## Measurement of the

Proton Form Factor Ratio, $G_{E}^{P} / G_{M}^{P}$ from

## Double Spin Asymmetries

Spin Asymmetries of the Nucleon Experiment
( E07-003)

## Outline

- Introduction
- Physics Motivation
- Detector Setup \& Polarized Target
- Data Analysis
- Future Work/Conclusion

Jefferson Lab
OThomas Jefferson National Accelerator Facility


Anusha Liyanage Advisor : Dr. Michael Kohl

## Introduction

From the elastic scattering of electron from the proton target,


The four-momentum transfer squared,

$$
\begin{gathered}
Q^{2}=-q^{2}=4 E E^{\prime} \sin ^{2}\left(\frac{\Theta}{2}\right) \\
E-E^{\prime}=Q^{2} / 2 M
\end{gathered}
$$

$G_{E}^{P}\left(q^{2}\right)$ and $G_{M}^{P}\left(q^{2}\right)$

- Elastic,
- Electric and Magnetic Form Factors (Sachs form factors)
- Provide the information on the spatial distribution of electric charge and magnetic moment within the proton
- Are functions of the four-momentum transfer squared, $q^{2}$

Fourier
At low $\left.\left|q^{2}\right| \quad\right]$ transforms of

$$
\left.\begin{array}{l}
G_{E}\left(q^{2}\right) \approx G_{E}\left(\bar{q}^{2}\right)=\int e^{i \bar{q} \cdot \bar{r}} \rho(\bar{r}) d^{3} \bar{r} \\
G_{M}\left(q^{2}\right) \approx G_{M}\left(\bar{q}^{2}\right)=\int e^{i q \cdot \cdot \bar{r}} \mu(\bar{r}) d^{3} \bar{r}
\end{array}\right\}
$$ the charge, $\rho(r)$ and magnetic moment, $\mu(r)$ distributions in Breit

At $q^{2}=0$

$$
\begin{aligned}
G_{E}(0) & =\int \rho(\bar{r}) d^{3} \bar{r}=1 \\
G_{M}(0) & =\int \mu(\bar{r}) d^{3} \bar{r}=\mu_{P}=+2.79
\end{aligned}
$$

## Physics Motivation



## Detector Setup/Polarized Target

- $\mathrm{C}, \mathrm{CH}_{2}$ and $\mathrm{NH}_{3}$
- Dynamic Nuclear Polarization (DNP) polarized the protons in the $\mathrm{NH}_{3}$ target up to $90 \%$ at 1 K Temperature 5 T Magnetic Field
- Temperature is maintained by immersing the entire target in the liquid He bath
- Used microwaves to excite spin flip


## Polarized Electron Beam: 4.7, 5.9 GeV

 transitions ( $55 \mathrm{GHz}-165 \mathrm{GHz}$ )

- Polarization measured using NMR coils

- Used only perpendicular magnetic field configuration for the elastic data
- Average target polarization is $\sim 70 \%$
- Average beam polarization is $\sim 73 \%$


## Elastic Kinematics

( From HMS Spectrometer )

| Spectrometer <br> mode | Coincidence | Coincidence | Single Arm |
| :--- | :--- | :--- | :--- |
| HMS Detects | Proton | Proton | Electron |
| E Beam <br> GeV | 4.72 | 5.89 | 5.89 |
| $\mathrm{P}_{\text {HMS }}$ <br> GeV/c | 3.58 | 4.17 | 4.40 |
| $\Theta_{\text {HMs }}$ <br> $($ Deg $)$ | 22.30 | 22.00 | 15.40 |
| $Q^{2}$ <br> $(\text { GeV /c) })^{2}$ | 5.17 | 6.26 | 2.20 |
| Total Hours <br> $(h)$ | $\sim 40$ <br> $(\sim 44$ runs $)$ | $(\sim 135$ runs $)$ | $(\sim 15$ runs) |
| e-p Events | $\sim 113$ | $\sim 824$ | - |

## Data Analysis

## PART I : Electrons in HMS



By knowing the
incoming beam energy, E and the scattered electron angle, $\boldsymbol{\theta}$

$$
\overrightarrow{\mathrm{e}}^{-} \overrightarrow{\mathrm{p}} \longrightarrow \overrightarrow{\mathrm{e}}^{-} \overrightarrow{\mathrm{p}}
$$

$$
\begin{gathered}
E^{\prime}=E /\left(1+\frac{2 E \sin ^{2}(\theta / 2)}{M}\right) \\
Q^{2}=4 E E^{\prime} \sin ^{2}\left(\frac{\theta}{2}\right) \\
W^{2}=M^{2}-Q^{2}+2 M\left(E-E^{\prime}\right)
\end{gathered}
$$

## Extract the electrons

- Used only Electron selection cuts.

$$
\begin{gathered}
\text { \# of Cerenkov photoelectrons }>2 \\
E_{s h} / E^{\prime} \\
>0.7 \\
A b s\left(P-P_{c} / P_{c}\right)
\end{gathered}
$$

- Cerenkov cut
- Calorimeter cut
- HMS Momentum Acceptance cut

Here,
$P / E^{\prime}$ - Detected electron momentum/energy at HMS
$\mathrm{P}_{\mathrm{c}}$ - Central momentum of HMS
$E_{s h}$ - Total measured shower energy of a chosen electron track by HMS Calorimeter


## PART I : Continued.....

The raw asymmetry, $\mathrm{A}_{\mathrm{r}}$

$$
\begin{aligned}
N^{+} / N^{-}= & \text {Charge normalized counts for the }+/- \\
& \text { helicity }
\end{aligned}
$$

$$
A_{r}=\frac{N^{+}-N^{-}}{N^{+}+N^{-}} \Delta A_{r}=\frac{2 \sqrt{N^{+}} \sqrt{N^{-}}}{\left(N^{+}+N^{-}\right) \sqrt{\left(N^{+}+N^{-}\right)}}
$$

The Raw Asymmetries


## Need

 dilution factor, $f$ and backgroundsin order to determine the
physics asymmetry,

$$
A_{p}=\frac{A_{r}}{f P_{B} P_{T}}+N_{C}
$$

$$
\begin{gathered}
\text { and } G_{P_{E}} / G^{p}{ }_{M} \\
\left(\text { at } \mathrm{Q}^{2}=2.2(\mathrm{GeV} / \mathrm{c})^{2}\right)
\end{gathered}
$$

## Determination of the Dilution Factor

What is the Dilution Factor ?
The dilution factor is the ratio of the yield from scattering off free protons(protons from H in $\mathrm{NH}_{3}$ ) to that from the entire target (protons from $\mathrm{N}, \mathrm{H}$ and He )

$$
\begin{aligned}
& \text { Dilution Factor, } \\
& F=\frac{\text { Yield }_{\text {Data }}-\text { Yield }_{\text {MC }}}{\text { Yield }_{\text {Data }}}
\end{aligned}
$$

- MC is normalized with the data for the region



[^0]
## PART II: Protons in HMS

## Extracting the elastic events

## Definitions:

- X/Yclust - Measured X/Y positions on BigCal
$X=$ horizontal /in-plane coordinate
$Y=$ vertical / out $-o f-$ plane coordinate

> By knowing
the energy of the polarized electron beam, $E_{B}$ and the scattered proton angle, $\Theta_{p}$


We can predict the

- X/Y coordinates , X_HMS, Y_HMS on the BigCal (Target Magnetic Field Corrected)

Extracting the Elastic Events...



Y position difference

The Elliptic cut,

$$
\left(\frac{\Delta X}{X_{\max }}\right)^{2}+\left(\frac{\Delta Y}{Y_{\max }}\right)^{2} \leq 1 \quad \begin{aligned}
& \text { Suppresses background } \\
& \text { most effectively }
\end{aligned}
$$

Here, $X(Y)_{\max }=$ The effective area cut

## The Relative Momentum Difference



The final elastic events are selected by using,

- The Elliptic cut and
- The ' $\Delta P_{H M S}$ ' cut
$\mathrm{P}_{\text {HMS }}-$ Measured Proton momentum by HMS
$\mathrm{P}_{\mathrm{Cal}}$ - Calculated Proton momentum by knowing the beam energy, $\mathrm{E}_{\mathrm{B}}$ and the Proton scattered angle, $\Theta_{P}$
$\mathrm{P}_{\text {Cent }}$ - HMS central momentum

$$
\begin{gathered}
\Delta P_{H M S}=\frac{P_{H M S}}{P_{C e n t}} P_{C a l} \\
Q^{2}=\frac{4 M_{P}^{2} E_{B}^{2} \cos ^{2} \Theta_{P}}{M_{P}^{2}+2 M_{P} E_{B}+E_{B}^{2} \sin ^{2} \Theta_{P}} \\
v=\frac{Q^{2}}{2 M_{P}} \\
P_{C a l}=\sqrt{\left(v^{2}+2 M_{P} v\right)}
\end{gathered}
$$

## From The Experiment

The raw asymmetry, $\mathrm{A}_{\mathrm{r}}$

$$
A_{r}=\frac{N^{+}-N^{-}}{N^{+}+N^{-}} \quad \Delta A_{r}=\frac{2 \sqrt{N^{+}} \sqrt{N^{-}}}{\left(N^{+}+N^{-}\right) \sqrt{\left(N^{+}+N^{-}\right)}}
$$

$N^{+} / N^{-}=$Charge normalized Counts for the +/- helicity
$\Delta A_{r} / \Delta A_{p}=$ Error on the raw/physics asymmetry

The elastic asymmetry, $\mathrm{A}_{\mathrm{p}}$

$$
A_{p}=\frac{A_{r}}{f P_{B} P_{T}}+N_{C} \quad \Delta A_{p}=\frac{\Delta A_{r}}{f P_{B} P_{T}}
$$

$$
f=\text { Dilution Factor }
$$

$$
P_{B}, P_{T}=\text { Beam and Target polarization }
$$

$N_{c}=A$ correction term to eliminates the contribution from quasi-elastic ${ }^{14} N$ scattering under the elastic peak

The beam - target asymmetry, $A_{p}$

$$
A_{P}=\frac{-b r \sin \theta^{*} \cos \phi^{*}-a \cos \theta^{*}}{r^{2}+c}
$$

Here, $r=G_{E} / G_{M}$
$a, b, c_{*}=$ kinematic factors
$\boldsymbol{\theta}_{*}, \boldsymbol{\phi}^{*}=$ pol. and azi.Angles between $\bar{q}$ and $\bar{S}$
$\theta_{*} \approx 102^{\circ}$ and $\boldsymbol{\phi}^{*}=0$
From the HMS kinematics, $r^{2} \ll c$

$$
A_{P}=\frac{-b \sin \theta^{*} \cos \phi^{*} r}{c}-\frac{a \cos \theta^{*}}{c}
$$

## Error Propagation from the Experiment.....

## Positive Polarization

| $\mathrm{H}+$ <br> Counts | H- <br> Counts | $\mathrm{A}_{\text {raw }}$ | Error $\mathrm{A}_{\text {raw }}$ | $\mathrm{A}_{\text {phy }}$ | Error $\mathrm{A}_{\text {phy }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 259 | 263 | -0.009 | 0.044 | -0.029 | 0.085 |
| Negative Polarization |  |  |  |  |  |
| Tot H + | Tot H - | $\mathrm{A}_{\text {raw }}$ | Error $\mathrm{A}_{\text {raw }}$ | $\mathrm{A}_{\text {phy }}$ | Error $\mathrm{A}_{\text {phy }}$ |
| 223 | 226 | -0.008 | 0.039 | -0.026 | 0.099 |

Used the
Average Beam Polarization $=73 \%$
Average Target Polarization $=70 \%$

$$
A_{P}=\frac{-b \sin \theta^{*} \cos \phi^{*} r}{c}-\frac{a \cos \theta^{*}}{c}
$$

$$
\Delta A_{P}=\left|\frac{b \sin \theta^{*} \cos \phi^{*}}{c}\right| \Delta r
$$

Using the experiment data at
$\mathrm{Q}^{2}=6.26(\mathrm{GeV} / \mathrm{c})^{2}$,
with total ep events $\sim 970, \Delta A_{p}=0.064$

$$
\begin{aligned}
\Delta_{r} & =0.127 \\
\mu \Delta_{r} & =2.79 \times 0.127 \\
\mu \Delta_{r} & =0.35
\end{aligned}
$$

Where, $\mu$ - Magnetic Moment of the Proton

## Need To ..

- Improve the MC simulation and estimate the background
- Extract the physics asymmetry and the $\mathrm{GP}_{\mathrm{E}} / \mathrm{G}^{\mathrm{P}}{ }_{\mathrm{M}}$ ratio


## Conclusion

- Extraction of $\mathrm{G}_{\mathrm{E}} / \mathrm{G}^{\mathrm{P}}{ }_{\mathrm{M}}$ ratio from both single-arm electron and coincidence data are shown.
- Measurement of the beam-target asymmetry in elastic electronproton scattering offers an independent technique of determining $\mathrm{G}_{\mathrm{E}}^{\mathrm{E}} / \mathrm{G}_{\mathrm{M}}^{\mathrm{M}}$ ratio.
- This is an 'explorative' measurement, as a by-product of the SANE experiment.


## SANE Collaborators:

Argonne National Laboratory, Christopher Newport U., Florida International U.,
Hampton U., Thomas Jefferson National Accelerator Facility, Mississippi State U., North Carolina A\&T State U., Norfolk S. U., Ohio U., Institute for High Energy Physics, U. of Regina, Rensselaer Polytechnic I., Rutgers U., Seoul National U., State University at New Orleans ,Temple U., Tohoku U., U. of New Hampshire, U. of Virginia, College of William and Mary, Xavier University of Louisiana, Yerevan Physics Inst.

Spokespersons: S. Choi (Seoul), M. Jones (TJNAF), Z-E. Meziani (Temple), O. A. Rondon (UVA)


## Backup Slides

## Elastic Scattering



The four-momentum transfer squared,

$$
q^{2}=\left(k-k^{\prime}\right)^{2}=k^{2}+k^{\prime 2}-2 k k^{\prime}
$$

For electron, $k^{2}=E^{2}-k^{2}=m_{e}^{2}=0$

$$
\begin{aligned}
& q^{2}=-2 k k^{\prime}=-2(E, k)\left(E^{\prime}, k^{\prime}\right) \\
& q^{2}=-2\left(E E^{\prime}-k \cdot k^{\prime}\right) \\
& q^{2}=-2 E E^{\prime}(1-\cos \Theta) \\
& Q^{2}=-q^{2}=4 E E^{\prime} \sin ^{2}\left(\frac{\Theta}{2}\right)
\end{aligned}
$$

## Comparing MC for NH3 target




[^0]:    Invariant Mass, W (GeV)

