Proton Form Factor Ratio, $\mathbf{G}_{\mathbf{E}} / \mathrm{G}^{\mathrm{P}}{ }_{\mathbf{M}}$ From

Double Spin Asymmetries

Spin Asymmetries of the Nucleon Experiment (E07-003)

Outline

- Introduction
- Physics Motivation
- Detector Setup
- Elastic Kinematic
- Data Analysis
- Results \& Conclusion

Jefferson Lab

OThomas Jefferson National Accelerator Facility

Anusha Liyanage

DNP 2013
(October 24, 2013)

Form Factor Ratio Measurements

1. Rosenbluth separation method.

- Measure the electron - unpolarized proton elastic scattering cross section at fixed Q^{2} by varying the scattering angle, $\theta_{\text {e. }}$
- Strongly sensitive to the radiative corrections.

2. Polarization Transfer Technique.

- Measure the recoil proton polarization components from elastic scattering of polarized electron-unpolarized proton.
- Ratio insensitive to absolute polarization, analyzing power.
- Less sensitive to radiative correction.

3. Double-Spin Asymmetry.

- Measure the double asymmetry between even (++,--) and odd (,+--+) combinations of electron and proton polarization.
- Different systematic errors than Rosenbluth or proton recoil polarization methods.
- The sensitivity to the form factor ratio is similar to that of the Polarization Transfer Technique.

Detector Setup

- Used Dynamic Nuclear Polarization (DNP) polarized NH_{3} target.
- Used only perpendicular magnetic field configuration for the elastic data

Polarized Electron Beam: 4.7, 5.9 GeV
Polarized Proton Target: $\sim \perp, \|$

Electron Arm

Ammonia (NH_{3}) Polarized via DNP in 5T Magnetic Field
(80 and 180 deg)

- Average target polarization is $\sim 70 \%$
- Average beam polarization is $\sim 73 \%$

Elastic Kinematics

(From HMS Spectrometer)

Spectrometer mode	Coincidence	Coincidence	Single Arm
HMS Detects	Proton	Proton	Electron
E Beam GeV	4.72	5.89	5.89
$\mathrm{P}_{\text {HMS }}$ GeV/c	3.58	4.17	4.40
$\Theta_{\text {HMS }}$ $($ Deg $)$	22.30	22.00	15.40
Q 2 $(\mathrm{GeV} / \mathrm{c})^{2}$	5.17	6.26	2.06
Total Hours (h)	~ 40 $(\sim 44$ runs $)$	~ 155 $(\sim 135$ runs $)$	~ 12 $(\sim 15$ runs $)$
Elastic Events	~ 113	~ 1200	$\sim 5 \times 10^{4}$

Single-arm Data (Electrons in HMS)

$\vec{e}^{-} \vec{p} \longrightarrow e^{-} p$

By knowing,
the incoming beam energy, E, scattered electron energy, E^{\prime} and
the scattered electron angle, $\boldsymbol{\theta}$

$$
Q^{2}=4 E E^{\prime} \sin ^{2}\left(\frac{\theta}{2}\right)
$$

$$
W^{2}=M^{2}-Q^{2}+2 M\left(E-E^{\prime}\right)
$$

Elastic Event Selection

- Particle Identification (PID)

Used the Cherenkov and calorimeter cuts, \# of Cerenkov photoelectrons >2

$$
E_{\text {Cal }} / P>0.7
$$

$E_{C a l}{ }^{-}$Total measured shower energy of a chosen electron track by HMS
Calorimeter

- The Relative Momentum (δ)

$$
\delta=\left(P-P_{C}\right) / P_{C}
$$

P - Measured momentum in HMS
P_{c} - HMS central momentum

Extracted the Asymmetries

The raw asymmetry, A_{r}

$$
A_{r}=\frac{N^{+}-N^{-}}{N^{+}+N^{-}} \quad \Delta A_{r}=\frac{2 \sqrt{N^{+}} \sqrt{N^{-}}}{\left(N^{+}+N^{-}\right) \sqrt{\left(N^{+}+N^{-}\right)}}
$$

$$
\begin{aligned}
N^{+} / N^{-}= & \text {Charge and live time normalized } \\
& \text { counts for the }+/- \text { helicities } \\
\Delta A_{r}= & \text { Error on the raw asymmetry }
\end{aligned}
$$

Need dilution factor, f in order to determine the physics asymmetry, and $\mathrm{G}_{\mathrm{E}} / \mathrm{G}_{\mathrm{M}}{ }_{\mathrm{M}}\left(\right.$ at $\left.\mathrm{Q}^{2}=2.2(\mathrm{GeV} / \mathrm{c})^{2}\right)$

$$
A_{p}=\frac{A_{r}}{f P_{B} P_{T}}+N_{C}
$$

$P_{B} P_{T} \quad=$ Beam and target polarization
$N_{c} \quad=A$ correction term to eliminate the contribution from quasi-elastic scattering on polarized ${ }^{14} \mathrm{~N}$ under the elastic peak (negligible in SANE)

Use MC / DATA comparison for NH_{3} target to extract the dilution factor.....

Determination of the Dilution Factor

What is the Dilution Factor?
The dilution factor is the ratio of the yield from scattering off free protons(protons from H in NH_{3}) to that from the entire target (protons from N, H, He and Al)

The Physics Asymmetry

- The weighted average Ap of top and bottom targets were taken.
- The expected physics asymmetries from the known form factor ratio for each Q^{2} by Kellys form factor parameterization (J. J. Kelly, Phys. Rev. C70(6), 2004) are shown by dashed lines separately for the two δ regions.

NH_{3} top NH_{3} bottom

The constant physics asymmetry, Ap were read separately,

For each target type and
For two different δ regions.

(Electrons in BETA and Protons in HMS)

Definitions:

- X/Yclust - Measured X/Ypositions on BigCal
$X=$ horizontal /in-plane coordinate
$Y=$ vertical / out - of - plane coordinate

> By knowing
the energy of the polarized electron beam, E_{B} and the scattered proton angle, Θ_{p}

We can predict the

- X/Y coordinates , X_HMS, Y_HMS on the BigCal (Target Magnetic Field Corrected)

Elastic Event Selection

4.72 GeV data

5.89 GeV data

$P_{\text {HMS }}$ - Measured proton momentum by HMS
$P_{\text {cal }}$ - Calculated proton momentum.
$P_{\text {cent }}-H M S$ central momentum

- The relative momentum cut,

$$
-0.02 \leq \Delta_{P} \leq+0.02
$$

- The Elliptic cut,

$$
\left(\frac{\Delta X}{X_{\max }}\right)^{2}+\left(\frac{\Delta Y}{Y_{\max }}\right)^{2} \leq 1 \quad \begin{aligned}
& \text { Suppresses background } \\
& \text { most effectively }
\end{aligned}
$$

Here, $X(Y)_{\max }=$ The effective area cut, $10(7) \mathrm{cm}$

Determination of the Dilution Factor

- The background shape under the elastic peak was generated using carbon target.
- The simulated carbon yields are then normalized by the scaling factor calculated from data/MC yields for the region $0.03<\delta<0.08$.
- Data were taken using both top and bottom targets.
- Due to low statistics, an average dilution factor has calculated using an integration method.
- Integrals were taken only for the region $-0.02<\delta<0.02$.

Dilution Factor,

$$
F=\frac{\text { Yield }_{\text {Data }}-\text { Yield }_{M C(C)}}{\text { Yield }_{\text {Data }}}
$$

The Physics Asymmetry

- The weighted average Ap and their errors for the two beam energies, 5.895 GeV and 4.730 GeV are also shown.
- The expected physics asymmetries from the known form factor ratio for each Q^{2} by Kelly's form factor parameterization (J. J. Kelly, Phys. Rev. C70(6), 2004) for the two beam energies are shown by dashed lines.

- The beam - target asymmetry, A_{p}

$$
A_{P}=\frac{-b r \sin \theta^{*} \cos \phi^{*}-a \cos \theta^{*}}{r^{2}+c}
$$

Here, $r=G_{E} / G_{M}$
$a, b, c=$ kinematic factors
$\theta^{*}, \phi^{*}=$ pol. and azi.Angles between \vec{q} and \vec{S}
θ^{*} and ϕ^{*} are calculated from,

$$
\begin{aligned}
& \theta^{*}=\arccos \left(-\sin \theta_{q} \cos \phi_{e} \sin \beta+\cos \theta_{q} \cos \beta\right) \\
& \phi^{*}=-\arctan \left(\frac{\sin \phi_{e} \sin \beta}{\cos \theta_{q} \cos \phi_{e} \sin \beta+\sin \theta_{q} \cos \beta}\right)+180^{\circ}
\end{aligned}
$$

$\theta \mathrm{q}$ is the 4-momentum angle determined from data. β is the target magnetic field direction, 80° to the beam axis.
a, b, c are the kinematic factors determined from,

$$
\begin{aligned}
& a=2 \tau \tan \frac{\theta_{e}}{2} \sqrt{1+\tau+(1+\tau)^{2} \tan ^{2} \frac{\theta_{e}}{2}} \\
& b=2 \tan \frac{\theta_{e}}{2} \sqrt{\tau(1+\tau)} \\
& c=\tau+2 \tau(1+\tau) \tan ^{2} \frac{\theta_{e}}{2}
\end{aligned}
$$

- The $\mathrm{GP}_{\mathrm{E}} / \mathrm{G}^{\mathrm{p}}{ }_{\mathrm{M}}$ is extracted by,
$G^{G_{E}}=-\frac{b}{2 A_{p}} \sin \theta^{*} \cos \phi^{*}+\sqrt{\frac{b^{2}}{4 A_{p}^{2}} \sin ^{2} \theta^{*} \cos ^{2} \phi^{*}-\frac{a}{A_{P}} \cos \theta^{*}-c}$

$$
\Delta r=\Delta\left(\frac{G_{E}}{G_{M}}\right)=\left(\frac{\partial\left(G_{E} / G_{M}\right)}{\partial A_{p}}\right) \cdot \Delta A_{p}
$$

The systematic Errors

The total relative systematic uncertainty on $\mu_{\mathrm{P}} \mathrm{GP}_{\mathrm{E}} / \mathrm{G}_{\mathrm{M}}$ has been estimated as 5.44%

- Because of the higher error bar on the coincidence data point at $\mathrm{Q}^{2}=5.66(\mathrm{GeV} / \mathrm{c})^{2}$, the systematic uncertainty studies were not done.

$Q^{2}(\mathrm{GeV} / \mathrm{c})^{2}$	$\mu G_{E}^{p} / G_{M}^{p} \pm \Delta \mu G_{E}^{p} / G_{M(\text { stat })}^{p} \pm \Delta \mu G_{E}^{p} / G_{M(\text { syst })}^{p}$
2.06	$0.605 \pm 0.178 \pm 0.055$
5.66	0.672 ± 0.362

Only the statistical errors are shown in the plot.

Conclusion

- Measurement of the beam-target asymmetry in elastic electronproton scattering offers an independent technique of determining the $\mathrm{G}_{\mathrm{E}} / \mathrm{G}^{\mathrm{p}}{ }_{\mathrm{M}}$ ratio.
- This is an 'exploratory' measurement, as a by-product of the SANE experiment.
- The data point at $\mathrm{Q}^{2}=2.06(\mathrm{GeV} / \mathrm{c})^{2}$ is very consistent with the recoil polarization data.
- The weighted average data point of the coincidence data at $\mathrm{Q}^{2}=5.66(\mathrm{GeV} / \mathrm{c})^{2}$ has large error due to the lack of elastic events.
- Dedicated precision experiment feasible.
- Publication is underway!

SANE Collaborators:

Argonne National Laboratory, Christopher Newport U., Florida International U.,
Hampton U., Thomas Jefferson National Accelerator Facility, Mississippi State U., North Carolina A\&T State U., Norfolk S. U., Ohio U., Institute for High Energy Physics, U. of Regina, Rensselaer Polytechnic I., Rutgers U., Seoul National U., State University at New Orleans ,Temple U., Tohoku U., U. of New Hampshire, U. of Virginia, College of William and Mary, Xavier University of Louisiana, Yerevan Physics Inst.

Spokespersons: S. Choi (Seoul), M. Jones (TJNAF), Z-E. Meziani (Temple), O. A. Rondon (UVA)

	Single Arm		Coincidence	
	$-8 \%<\delta<10 \%$	$10 \%<\delta<12 \%$		
$E(\mathrm{GeV})$	5.895	5.895	5.893	4.725
$\theta_{q}(\mathrm{Deg})$	44.38	46.50	22.23	22.60
$\phi_{q}(\mathrm{Deg})$	171.80	172.20	188.40	190.90
$\theta_{e}(\mathrm{Deg})$	15.45	14.92	37.08	43.52
$\phi_{e}(\mathrm{Deg})$	351.80	352.10	8.40	10.95
$Q^{2}(\mathrm{GeV} / \mathrm{c})^{2}$	2.20	1.91	6.19	5.14
$\theta^{*}(\mathrm{Deg})$	36.31	34.20	101.90	102.10
$\phi^{*}(\mathrm{Deg})$	193.72	193.94	8.40	11.01
$A_{p} \pm \Delta A_{p}$	-0.216 ± 0.018	-0.160 ± 0.027	-0.006 ± 0.077	0.184 ± 0.136
$\mu r \pm \Delta(\mu r)$	0.483 ± 0.211	0.872 ± 0.329	0.937 ± 0.428	-0.052 ± 0.678
predicted μr	0.73	0.78	0.305	0.38
predicted A_{p}	-0.186	-0.171	0.107	0.097

Where, μ - Magnetic Moment of the Proton $=2.79$

The systematic Errors

- The systematic Error is dominated by the target polarization.
- The final relative systematic uncertainty has been obtained by summing all the individual contributions quadratically.

The total relative systematic uncertainty

Measurement	Error	$\Delta \mu G_{E} / G_{M} / \mu G_{E} / G_{M}(\%)$
$E(\mathrm{GeV})$	0.003	0.07
$E^{\prime}(\mathrm{GeV})$	0.004	0.13
$\theta_{e}(\mathrm{mrad})$	0.5	0.54
$\theta^{*}(\mathrm{mrad})$	1.22	0.54
$\phi^{*}(\mathrm{mrad})$	0.3	0.01
$P_{T} \%$	5.0	5.0
$P_{B} \%$	1.5	1.5
Packing Fraction, $p f \%$	5	1.34
Total		9.13

The resulting form factor ratio is obtained by,
Extrapolating both measurements to average \mathbf{Q}^{2} using Kelly's parameterization and
Taking the weighted average.

$Q^{2}(\mathrm{GeV} / \mathrm{c})^{2}$	$\mu G_{E}^{p} / G_{M}^{p} \pm \Delta \mu G_{E}^{p} / G_{M(\text { stat })}^{p} \pm \Delta \mu G_{E}^{p} / G_{M(\text { syst })}^{p}$
2.06	$0.605 \pm 0.18 \pm 0.055$
5.66	0.672 ± 0.362

Nucleon Elastic Form Factors

- Defined in context of single-photon exchange.
- Describe how much the nucleus deviates from a point like particle.
- Describe the internal structure of the nucleons.
- Provide the information on the spatial distribution of electric charge (by electric form factor, G_{E}) and magnetic moment (by magnetic form factor, G_{M}) within the proton.
- Can be determined from elastic electron-proton scattering.
- They are functions of the four-momentum transfer squared, Q^{2}

$$
\begin{aligned}
& \text { At low }\left|q^{2}\right| \\
& \qquad \begin{array}{l}
G_{E}\left(q^{2}\right) \approx G_{E}\left(\vec{q}^{2}\right)=\int e^{i \vec{q} \cdot \vec{r}} \rho(\vec{r}) d^{3} \vec{r} \\
\quad G_{M}\left(q^{2}\right) \approx G_{M}\left(\vec{q}^{2}\right)=\int e^{i \vec{q} \cdot \vec{r}} \mu(\vec{r}) d^{3} \vec{r}
\end{array}
\end{aligned}
$$

Fourier transforms of the charge, $\rho(r)$ and magnetic moment, $\mu(r)$ distributions in Breit Frame.

The four-momentum transfer squared,

$$
\begin{aligned}
Q^{2}=-q^{2} & =4 E_{1} E_{3} \sin ^{2}\left(\frac{\theta}{2}\right) \\
E_{1}-E_{3} & =Q^{2} / 2 M
\end{aligned}
$$

$$
\left[\begin{array}{l}
\operatorname{At} q^{2}=0 \\
G_{E}^{p}(0)=\int \rho(\vec{r}) d^{3} \vec{r}=1 \\
G_{M}^{p}(0)=\int \mu(\vec{r}) d^{3} \vec{r}=\mu_{P}=+2.79
\end{array}\right\}
$$

Detector Setup/Polarized Target

- $\mathrm{C}, \mathrm{CH}_{2}$ and NH_{3}
- Dynamic Nuclear Polarization (DNP) polarized the protons in the NH_{3} target up to 90% at 1 K Temperature
5 T Magnetic Field
- Temperature is maintained by immersing the entire target in the liquid He bath
- Used microwaves to excite spin flip

Polarized Electron Beam: 4.7, 5.9 GeV
Polarized Proton Target: $\sim \perp$, $\|$

Electron Arm transitions ($55 \mathrm{GHz}-165 \mathrm{GHz}$)

- Polarization measured using NMR coils

- Used only perpendicular magnetic field configuration for the elastic data
- Average target polarization is $\sim 70 \%$
- Average beam polarization is $\sim 73 \%$

Extracted the Asymmetries

The raw asymmetry, A_{r}

$$
\begin{gathered}
A_{r}=\frac{N^{+}-N^{-}}{N^{+}+N^{-}} \Delta A_{r}=\frac{2 \sqrt{N^{+}} \sqrt{N^{-}}}{\left(N^{+}+N^{-}\right) \sqrt{\left(N^{+}+N^{-}\right)}} \\
-8 \%<\frac{\delta p}{p}<10 \%
\end{gathered}
$$

$N^{+} / N^{-}=$Charge and live time normalized counts for the $+/$ - helicities
$\Delta A_{r}=$ Error on the raw asymmetry

$$
10 \%<\frac{\delta p}{p}<12 \%
$$

Proton Radius Puzzle

Accurate knowledge of G_{E} at low Q^{2} is important to determine the proton charge radius.

$$
\text { At low } \mathrm{Q}^{2}, \quad\left(\begin{array}{rl}
G_{E}\left(\mathbf{q}^{2}\right) & =\int_{0}^{\infty} \rho(r) r^{2} d r \int_{0}^{\pi} \sin \theta d \theta\left(1+i|\mathbf{q}| r \cos \theta-\frac{1}{2} \mathbf{q}^{2} r^{2} \cos ^{2} \theta+\ldots\right) \\
G_{E}\left(\mathbf{q}^{2}\right) & =1-\frac{1}{6} \mathbf{q}^{2} \int|\mathbf{x}|^{2} \rho(|\mathbf{x}|) d^{3} \mathbf{x}+\ldots \\
& =1-\frac{1}{6} \mathbf{q}^{2}\left\langle r^{2}\right\rangle+\ldots
\end{array}\right.
$$

In electron scattering, the root-mean-square radius, r is defined in terms of the slope of the electric form factor at $\mathrm{Q}^{2}=0$

$$
\left\langle r_{E}^{2}\right\rangle=-\left.6 \frac{d G_{E}^{p}\left(Q^{2}\right)}{d Q^{2}}\right|_{Q^{2} \rightarrow 0}
$$

- 7σ discrepancy between muonic hydrogen Lamb shift and combined electronic Lamb shift and electron scattering
proton radius puzzle
One possible reason is the systematic uncertainty of GP_{E} measurement at low Q^{2}

Two-Photon Exchange

- Theoretically suggested to explain the dramatic discrepancy between Rosenbluth and recoil polarization technique.
- Both Rosenbluth method and the polarization transfer technique account for soft TPE correction, one soft and one hard photon exchange,
 but neither consider two hard photon exchange.
- TPE amplitude has been calculated theoretically.

- TPE has an ε dependence that has the same sign as the G_{E} contribution to the cross section.
- This is large enough to effect the extra--cted value of G_{E}
- Therefore, the extracted $\mathrm{G}_{\mathrm{E}} / \mathrm{G}_{\mathrm{M}}$ for the Rosenbluth technique is reduced.
- TPE can explain form factor discrepancy.
- The effect of TPE amplitude on the polarization components is small, though the size of the contribution change with ε.

σ_{r} is the reduced cross section

Beam Position Offsets

- Generated carbon and added Al come from target end caps and 4 K shields.
- Calculated an MC scale factor using the data/MC luminosity ratio for each target type.
- Added all targets together by weighting with the above MC scale factors.

- Adjust acceptance edges in Y target and Y^{\prime} target from adjusting the horizontal beam position, Xsrast.
- Adjust acceptance edge X' target from adjusting the vertical beam position, Ysrast.

Drift Chamber Efficiency

$$
D C_{X_{-} \text {paddle }}=\frac{\left(N_{c e r}>0.5\right) \cdot A N D \cdot(0.7<\beta<1.3) \cdot A N D \cdot\left(d c_{\text {track }}\right)}{\left(N_{c e r}>0.5\right) \cdot A N D \cdot(0.7<\beta<1.3)}
$$

$D C_{x_{-} \text {paddle }}$ DC tracking efficiency for each scintillator paddle X.
Ncer - HMS Cherenkov photo electrons.
$\beta \quad$ - Velocity of the particle calculated from the hodoscope information.
$\mathrm{dc}_{\text {track }}$. Good drift chamber track in the focal plane.

- DC tracking efficiency as a function of the scintillaor paddles was obtained.

By converting the paddle number to the vertical position

- DC tracking efficiency as a function of the focal plane, $X_{f p}$ was obtained.

$$
\text { Che }_{e f f}=\frac{\left(N_{c e r}>2.0\right)}{\left(N_{c e r}>0.0\right)}
$$

Cherenkov Efficiency

Detector Efficiency and Beam X andY offset Corrected C Montecarlo

The polynomial fits shown in the ratio of data/MC yields (right plots) were used to correct the MC yields for the carbon target.

Packing Fraction.

- Packing fraction is the actual amount of target material normalized the nominal amount expected for the target volume.
- Determined by taking the ratio of data to MC as a function of W .
- Need to determine the packing fractions for each of the NH3 loads used during the data taking.

Packing Fraction

- Packing Fraction, $p f$ is the actual amount of target material used.
- Determined by taking the ratio of volume taken by ammonia to the target cup volume.
- Estimated by comparing NH_{3} data to MC simulation.
- Need to determine the packing fractions for each of the NH_{3} loads used during the data taking.

- Determine the Packing Fraction

- Compared data to SIMC simulation for the NH3 target for 3 different Packing Fractions.
- Normalized MC_NH3 by 0.93 which is the factor that brings C data/MC ratio to 1 .

- Determined the packing fraction which brings Data/MC ratio to 1 from the plot.
- Packing Fraction=56.3 \%

Pf (\%)	50	60	70
Data/MC Ratio	1.00	0.88	0.78
Data/MC Ratio/0.93	1.075	0.95	0.84

Consistent with Hoyoung kang’s packing fraction determinations !!!!

Beam Position Offsets (Using SIMC)

- Used SIMC to generate elastic hydrogen.
- Adjust acceptance edge in "Y target" by changing the horizontal beam position, Xsrast.
- Adjust edge in " Δ_{P} " by changing the vertical beam position, Ysrast.
$P_{H M S}$ - Measured proton momentum by HMS
$P_{\text {Cal }}$ - Calculated proton momentum by knowing the beam energy, E and the proton angle, $\boldsymbol{\Theta}$
After using X and Y offsets

$$
Q^{2}=\frac{4 M^{2} E^{2} \cos ^{2} \theta}{M^{2}+2 M E+E^{2} \sin ^{2} \theta}
$$

Y target (cm)
$P_{\text {cent }}-H M S$ central momentum

Correcting for Correlations

Both single-arm and coincidence data shows some correlations.

In Single-arm electron data

In coincidence HMS data

Reconstructed out-of-plane angle, X ' target has a $1^{\text {st }}$ order dependence on the Y position at the target in the reconstruction matrix element

The vertical beam position deviation from the target center can have an effect on the reconstructed X^{\prime} target

- All correlations are related to the vertical position or angle.

The best explanation

- A correction of azimuthal angle due to the target magnetic field

The azimuthal angle correction

Analysis assumes the target magnetic field is cylindrical around the target which

Undergoes the same field integral, $\int B \cdot d l$

In reality,

- The target magnetic field might not be symmetric around the target.
- It might have some azimuthal (out-of-plane) angle dependence.
- Different $\int B \cdot d l$ with depending on the out-of-plane angle.
- Different deflections.

Solution:
Two new parameters, $\Delta \Phi_{0}$ and $d \Phi_{0}$ introduced so that,

$$
\begin{aligned}
& B_{\text {corr }}=\left(\theta_{\text {azim }}-\Delta \phi_{0}\right) \times d \phi_{0} \\
& B_{\text {scale }}=\frac{B_{0}}{B_{0}+a b s\left(B_{\text {corr }}\right)}
\end{aligned}
$$

$\Delta \Phi_{0}$ is the shift to the out-of-plane angle, $\theta_{\text {azim }}$
$d \Phi_{0}$ is the target magnetic field gradient which corrects the magnetic field strength at the new vertical angle, $\left(\theta_{\text {azim }}-\Delta \Phi_{0}\right)$
$B_{\text {corr }}$ is the magnetic field correction.
$B_{\text {scale }}$ is the new re-scaling factor.
The target magnetic field is modified as,

$$
\begin{aligned}
& \begin{array}{l}
B(1)=B(1)-B_{\text {corr }} \\
B(1)=B(1) \times B_{\text {scale }}
\end{array} \\
& \begin{array}{l}
B(3)=B(3)+B_{\text {corr }} \\
B(3)=B(3) \times B_{\text {scale }}
\end{array}
\end{aligned}
$$

Correcting for Correlations Cont...

- First make the same correlations on MC/SIMC by applying the correction only for the forward direction and then use the correction on data.
- Different corrections for different detector angles.

In Single-arm electron data

In coincidence HMS data

In coincidence BETA data

Correction on forward MC

Corrected data

Each target type contributions for the $10 \%<\boldsymbol{\delta}<12 \%$ (Top target)

The Dilution Factor

- We have taken data using both NH_{3} targets, called NH_{3} top and NH_{3} bottom.
- NH_{3} crystals are not uniformly filled in each targets which arise two different packing fractions and hence two different dilution factors.

Determine The Dilution Factor

- Estimate The Background
- Used the carbon target to estimate the shape of the background.

The relative D.F $=($ data-SIMC_C)_top/data_top

$$
=606-130 / 606=0.785
$$

Bottom Target

$=$ (data-SIMC_C)_bot/data_bot.
$=541-92 / 541$

- Just integrate over the $\delta p / p$ region of $+/-0.02$ for

$$
=0.830
$$ the top and bottom.

Elastic Events

Beam / Target Polarizations

SANE Beam Polarization Per Run

7210072200723007240072500726007270072800729007300073100

Conclusion

- Extraction of the $\mathrm{G}_{\mathrm{E}}^{\mathrm{E}} / \mathrm{G}^{\mathrm{p}}{ }_{\mathrm{M}}$ ratio from single-arm electron and coincidence data are shown.
- Measurement of the beam-target asymmetry in elastic electronproton scattering offers an independent technique of determining the $\mathrm{GP}_{\mathrm{E}} / \mathrm{G}_{\mathrm{M}}^{\mathrm{P}}$ ratio.
- This is an 'exploratory' measurement, as a by-product of the SANE experiment.
- The data point at $\mathrm{Q}^{2}=2.06(\mathrm{GeV} / \mathrm{c})^{2}$ is very consistent with the recoil polarization data.
- The weighted average data point of the coincidence data at $Q^{2}=5.66(\mathrm{GeV} / \mathrm{c})^{2}$ has large error due to the lack of elastic events.
- Dedicated precision experiment feasible.

