}$

• MC is normalized with the data for the region $0.75 < W < 0.875_{600}^{700}$

Invariant Mass, W (GeV)

PART II: Protons in HMS

Extracting the elastic events

Definitions:

• X/Yclust - Measured X/Y positions on BigCal

X = horizontal / in-plane coordinate

Y = vertical / out - of - plane coordinate

By knowing the energy of the polarized electron beam, E_B and the scattered proton angle, Θ_P

We can predict the

• X/Y coordinates , X_HMS, Y_HMS on the BigCal (Target Magnetic Field Corrected)

 $\Delta X = X_HMS - Xclust$ $\Delta Y = Y_HMS - Yclust$

Extracting the Elastic Events...

The Elliptic cut,

$$\left(\frac{\Delta X}{X_{\text{max}}}\right)^2 + \left(\frac{\Delta Y}{Y_{\text{max}}}\right)^2 \le 1$$
 Suppresses background most effectively

Here, $X(Y)_{max} = The effective area cut$

The Relative Momentum Difference

The final elastic events are selected by using,

- The Elliptic cut and
- The ' ΔP_{HMS} ' cut

P_{HMS} – Measured Proton momentum by HMS

 P_{Cal} — Calculated Proton momentum by knowing the beam energy, E_B and the Proton scattered angle, Θ_P

 P_{Cent} – HMS central momentum

$$\Delta P_{HMS} = \frac{P_{HMS} + P_{Cal}}{P_{Cent}}$$

$$Q^2 = \frac{4M_P^2 E_B^2 \cos^2 \Theta_P}{M_P^2 + 2M_P E_B + E_B^2 \sin^2 \Theta_P}$$

$$v = \frac{Q^2}{2M_P}$$

$$P_{Cal} = \sqrt{v^2 + 2M_P v}$$

Here, M_P is the Proton mass.

From The Experiment

The raw asymmetry, A_r

$$A_r = \frac{N^+ - N^-}{N^+ + N^-}$$

aw asymmetry,
$$A_r$$

$$A_r = \frac{N^+ - N^-}{N^+ + N^-}$$

$$\Delta A_r = \frac{2\sqrt{N^+ \sqrt{N^-}}}{(N^+ + N^-)\sqrt{(N^+ + N^-)}}$$

$$\Delta A_r / \Delta A_p = Error \text{ on the raw/physics asymmetry}$$

$$A_r / \Delta A_p = A_r / A_p = A_r /$$

The elastic asymmetry, A_n

$$A_p = \frac{A_r}{fP_R P_T} + N_C$$

$$\Delta A_p = \frac{\Delta A_r}{f P_B P_T}$$

f = Dilution Factor $P_{\rm R}, P_{\rm T} = Beam \ and \ Target \ polarization$ $N_c = A$ correction term to eliminates the contribution from

The beam - target asymmetry, A_p

$$A_{P} = \frac{-br\sin\theta^{*}\cos\phi^{*} - a\cos\theta^{*}}{r^{2} + c}$$

Here, $r = G_E / G_M$ $\theta_*, \phi = \text{pol. and azi. Angles between } q \text{ and } S$

$$\Theta_{*\approx 102^{\circ} \text{ and } } \phi^* = 0$$

From the HMS kinematics, $r^2 \le c$

$$A_P = \frac{-b\sin\theta^*\cos\phi^*r}{c} - \frac{a\cos\theta^*}{c}$$

Error Propagation from the Experiment.....

Positive Polarization					
H + Counts	H- Counts	A_{raw}	Error A _{raw}	A_{phy}	Error A_{phy}
259	263	-0.009	0.044	-0.029	0.085
Negative Polarization					
Tot H +	Tot H -	A _{raw}	Error A _{raw}	A_{phy}	Error A _{phy}
223	226	-0.008	0.039	-0.026	0.099

Weighted Average (very preliminary)

${f A}_{ m phy}$	Error A _{phy}		
-0.028	0.064		

Used the

Average Beam Polarization = 73 %

Average Target Polarization = 70 %

$$A_P = \frac{-b\sin\theta^*\cos\phi^*r}{c} - \frac{a\cos\theta^*}{c}$$

$$\Delta A_P = \left| \frac{b \sin \theta^* \cos \phi^*}{c} \right| \Delta r$$

Using the experiment data at

$$Q^2 = 6.26 (GeV/c)^2$$
,

with total ep events ~970, $\Delta A_p = 0.064$

$$\Delta r = 0.127$$

$$\mu \Delta r = 2.79 \times 0.127$$

$$\mu \Delta r = 0.35$$

Where , μ — Magnetic Moment of the Proton

Need To ...

- Improve the MC simulation and estimate the background
- Extract the physics asymmetry and the G_E^p/G_M^p ratio

Conclusion

- Extraction of G_E^p/G_M^p ratio from both single-arm electron and coincidence data are shown.
- Measurement of the beam-target asymmetry in elastic electron-proton scattering offers an independent technique of determining G_F^p/G_M^p ratio.
- This is an 'explorative' measurement, as a by-product of the SANE experiment.

SANE Collaborators:

Argonne National Laboratory, Christopher Newport U., Florida International U., Hampton U., Thomas Jefferson National Accelerator Facility, Mississippi State U., North Carolina A&T State U., Norfolk S. U., Ohio U., Institute for High Energy Physics, U. of Regina, Rensselaer Polytechnic I., Rutgers U., Seoul National U., State University at New Orleans, Temple U., Tohoku U., U. of New Hampshire, U. of Virginia, College of William and Mary, Xavier University of Louisiana, Yerevan Physics Inst.

Spokespersons: S. Choi (Seoul), M. Jones (TJNAF), Z-E. Meziani (Temple), O. A. Rondon (UVA)

Thank You I

Backup Slides

Elastic Scattering

The four-momentum transfer squared, $q^2 = (k - k')^2 = k^2 + k'^2 - 2kk'$ For electron, $k^2 = E^2 - k^2 = m_e^2 = 0$ $q^2 = -2kk' = -2(E, k)(E', k')$ $q^2 = -2(EE' - k \cdot k')$ $q^2 = -2EE'(1 - \cos\Theta)$ $Q^2 = -q^2 = 4EE'\sin^2\left(\frac{\Theta}{2}\right)$

Comparing MC for NH3 target

