APS Division of Nuclear Physics, Oct. 23 – 26, 2013, Newport News

Gas Electron Multiplier Detectors for TREK at J-PARC

Bishoy H. Dongwi

Hampton University, Hampton, VA 23668

The Standard of Excellence, An Education for Life

*This work has been supported by DOE Early Career Award DE-SC0003884

Overview

- Introduction
- Physics Motivation
- Test Lepton Flavor Universality
- Search for Heavy Sterile neutrino (N)
- Search for Light U(1) gauge boson
- Implementation of Geant4 Framework
- Further Study

What Is Trek?

3

- Time Reversal violation Experiment with Kaons
- E36 uses partial TREK apparatus with stopped kaons to search for:
 - Lepton Flavor Universality
 - Heavy Sterile Neutrino
 - U(1) Boson

What Is Trek?

- Time Reversal violation Experiment with Kaons
- E36 uses partial TREK apparatus with stopped kaons to search for:
 - Lepton Flavor Universality
 - Heavy Sterile Neutrino
 - U(1) Boson

Test Lepton Flavor Universality

Lepton Flavor Universality

– Expressed as identical coupling constant e, μ and τ

$$\Gamma(K_{l2}) = g_l^2 (G^2/8\pi) f_{\kappa}^2 m_{\kappa} m_l^2 \{1 - (m_l^2/m_{\kappa}^2)\}^2$$

$$\Rightarrow g_e = g_{\mu}$$

- Branching ratio of Leptonic K⁺ decay

$$R_{K}^{SM} = \frac{\Gamma(K^{+} \to e^{+}\nu)}{\Gamma(K^{+} \to \mu^{+}\nu)} = \frac{m_{e}^{2}}{m_{\mu}^{2}} \left(\frac{m_{K}^{2} - m_{e}^{2}}{m_{K}^{2} - m_{\mu}^{2}}\right)^{2} (1 + \delta_{r})$$

- SM prediction is highly precise
 - R_KSM= (2.477±0.001) x 10⁻⁵

Lepton Flavor Universality cont...

- High sensitivity to LFV beyond SM
 - MSSM with charged-Higgs SUSY-LFV
 - Can strongly be enhanced by emission of τ neutrino (v_{τ})

$$R_{K}^{LFV} = R_{K}^{SM} \left(1 + \frac{m_{K}^{4}}{M_{H^{+}}^{4}} \cdot \frac{m_{\tau}^{2}}{m_{e}^{2}} \Delta_{13}^{2} \tan^{6}\beta \right)$$

~R_{K}^{SM}(1\pm0.013)

J. Girrbach and U. Nierste, arXiv:1202.4906;

A. Masiero, P. Paradisi, and R. Petronzio, Phys. Rev. D 74, 011701 (2006); JHEP11, 042 (2008)

Current Experimental Precision (KLOE, NA62)

- $R_{K} = (2.488 \pm 0.010) \times 10^{-5}, \Delta R_{K} / R_{K} = 0.4\%$

Improve precision to 0.25% (0.20%stat.+0.15% sys.)

FIG. 1. Contribution to the effective $\bar{\nu}_{\tau} \ell_R H^+$ coupling.

Search For Heavy Sterile Neutrinos

- Two body decay $K^+ \rightarrow \mu^+ N$
- vMSM predicts this branching ratio to be up to 10⁻⁶
 - Accessible by using the TREK experimental apparatus
 - Narrow peak structure would be formed in the momentum spectrum
 - Sensitivity to branching ratio Br($K^+ \rightarrow \mu^+ N$) ~10⁻⁸
 - Main background from $K_{\mu3}$

Search for Dark Photon/U(1) Boson

- Full reconstruction of final state
 - Detection of all charges particles with good resolution
- Decay Chanel: $K^+ \rightarrow \mu^+ \nu e^+e^-$
- Search for narrow peak in (ee) invariant mass spectrum: V → e⁺e⁻
- Sensitivity: $Br(K^+ \rightarrow \mu^+ vV) \sim 10^{-8}$
- Background: $Br(K^+ \rightarrow \mu^+ \nu e^+e^-) \sim 2.5 \times 10^{-5}$

- Decay Chanel: $K^+ \rightarrow \pi^+ e^+e^-$
 - Search narrow peak in (ee) invariant mass spectrum: V → e⁺e⁻

 $K^+(u\overline{s})$

fĸ

- Sensitivity: $Br(K^+ \rightarrow \pi^+ V) \sim 10^{-8}$
- Background: Br(K⁺ $\rightarrow \pi^+ e^+e^-$) ~ 2.5 x 10-7

The TREK apparatus for E36

Geant4 Implementation Framework

11

- Target Bundle
- CsI(TI) barrel
- C1,C2,C3, C4
 Tracking elements
- PID detectors

Geant4 Implementation Framework

12

- Target Bundle
- CsI(TI) barrel
- C1,C2,C3, C4
 Tracking elements
- PID detectors

Further Study...

- Propagation and digitization of hits
 - Hit maps
 - Energy deposit
- Track reconstruction
 - Study of acceptance, resolution

Discrimination of $K_{e2}/K_{\mu 2}$ Discriminate between e/μ not only in momentum spectrum but also using time of flight and Aerogel Cherenkov