Flavor separation at large x

Alberto Accardi Hampton U. & Jefferson Lab

APS spring meeting 13-16 February 2010

Why large x (and low- Q^2)

Up and down: the CTEQ6X fit

Gluons

Intrinsic charm

Conclusions

accardi@jlab.org

Why large-x, low-Q²?

Large uncertainties in quark and gluon PDF at x > 0.4 - e.g., CTEQ6.1

PDF errors

- propagation of exp. errors into the fit
- statistical interpretation
- reduced by enlarging the data set
- Theoretical errors
 - often poorly known
 - difficult to quantify
 - 🔶 can be dominant

Large uncertainties in quark and gluon PDF at x > 0.4

Precise PDF at large x are needed, e.g.,

- 🔶 at LHC, Tevatron
 - 1) DGLAP evolution feeds large x, low Q^2 into lower x, large Q^2
 - 2) QCD background in high-mass new physics searches
 - Example: Z' production

 $M_{Z'} \gtrsim 200 \; {
m GeV} \quad x = {m_T \over \sqrt{s}} e^y$

 $x \ge 0.02$ (LHC), 0.1 (Tevatron)

accardi@jlab.org

- Large uncertainties in quark and gluon PDF at x > 0.5
- Precise PDF at large x are needed, e.g.,
 - 🔹 at LHC, Tevatron
 - 1) New physics as excess in large p_T spectra \Leftrightarrow large x PDF
 - 2) QCD background in high-mass new physics searches
 - → non-perturbative nucleon structure e.g., d/u at $x \rightarrow 1$

- Large uncertainties in quark and gluon PDF at x > 0.5
- Precise PDF at large x are needed, e.g.,
 - 🔹 at LHC, Tevatron
 - 1) New physics as excess in large p_T spectra \Leftrightarrow large x PDF
 - 2) QCD background in high-mass new physics searches
 - non-perturbative nucleon structure e.g., $\Delta u/u$, $\Delta d/d$ at $x \rightarrow 1$

- Large uncertainties in quark and gluon PDF at x > 0.5
- Precise PDF at large x are needed, e.g.,
 - 🔶 at LHC, Tevatron
 - 1) New physics as excess in large p_T spectra \Leftrightarrow large x PDF
 - 2) QCD background in high-mass new physics searches
 - non-perturbative nucleon structure
 - spin structure of the nucleon at small x [see R.Seidl's talk]
 - 🗢 neutrino oscillations

JLab and SLAC have precision DIS data at large x, BUT low Q^2

need of theoretical control over

- 1) higher twist $\propto \Lambda^2/Q^2$
- 2) target mass corrections (TMC) $\propto x_B^2 m_N^2/Q^2$ 3) heavy-quark mass corrections $\propto m_Q^2/Q^2$
- 4) nuclear corrections
- 5) jet mass corrections (JMC) $\propto m_i^2/Q^2$
- 6) large-*x* resummation
- 7) large-*x* DGLAP evolution
- 8) quark-hadron duality
- 9) parton recombination at <u>large x</u>
- 10) perturbative stability at low- Q^2
- 11) ...

this talk

Up and down: the CTEQ6X fit

Accardi, Christy, Keppel, Melnitchouk, Monaghan, Morfín, Owens, Phys. Rev. D 81, 034016 (2010)

CTEQ6X vs. CTEQ

CTEQ

 $Q^2 \ge 4 \text{ GeV}^2 \quad W^2 \ge 12.25 \text{ GeV}^2$

not so large x, not too low Q²
hope 1/Q² corrections not large

CTEQ6X

TMC, HT, deuteron corrections

Progressively lower the cuts:

	Q^2	W^2
	$[GeV^2]$	$[GeV^2]$
CTEQ = cut0	4	12.25
$\operatorname{cut1}$	3	8
${ m cut2}$	2	4
${ m cut}3$	1.69	3

Better large-x, low-Q² coverage

CTEQ6X vs. CTEQ

CTEQ

 $Q^2 \ge 4 \text{ GeV}^2$ $W^2 \ge 12.25 \text{ GeV}^2$

not so large x, not too low Q²
hope 1/Q² corrections not large

CTEQ6X

TMC, HT, deuteron corrections

Progressively lower the cuts:

	Q^2	W^2
	$[GeV^2]$	$[GeV^2]$
CTEQ = cut0	4	12.25
$\operatorname{cut1}$	3	8
${ m cut2}$	2	4
${ m cut}3$	1.69	3

Better large-x, low-Q² coverage

Reference fit vs. CTEQ6.1

Reference fit:

- cut0, no corrections
- → PDF errors with $\Delta \chi = 1$

	data	CTEQ6.1
DIS	(JLab)	NO
	SLAC	NO
	NMC	\checkmark
	BCDMS	\checkmark
	H1	\checkmark
	ZEUS	
DY	E605	
	E866	NO
W	CDF '98 (ℓ)	
	CDF '05 (ℓ)	NO
	D0 '08 (<i>l</i>)	NO
	D0 '08 (e)	NO
	CDF '09 (W)	NO
jet	CDF	\checkmark
CALES!	D0	\checkmark
γ +jet	D0	NO

CTEQ6X vs CTEQ6.1

CTEQ6X fit: 🔶 cut3, TMC+HT deuteron corrections TMC, HT compensate each other ✤ u-quark: 🔶 almost unchanged d-quark suppressed due to deuteron corrections Reduced PDF errors ✤ about 30-50%

CTEQ6X vs CTEQ6.1

Deuterium corrections

Deuterium corrections

d-quarks are very sensitive to deuterium corrections

 Off-shell corrections completely absorbed by the d-quark

free	= free p+n
dens	= density model corrections
nuc	= WBA smearing model
offsh	= off-shell corrections
	[Melnitchouk et al '94]

Impact on LHC

Parton luminosities

$L_{i,j}(M) = \frac{1}{S} \int_{M^2/s}^{1} \frac{dx}{x} q_i(x, M^2) q_j(M^2/(xs), M^2)$

Nuclear model uncertainty ~10% at large x:
 dominates Z cross-sections used as luminosity monitor

- exp = experimental
- RS = renorm. scale
- MC = charm mass
- TS = charm threshold
- SS = strangeness suppr.

d-quarks at large x

Large theoretical undertainties on *d*-quark at large x

- coming from deuteron corrections
 (no deuteron ⇒ d unconstrained at large x)
- unavoidable at the moment: model dependent

How to progress?

- Avoid them
 - Free nucleon targets \rightarrow not enough data so far

Constrain them

- Q^2 dependence of D/p ratios at large x
- Use quasi-free nucleon targets
- Use ratio of ³He ³H mirror nuclei

Free nucleon targets

Constraints on large-x d-quarks from

 $\Rightarrow p+p(bar) : DY \text{ at large } x_F$

+ p+p(bar): W-asymmetry at large rapidity $p p(\bar{p}) \longrightarrow W^{\pm} X$ [D0 and ZEUS]

• v+p and v-bar+p

 $\nu(\bar{\nu}) \, p \longrightarrow l^{\pm} \, X$

 $p p(\bar{p}) \longrightarrow \mu^+ \mu^- X$

- <u>WA21 already has data</u> (but hard to reconstruct cross-sections from published "quark distributions")
- <u>MINERvA with a hydrogen target</u>
- Parity Violating DIS *

 $\vec{e}_L(\vec{e}_R) \, p \longrightarrow e \, X$

• L/R electron asymmetry $\Rightarrow \gamma/Z$ interference $\propto d/u$

* planned for Jlab at 12 GeV

accardi@jlab.org

APS meeting, 13 Feb 2010

Constraining the nuclear corrections

♦ Q^2 dependence of D/p ratios at large x

$$e A \longrightarrow e (A - 1) X$$

³He - ³H mirror nuclei *

$$\frac{{}^3H}{{}^3He}\,\approx\,\frac{n}{p}\,\frac{2+p/n}{2+n/p}$$

* planned for Jlab at 12 GeV

accardi@jlab.org

APS meeting, 13 Feb 2010

Observables for gluons

- Jets in *p*+*p* collision CT09
 - limited statistics
 - \rightarrow only very large Q^2 , and smallish x
- $\Rightarrow dF_2 / d(\ln Q^2)$
 - 🔶 indirect
 - little leverage at large x, large errors
- Longitudinal F_L
 - directly sensitive to gluons
 - 🔶 so far not many data points
 - → JLab / JLab12 will improve large-*x* coverage, but low Q²

F_L – HT and perturbative stability

- HT for F_L have little constraints from theory, some guidance from renormalon calculations
 - Perturbatively unclear at large x
 - When fitted, large at NLO, decrease at NNLO
- "The high x and low Q² domain is 'dangerous'. This is another reason, along with target mass, to avoid fitting data in this region"

[Martin, Stirling, Thorne, PLB635(06)]

Should we dare more?

[see e.g., Alekhin et al., arXiv:0710.0124]

Target Mass Corrections

> Difference between Coll. Fact. [Accardi,Qiu] and OPE [Georgi,Politzer] for F_2

 \rightarrow different slope in $Q^2 \Rightarrow$ different gluons from $dF_2/d(\ln Q^2)$!

Target Mass Corrections

- **Very different F_L correction**
 - Can the differences be absorbed in HT terms ?
 - → Play F_L and F_2 off each other ⇒ can differentiate TMC method ??

Intrinsic charm

Intrinsic vs. radiative charm

Usual assumption in global fits: at threshold

Pumplin, PRD73(06), Brodky et al., PRD73(06) + references teherein

 $c(x,Q_c\approx m_c)=0$

charm generated during DGLAP evolution

2-2005 8711A82

- \Rightarrow a c-cbar pair fluctuation already exists, peaked at large $x \sim 0.4$
- fully participates in DGLAP evolution

c, cbar asymmetry: small @ NLO (pQCD) or large (nonpert. models)
 accardi@jlab.org
 APS meeting, 13 Feb 2010
 28

Indications from global fits

[Pumplin, Lai, Tung, PRD75(07)]

• 3 models at $\mu = m_c$

[see Pumplin PRD 73(06) for review of models]

1) Brodsky-Hoyer-Peterson-Sakai [PLB 93 (80)]

 $c(x) = \bar{c}(x)$ = $A x^2 \left[6x(1+x) \ln x + (1-x)(1+10x+x^2) \right]$

2) meson-cloud model
 [Navarra et al '96, '98;
 Melnitchouk,Steffens,Thomas '97,'99]

 $c(x) = Ax^{1.897}(1-x)^{6.095}$ $\bar{c}(x) = \bar{A}x^{2.511}(1-x)^{4.929}$

3) phenomenological "sea-like"

 $c(x) = \bar{c}(x) \propto \bar{d}(x) + \bar{u}(x)$

Indications from global fits

[Pumplin, Lai, Tung, PRD75(07)]

- All models allow IC = 0-3% intrinsic charm
 - Evolution redistributes IC to lower x, but large-x peak persists
 - sea-like spread out over x

Experimental evidence - D0

The provided excess of γ + charm jets compared CTEQ6.6 [D0, PRL102(09)]

$g + Q \rightarrow \gamma/Z + Q$ $q + \bar{q} \rightarrow \gamma/Z + g \rightarrow \gamma/Z + Q\bar{Q}$

Phenomenological implications

- SM and beyond at **Tevatron and LHC**
 - Higgs and single top production sensitive to heavy quarks
 - → Novel Higgs production mechanisms at large $x_F \approx 0.7-0.9$ [Brodsky et al.

W⁻ production at the LHC

PRD73(06), NPB907(09)]

How to measure - hadronic collisions

$\rightarrow \gamma/Z$ + charm jet

- \Rightarrow sensitive to $g + Q \rightarrow \gamma/Z + Q$ and $q + \bar{q} \rightarrow \gamma/Z + g \rightarrow \gamma/Z + Q\bar{Q}$
- $\Rightarrow y_{\gamma}y_{jet} > 0 \text{ and } y_{\gamma}y_{jet} < 0 \text{ sensitive to different } x_1, x_2$
- allows constraints on Q, Qbar, and gluons
- angular dependence to distinguish above sub-processes

Also,

- High $x_F \ pp \to J/\psi X$
- High $x_F \ pp \rightarrow J/\psi J/\psi X$
- High $x_F \ pp \to \Lambda_c X$
- High $x_F \ pp \to \Lambda_b X$
- High $x_F pp \rightarrow \Xi(ccd)X$ (SELEX)

PANDA Workshop Turin June 17, 2009 NovelAnti-Proton QCD Physics

Stan Brodsky SLAC

accardi@jlab.org

APS meeting, 13 Feb 2010

35

How to measure - DIS

- HERA charm and bottom events
 - already included in the fits
 - \Rightarrow most data at small *x*, where $\gamma g \rightarrow c\bar{c}$ dominates over $\gamma c \rightarrow c X$
 - ✤ needs larger x
- $= F_L / F_2 ratio [Ivanov, NPB814(09)]$
- JLAB 6/12
 - Ideally placed across the charm threshold
 - → D+ vs. D- sensitive to c/cbar asymetry
- ♦ EIC (LHeC ??)
 - jet measurements are possible
 - ➡ larger Q² range

Target and heavy-quark mass corrections

DIS in collinear factorization: [Accardi, Qiu JHEP '08]

$$F_{T,L}(x_B, Q^2, m_N) = \sum_f \int_{x_f^{min}}^{x_f^{max}} \frac{dx}{x} h_{T,L}^f\left(\frac{\xi_f}{x}, Q^2\right) \varphi_f(x, Q^2)$$

$$\begin{split} x_{f}^{min} &= \xi \frac{Q^{2} + (c-1)m_{f}^{2} + \Delta[m_{f}^{2}, -Q^{2}, cm_{f}^{2}]}{2Q^{2}} & \stackrel{m_{f} \to 0}{\longrightarrow} \xi & \stackrel{M_{N} \to 0}{\longrightarrow} x_{B} \\ x_{f}^{max} &= \xi \frac{Q^{2}/x_{B} + 3m_{f}^{2} + \Delta[m_{f}^{2}, -Q^{2}, Q^{2}(1/x_{B} - 1)]}{2Q^{2}} & \stackrel{m_{f} \to 0}{\longrightarrow} \xi/x_{B} & \stackrel{M_{N} \to 0}{\longrightarrow} 1 \\ \Delta[a, b, c] &= \sqrt{a^{2} + b^{2} + c^{2} - 2(ab + bc + ca)} & \xi = 2x_{B}/(1 + \sqrt{1 + 4x_{B}^{2}M_{N}^{2}/Q^{2}}) \\ \text{accardi@jlab.org} & \text{APS meeting, 13 Feb 2010} \end{split}$$

Conclusions

☆ Flavor separation at large x important

- to understand the nucleon structure
- for phenomenological applications
- ☆ but needs theoretical corrections
 - target/quark mass, HT, nuclear corrections, ...
- ጵ u, d quarks
 - CTEQ6X reveals d-quark suppression compared to CTEQ / MRST fits
 - Essential to control nuclear corrections, or use free nucleon target
- ★ Gluons: will be included in the CTEQ6X global fit
- ***** Intrinsic charm: interesting direction for the future

Why large x_B and low Q²?

- Large uncertainties in quark and gluon PDF at x > 0.4
- Precise PDF at large x are needed, e.g.,
 - 🔶 at LHC, Tevatron
 - 1) DGLAP evolution feeds large x, low Q^2 into lower x, large Q^2
 - 2) New physics as excess in large- p_T spectra \Leftrightarrow large x PDF
 - Example 2: 1996 CDF p_T excess

Why large x_B and low Q²?

- Large uncertainties in quark and gluon PDF at x > 0.5
- Precise PDF at large x are needed, e.g.,
 - 🔶 at LHC, Tevatron
 - 1) New physics as excess in large p_T spectra \Leftrightarrow large x PDF
 - 2) DGLAP evolution feeds large x, low Q^2 into lower x, large Q^2
 - non-perturbative nucleon structure
 - spin structure of the nucleon most spin at large-x, but also, e.g.,

 $\sigma(p\vec{p}\to\pi^0 X)\propto \Delta q(x_1)\Delta g(x_2)\hat{\sigma}^{qg\to qg}\otimes D_q^{\pi^0}(z)$

- Large uncertainties in quark and gluon PDF at x > 0.5
- Precise PDF at large x are needed, e.g.,
 - 🔶 at LHC, Tevatron
 - 1) New physics as excess in large p_T spectra \Leftrightarrow large x PDF
 - 2) DGLAP evolution feeds large x, low Q^2 into lower x, large Q^2
 - non-perturbative nucleon structure
 - spin structure at small x

 $\sigma(p\vec{p}\to\pi^0 X)\propto\Delta q(x_1)\Delta g(x_2)\hat{\sigma}^{qg\to qg}\otimes D_q^{\pi^0}(z)$

Target mass corrections

♦ Nachtmann variable: $\xi = \frac{2x_B}{1 + \sqrt{1 + 4x_B^2 m_N^2/Q^2}} < 1$ at $x_B = 1$

Standard Georgi-Politzer (OPE)
 [Georgi, Politzer 1976; see review by Schienbein et al. 2007]

→ leads to non-zero structure functions at $x_B > 1$ (!)

Collinear factorization [Accardi, Qiu, JHEP 2008; Accardi, Melnitchouk 2008] Structure fns as convolutions of parton level structure fns and PDF

$$F_{T,L}(x_B, Q^2, m_N) = \sum_f \int_{\xi} \frac{\xi}{x_B} \frac{dx}{x} h_{T,L}^f\left(\frac{\xi}{x}, Q^2\right) \varphi_f(x, Q^2)$$

respects kinematic boundaries

• ξ -scaling, uses $x_{\max} = 1$ [Aivazis et al '94; Kretzer, Reno '02]

$$F_{T,L}^{nv}(x_B, Q^2, m_N) \equiv F_T^{(0)}(\xi, Q^2)$$

→ leads to non-zero structure functions at $x_B > 1$ (!) accardi@jlab.org APS meeting, 13 Feb 2010

"Higher-Twists" parametrization

• Parametrize by a multiplicative factor:

$$F_2(data) = F_2(TMC) \times \left(1 + \frac{C(x_B)}{Q^2}\right)$$

$$C(x_B) = a x^b \left(1 + c x\right)$$

parametrization is sufficiently flexible to give good fits to data

 \Rightarrow c parameter allows negative HT at small x_B

Important: $C(x_B)$ includes

dynamical higher-twists (parton correlations)

- all uncontrolled power corrections, e.g.,
 - $\sqrt{1}$ TMC model uncertainty, Jet Mass Corrections
 - $\sqrt{}$ NNLO corrections (power-like at small *Q*)

with

Effects of corrections on reference fit

- Apply the theoretical corrections one at a time
- 2 important lessons:
 - cut0 removes TMC+HT (as desired)
 - nuclear corrections are large starting from x > 0.5 !! ("safe cuts" aren't safe everywhere)

Stability of the d-quark fit

Relatively stable against kinematic cuts, but

- the d-quark suppression is lessened by the less restrictive cuts
- \Rightarrow effect still sizable at x=0.5–0.7 in the nominal range of validity of cut0

TMC vs HT

Extracted twist-2 PDF much less sensitive to choice of TMC

- ✤ fitted HT function compensates the TMC
- except when no TMC is included

Inclusion of TMC allow for economical HT parametrization (3 params)

TMC vs HT

Extracted higher-twist term depends on the type of TMC used

 \Rightarrow $Q^2 > 1.69 \text{ GeV}^2$ and $W^2 > 3 \text{ GeV}^2$ (referred to as "cut03")

→ lower cuts \Rightarrow x_B < 0.85 compared to x_B < 0.7 in CTEQ/MRST

➡ No evidence for negative HT

accardi@jlab.org

APS meeting, 13 Feb 2010

Off-shell corrections

1.5% on $F_2^d \Rightarrow 40\%$ on *d*-quark !!!

d-quark is strongly correlated to choice of Off-Shell correction ! \Rightarrow on-shell or mild off-shell correction \Rightarrow d-quark suppression might as well be enhanced...

Need to constrain the models ! - see later

Experimental uncertainties: PDF errors

- > PDF errors at large x are reduced by lowering the cuts
 - Note: these are exp. errors propagated in the fit
 - nuclear correction uncertainty for d-quarks likely larger than this!

Quasi-free nucleon targets

BONUS and E94-102 experiments at JLab

DIS on deuterium with tagged proton

- tagged proton momentum is measured
- neutron off-shellness can be reconstructed

Study the <u>off-shell dependence</u> of F₂(n) and quark PDFs

 $q \equiv q_D(x, Q^2, p^2)$

<u>Extrapolate</u> to a free neutron target $p^2 \rightarrow M_n^2$

- Strong Q² dependence of nuclear smearing
 - \Rightarrow use fixed x_{B} data up to larger Q^{2}
 - \rightarrow needs resonance region \Rightarrow quark-hadron duality
 - off-shell corrections can't be constrained

accardi@jlab.org