Overview of Experiment E05-115 at JLAB

Spectroscopic Investigation of Lambda Hypernuclei in the Wide Mass Region by the Reaction (e,e'K⁺)

Hampton University Chunhua Chen

Outline

- Introduction
- Exp. Setup and Improvements
- **Data Summary**

Λ hypernuclear spectroscopy via (e,e'K⁺)

Merits of (e,e'K+) experiment

- Large momentum transfer
- \rightarrow Excitation of deeply-bound state
- \bigcirc p to Λ reaction \rightarrow Mirror or Neutron-rich hypernuclei
- © Spin-flip/non-flip production
- ☺ High Energy Resolution due to CEBAF beam's quality

Previous (e,e'K⁺) experiments in JLab-HallC <u>2000</u> 1st Experiment : ¹² B

 \odot First successful Λ hypernuclear spectroscopy via (e,e'K⁺) reaction

Limited energy resolution because of using existing Spectrometer on K⁺ side(SOS)
A lot of backgrounds on e' side (0° tagging)

E89-009 ¹²_ΛΒ 440h x 0.66μΑ

Previous (e,e'K⁺) experiments in JLab-HallC 2000 1st Experiment : ¹² B

 \odot First successful Λ hypernuclear spectroscopy via $(e,e'K^+)$ reaction

☺ Limited energy resolution because of using

existing Spectrometer on K⁺ side(SOS) (a) A lot of backgrounds on e' side (0 degree tagging)

2005 2nd Experiment : ⁷ He ¹² B, ²⁸ Al

© Newly-constructed HKS for K⁺ side

E89-009 ¹²^AB 440h x 0.66µA

Previous (e,e'K⁺) experiments in JLab-HallC 2000 1st Experiment : ¹² B

\odot First successful Λ hypernuclear spectroscopy via (e,e'K⁺) reaction

➢ Limited energy resolution because of using existing Spectrometer on K⁺ side(SOS)
 ⊗A lot of backgrounds on e' side (0 degree tagging)
 <u>2005</u> 2nd Experiment : ⁷_AHe ¹²_AB, ²⁸_AAI

Newly-constructed HKS for K⁺ side
Apply "Tilt Method" for e' side

Previous (e,e'K⁺) experiments in JLab-HallC

2000 1st Experiment : ${}^{12}_{\Lambda}B$

 \odot First successful Λ hypernuclear spectroscopy via (e,e'K⁺) reaction

Existing Spectrometer on K⁺ side(SOS) A lot of backgrounds on e' side (0 degree tagging) 2005 2nd Experiment : ⁷ He ¹² B, ²⁸ Al

Newly-constructed HKS for K⁺ side
Apply "Tilt Method" for e' side

	Beam	Target	e' Rate
1 st Exp.	0.67μΑ	¹² C, 22 mg/cm ²	200 MHz
2 nd Exp.	30μΑ	¹² C, 100 mg/cm ²	1 MHz

E89-009 ¹²ΛΒ 440h x 0.66μΑ

^{1/40000} Background per Luminosity

E05-115

The 3rd Generation (e,e'K⁺) Hypernuclear Spectroscopy Aug. ~ Oct. 2009

Medium - heavy hypernuclear spectroscopy

⁵²Cr(e,e'K⁺) ⁵²_AV

- Λ hyperon bound in the mean field
- quark picture vs. conventional picture
- Light Λ hypernuclear spectroscopy
 - ΛN interaction, *ls* coupling, Charge Symmetry Breaking
 - p shell hypernuclei ${}^{12}{}_{\Lambda}B$, ${}^{7}{}_{\Lambda}He$, ${}^{10}{}_{\Lambda}Be$, and ${}^{9}{}_{\Lambda}B$
 - □ Calibration by the elementary process $p(e,e'K^+)Aor \Sigma$: H₂O and CH₂

Application of newly developed HES (High-resolution Electron Spectrometer)

Momentum Acceptance

Momentum acceptance between K^+ and e' are decided Λ distribution to be diagonal.

Experimental Improvements

Experimental Improvement

Experimental Improvements Design Energy Resolution

Target	⁷ Li	¹⁰ B	¹² C	⁵² Cr	
HKS momentum(keV)	210	210	220	220	
HKS angle (keV)	100	70	60	10	
HES momentum (keV)	160	160	160	170	
HES angle (keV)	90	60	50	10	
Beam energy (keV)	≦160				
Target (100mg/cm ²)	≦100	≦110	≦110	≦90	
Overall (keV)	≦350	≦340	≦340	≦330	

HKS Detectors-Bucking Coil

Bucking coil is used to help to cancel external magnetic field that is along axis of PMTs of Cherenkov detectors

Data summary

Quasi-free Λ & expected g.s. yields

Target	Number of Quasi-Free Λ (observed)	Quasi-Free A Cross Section (assumed)	Hypernuclei (g.s) Cross Section (assumed)	Expected number of g.s
⁷ Li	6.4 x10 ⁴	1.0 μb/sr	21 nb/sr	1300
⁹ Be	4.5 x10 ⁴	1.2 μb/sr	4 nb/sr	150
¹⁰ B	4.8 x10 ⁴	1.3 μb/sr	21 nb/sr	780
¹² C	3.4 x10 ⁴	1.5 μb/sr	112 nb/sr	2500
⁵² Cr	1.4 x10 ⁴	4.7 μb/sr	69 nb/sr	210

· Cross section of QF Λ is assumed as 0.2*A^{0.8} [µb/sr]

• # of g.s is calculated as (# of Λ)*(g.s cross section)/(QF Λ cross section)

Cross Section of ⁹Be is derived by Progress of Theoretical Physics Supplement No.117 (1994)
 pp. 151-175 (M. Sotona and S. Frullani) and other cross sections are summarized in E05-115
 experiment proposal (JLab PAC 28 and 33).

¹² B Spectrum

Summary and To do

- The third gen. exp. E05-115 (HKS-HES) successfully finished, both HES and HKS worked well.
- * To Do
 - > Tracking is going on, multiplicity comes from high luminosity should be taken care.
 - Timing, PID, Optics, Kinematics, and Missing Mass

