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Electron – Nucleon Scattering

• Inclusive cross-section for eN -> eX

• Can be expressed in terms of absorption of transverse

and longitudinal photons

• F1, F2 are structure functions

⇒ contain all information about the structure of the nucleon
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Gluon Distributions

• Gluon distribution sensitive to F2 through logarithmic evolution in Q2.

• Large uncertainties in gluon distribution for x > 0.3.

• Use FL instead to directly access the gluon distribution.   
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Moments of Structure Functions

• Moments of structure functions are their x-weighted integrals

⇒ allow Q2 dependence to be studied 

• Higher moments are weighted towards higher x-values

⇒ poorly determined

• At large x, cross-sections are small, so resulting extraction of gluon density 
becomes increasingly difficult

⇒ large uncertainties in gluon density

• Determination of structure function moments allows the transition of QCD 
from asymptotic to confinement scales to be studied
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• FL sensitive to gluon distribution at Next-to-Leading Order

• F
L

also sensitive to power corrections in Q2 

• Previous study by Ricco, Simula and Battaglieri (Nucl. Phys. B555, 306-334, 1999)

⇒ little data at low Q2 and high x

⇒ “... transverse data with better quality at x > 0.6 and Q2 < 10 (GeV/c)2 and more

precise, systematic determinations of the L/T cross-section ratios are still required ....”

• New cross section data available from JLab (at high x and low Q2 ) and HERA ( low x )

⇒ high precision measurements, from dedicated experiments

⇒ DATA driven analysis

This Analysis of Longitudinal Moments 
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Nachtmann Moments
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• Nachtmann moments, defined in terms of ξ, removes target mass corrections ~ M2/Q2

• Nachtmann moments from experiment are compared to Cornwall-Norton moments

from (leading twist, M=0) pQCD calculations

⇒ are higher twist components important?

⇒ is the gluon contribution in the leading twist calculation sufficient?
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Data Coverage in Q
2

and x
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• Only using L/T
separated data

cross section data

• Proton data only

• JLab data covers
region with higher x
and lower Q2

• for Q2 < 4, JLab

data covers ~50%
of x range

⇒
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Bin-center F
L 
Data in Q

2
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Analysis Method and Error Estimation
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• Use model calculations in empty bins

• Apply rescale factor to model based on

error weighted average of adjacent data 
points

• Integrate to generate moment contribution

• Use Monte Carlo method to estimate 
uncorrelated errors in data

• Generate pseudo-data via gaussian

randomisation of data within error bars

⇒ distribution of moment contributions

⇒ derive statistical error from standard 
deviation of moment distributions

• Model dependent error estimated via

analysis using different models ⇒ small
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Nachtmann Longitudinal M
L

Moments
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• Comparing data to global PDF fits 

• Higher twist appears to improve the fit 

• Observe missing strength in 

highest moment – largest weighting 

by high x

⇒ require larger gluon contribution

at large x?

⇒ higher twist effects?

• MSTW excludes high x data 

• CJ includes high x data, but not 

F
L

data directly (HT not available)

• ABKM includes higher twist terms 

but fits to a subset of the data 
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Nachtmann Longitudinal M
L

Moments
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• Comparing different orders of only the

MSTW calculation to data

• Higher order calculations in better

agreement with data – NNLO best

⇒ perhaps no HT contributions needed

• Highest moment curves all undershoot the

data

⇒ perhaps a larger gluon contribution at 

high x

• Need improved global fits to disentangle

different effects



12

Nachtmann M
2

Moments
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• Comparison with same PDF

calculations as for ML case

• Including higher twist appears 

more effective that higher orders
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Looking Ahead
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• High x neutron data available from JLab

 BoNuS experiment – Phys. Rev. Lett. 108, 142001 (2012)

• Available data to cover larger x range than previous evaluations

• Investigate any Q2 dependence of the sum rule  

• Opportunity to study Gottfried Sum Rule
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Summary and Outlook
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• First data driven extraction of longitudinal Nachtmann moments from data
published in Phys. Rev. Lett. 110, 152002 (2013)

• Error bars on the data drive larger errors in the extracted moments

⇒ more experimental data will improve the statistics and fill gaps in data!

⇒ JLab @ 12 GeV : higher precision data at moderate to high x

• Comparison with global PDF fits shows either higher twist terms becoming more 

important or a larger gluon contribution at large x or both!

• Intend to include F
L

data in the CJ fit to separate the gluon and higher twist 

contributions.

• Evaluating the M2 moments and comparing with PDF calculations

• With new JLab high x neutron data can study the Gottfried Sum Rule
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Extra Slides

Peter Monaghan DNP Fall Meeting 2013 24th October 2013



16Peter Monaghan DNP Fall Meeting 2013 24th October 2013

Longitudinal Structure Function, F
L

• Next-to-Leading Order (NLO), gluons 

contribute to both F2 and FL.  

• Obtain a gluon sum rule.  

• At leading twist FL is directly sensitive to gluons.  
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Similarly, bin-center F
2

Data in Q
2
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Measuring the Longitudinal Structure Function
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• Determine F
L

through a Rosenbluth separation of the cross-section

• Require data measured at fixed Q2 and x, at multiple ε points

⇒ need multiple beam energies and spectrometer settings

• F
L

~ 25% of cross-section for JLab kinematics σ
T

and σ
L

⇒ require < 2% uncertainty (pt-to-pt) in ε to extract F
L

to ~ 15%
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Moments Expansion and Twist

• In the Operator Product Expansion (OPE), moments can be expanded in 
powers of 1/Q2

matrix elements of operators with 

a specific “twist” t

t = dimension - spin
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Strong Coupling Constant, a
s

Expansion

• In QCD, as is a running coupling constant, dependent on Q2, number of quark 

flavors and mass scale L

Leading order (LO)

Next-to-Leading order (NLO)

Next-to-Next-to-Leading order (NNLO)
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Filling the Gaps in the Data
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• Some bins with no data

• Use model calculations in 

empty bins
DIS : W2 > 3.9 GeV2

Resonance : W2 < 3.9 GeV2

⇒ apply rescale factor based 

on the error weighted average of 
adjacent data points

⇒ for x<0.4, use all data points to  
determine the rescale factor

DIS model :  M. E. Christy, J. Blumlein and H. Bottcher (2012), hep-ph/1201.0576 ⇒ “TMC model”  

Resonance model :  Y. Liang, Ph. D. thesis, The American University (2003) ⇒ “Liang model”  
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Error Estimation using Monte Carlo Technique
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• Calculate moment by integrating data from x = 0.01 – pion threshold

• For each data point, generate a random number within its error bar  

⇒ generate a complete pseudo-dataset 

• Fill in gaps in the pseudo-dataset with the same models

• Integrate to generate moment for that pseudo-dataset

• Repeat 1000 times

⇒ obtain a distribution of moments from the pseudo-datasets

• Repeat process for F
2

• Obtain the mean and standard deviation of each distribution of moments

Define data point : 

Define error bar :
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Model Dependent Error Estimate
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• Other DIS and resonance region models available

⇒ DIS: R1990 and ALLM parameterisation
see references:  H. Abramowicz & A. Levy (1997), hep-ph/9712415

L. W. Whitlow, Ph. D. Thesis, Stanford University (1990), SLAC-0357

⇒ Resonance model: C-B fit
see reference: M. E. Christy & P. E. Bosted, Phys. Rev. C 81, 055213 (2010)

• Evaluate four possible combinations of models to fill gaps

i. TMC + Liang   ⇒ ideal case

ii. TMC + C-B

iii. R1990 + Liang

iv. R1990 + C-B

• Repeat analysis for each combination

• Define error as maximum difference 

from the ideal case


