Beam Tracking for the MUon Scattering Experiment (MUSE) at PSI

Tanvi Patel, Dr. Anusha Liyanage, and Dr. Michael Kohl APS April Meeting 2018

This work has been supported by NSF HRD-1649909

Content

- Proton Radius Puzzle
- **MU**on Scattering Experiment (MUSE)
- **Experimental Set-up at Paul Scherrer Institute (PSI)**
- **GEM** Detectors
- **GEM** Analysis
- **Conclusion**

Proton Radius Puzzle

Motivation for µp Scattering

MUSE

- Measurement of elastic electron and muon scattering on the proton
- □ Measuring with both beam polarities
- Determine cross section, form factors, precise radius, test lepton universality, and measure two-photon exchange

Beam Specification:

- 590 MeV, 50 MHz, 2 mA (1.2 MW) proton beam
- □ Momentum range: 100 500 MeV/c
- □ Secondary beam up to 3 MHz of \approx 2 15 % µ's, 10 98 % e's, 0 80% π 's

Experimental Set-up at PSI

Gas Electron Multiplier (GEM)

□ Made up: kapton foil and copper clad

□ Coulomb interaction ionize the gas and create electron-ion pairs

□ With suitable potentials, electrons released in the upper gas layer drift into the first GEM

Avalanche amplification occurs in the holes

2-D readout plane consist of copper strips

Schematic of triple-GEM detector

GEMs for MUSE

These GEMs were built at Hampton University for the OLYMPUS experiment
 Three 10 x 10 cm² triple layer GEM detectors
 Supplied ArCO₂ gas mixture (70:30 ratio)
 Each GEM with four APV-25 frontend chips to read analog signals from the readout strips
 Total of 1500 readout channels (500 per element)

GEM Data Analysis: ADC vs. Strip Number (US)

□ The analog signals are digitized by Analog Digital Converter (ADC)

ADC records the integration of the analog signals over time for the total charge registered by a strip
 The background noise present in the raw ADC would affect the original signal

To reduce the background noise, common-mode and pedestal subtraction was applied on raw data

0 GEM X APV ADC, Background Before Both CM and Ped. Sub.

0 GEM X APV ADC, Background After Both CM and Ped. Sub.

GEM Data Analysis

- □ Only channels with hits participating in clusters
- □ Hits: Channels above the threshold
- Clusters: 2 or more arrays of adjacent hits. Cluster candidates are chosen by pairing the X and Y local maxima and charge sharing.

0 GEM X APV ADC, Signal After Both CM and Ped. Sub.

Cluster Multiplicities per event

Cluster multiplicities: Independently checked the number of clusters recorded for each event on each GEM
De-focused

□ Requirement: 1-cluster in 2 GEMs for candidate track

Track Residuals

- Determine straight line tracks from the cluster candidates on 2 GEMs and project on 3rd GEM
- Compare track and hit at the third GEM for track residuals

Track residuals: Variance ~ 0.5 mm on each GEM. Similar with and without focused beam 12

Beam Focus

Beam Spot at US GEM xytarg Vert. Position (mm). b 8 8 0 Entries 10989 **De-focused** -5.786 Mean x (Run 1398) Mean y -1.823 RMS x 21.09 RMS y 25.36 8 20 6 -20 -40 -60 2 -80 -100 20 60 80 100 -80 -60 40 0 Hori. Position (mm)

Beam Spot at US GEM

GEM Efficiencies

The maximum charge cluster is selected on two of the three GEMs to form the track which is projected on the third GEM.

Efficiency =

 Projected track positions with at least one cluster
 Projected track positions

50 Vert. Position (mm) 0.9 40E 30E 0.8 20E 0.7 0.6 10E 0 0.5 -10 0.4 0.3 -20E 0.2 -30E 0.1 -40 50 Hori, Position (mm)

Efficiencies on US (cluster>=1, cuts)

Beam Tomography

GEMs Alignment Survey

GEMs alignment survey was performed in March 2018
 Three types of data evaluated in the same room coordinate frame:

- 1. Horizontal and vertical offsets of the cross hairs
- 2. 3D locations of cross hairs
- 3. Various points on the kapton foil of the readout layer of each GEM

Conclusion

□ The construction of MUSE will end this year (2018) and the experiment will take place between 2019-2020

GEM telescope has been demonstrated to work.

Work in progress: to optimize the alignment, full characterization of the resolution and efficiency, to increase the DAQ speed, improve tracking algorithms at high intensity.

MUSE Collaborators from 24 Institutions in 5 Countries

^aGeorge Washington University, ^bMontgomery College, ^cArgonne National Lab, ^dTemple University, ^eCollege of William & Mary, ^f Duquesne University, ^gMassachusetts Institute of Technology, ^hChristopher Newport University, ⁱ Hampton University, ^j Rutgers University, ^kHebrew University of Jerusalem, ^lTel Aviv University, ^mPaul Scherrer Institut, ⁿJohannes Gutenberg-Universität, ^oOld Dominion University, ^bUniversity of Virginia, ^qUniversity of South Carolina, ¹Jefferson Lab, ^sUniversity of Basel, ^cUniversity of Michigan, ^aLos Alamos National Laboratory, ^vTechnical University of Darmstadt, ^wSt. Mary 's University, ^xWeizmann Institute

Questions?

BACKUP

- Electric radius in agreement with Pohl 0.84087 ± 0.00039 fm
 - 7.9σ from 2010 CODATA
 - Analysis gives:

Raw ADC vs Strip Number

ADC vs Strip Number

0 GEM X APV ADC, Signal After Both CM and Ped. Sub.

GEM Data Analysis: Cluster Multiplicities

25