сн.00001 Status of the OLYMPUS Experiment *

Michael Kohl **

Hampton University, Hampton, VA 23668 Jefferson Laboratory, Newport News, VA 23606

* Supported by DOE, NSF, BMBF, and DFG

** Supported by NSF grants PHY-0855473, 0959521, and 1207672, and by DOE Early Career Award DE-SC0003884

The OLYMPUS experiment

- The limit of one-photon exchange:
 - What is G^p_E (Q²) proton charge distribution?
 - What is the nature of lepton scattering?
- Description of OLYMPUS
- OLYMPUS running
- Status and timeline

OLYMPUS @ DESY

Thursday

- 08:30-08:42 CH.00001 :
- 08:42-08:54 CH.00002 :
- 08:54-09:06 CH.00003 :

09:06-09:18 CH.00004 :

- Status of the OLYMPUS experiment Michael Kohl (Hampton University)
- Status of the OLYMPUS Analysis **Brian Henderson (MIT)**
- Luminosity monitoring at OLYMPUS with forward-angle elastic scattering **Ozgur Ates (Hampton University)**
- **Radiative corrections for the OLYMPUS** experiment **Rebecca Russell (MIT)**

Friday

09:06-09:42 HA.00002 :

Investigating the charge of the proton Michael Kohl (Hampton University)

Proton form factor ratio

Lepton-proton elastic scattering

Interference term depends on lepton charge sign (C-odd)

$$\sigma_{e^{\pm}p} = |\mathcal{M}_{1\gamma}|^2 \pm 2\Re\{\mathcal{M}_{1\gamma}^{\dagger}\mathcal{M}_{2\gamma}\} + \cdots$$

e⁺/e⁻ ratio deviates from unity by two-photon contribution

$$\frac{\sigma_{e^+p}}{\sigma_{e^-p}} \approx 1 + 4 \frac{\Re\{\mathcal{M}_{1\gamma}^{\dagger}\mathcal{M}_{2\gamma}\}}{|\mathcal{M}_{1\gamma}|^2}$$

Empirical extraction of TPE amplitudes

J. Guttmann, N. Kivel, M. Meziane, and M. Vanderhaeghen, EPJA 47 (2011) 77

Projected results for OLYMPUS

Data from 1960's

Many theoretical predictions with little constraint

OLYMPUS: E= 2.0 GeV 0.6 < Q²/(GeV/c)² < 2.2 Acquire 3.6 fb⁻¹ for <1% projected uncertainties

epsilon

OLYMPUS @ DORIS/DESY

- Electrons/positrons (100mA) in 2.0–4.5 GeV storage ring DORIS at DESY, Hamburg, Germany
- Unpolarized internal hydrogen target (buffer system) $3x10^{15} \text{ at/cm}^2 @ 100 \text{ mA} \rightarrow \text{L} = 2x10^{33} / (\text{cm}^2\text{s})$
- Large acceptance detector for e-p in coincidence BLAST detector from MIT-Bates available
- Redundant monitoring of luminosity Pressure, temperature, flow, current measurements Small-angle elastic scattering at high epsilon / low Q² Symmetric Moller/Bhabha scattering
- Measure ratio of positron-proton to electron-proton unpolarized elastic scattering to 1% stat.+sys.

OLYMPUS kinematics at 2.0 GeV

<u>ÓL¥MPÙŞ</u>

The designed OLYMPUS detector

11

The realized OLYMPUS detector

Target and vacuum system

Designed and built in 2010 Very stable operation after repairs

13

Wire chambers and TOF scintillators

- 2x18 TOFs for PID, timing and trigger
- 2 WCs for PID and tracking (z,θ,φ,p)
- WC and TOF refurbished from BLAST WC re-wired at DESY TOF rewrapped, efficiency tested
- Installed in OLYMPUS Apr-May 2011
- Stable operation

Glasgow, Yerevan, UNH, ASU

Designed to fit into forward cone

Luminosity monitors: GEM + MWPC

- Forward elastic scattering of lepton at 12° in coincidence with proton in main detector
- Two GEM + MWPC telescopes with interleaved elements operated independently
- SiPM scintillators for triggering and timing
- Sub-percent (relative) luminosity measurement per hour at 2.0 GeV
- High redundancy alignment, efficiency Two independent groups (Hampton/INFN, PNPI)

15

Luminosity monitors: **GEM + MWPC**

Telescopes of three GEMs and MWPCs interleaved Mounted on wire chamber forward end plate Extensively tested at DESY test beam facility

17

- Symm. angle 1.3° @ 2.0 GeV
- Matrix of 3x3 PbF₂ crystals
- Tested at DESY and MAMI

Performance of DORIS

- DORIS top-up mode established
- Typically 65mA / 0.5 sccm

- Refills every ~2 minutes by few mA
- PETRA refills every 30 minutes

Timeline of OLYMPUS

- 2007 Letter of Intent
- 2008 Proposal
- 2009 Technical review
- 2010 Approval and funding
- Summer 2010 BLAST transfer
- Spring 2011 Target test run
- Summer 2011 Detector installed
- Fall 2011 Commissioning

First run Jan 30 – Feb 27, 2012 ... acquired < 0.3 fb-1

Summer 2012 Repairs and upgrades

Second run Oct 24, 2012 – Jan 2, 2013 ... acquired > 4.0 fb-1

- Spring 2013 Survey & field mapping
- Smooth performance of machine, target, detector
- Analysis underway see next 3 talks

The limits of OPE have been reached with available today's precision
Nucleon elastic form factors, particularly G_E^p under doubt

- The TPE hypothesis is suited to remove form factor discrepancy, however calculations of TPE are model-dependent
- Need both positron and electron beams for a definitive test of TPE OLYMPUS, CLAS, VEPP-3
- OLYMPUS prepared and commissioned at DESY/DORIS in 2010-2011
 - First running block in February 2012
 - Second running block October 24, 2012 January 2, 2013
 - Aiming to probe TPE to <1% up to $Q^2 \sim 2.2$ (GeV/c)² and $\varepsilon < 0.4$

OLYMPUS

(2009 - 2011)

(2011 - 2013)

(2013 -)

21

~50 physicists from 13 institutions in 6 countries Elected spokesmen / deputy: R. Milner / R. Beck M.K. / A. Winnebeck D. Hasell / U. Schneekloth

- Arizona State University: TOF support, particle identification, magnetic shielding
- DESY: Modifications to DORIS accelerator and beamline, toroid support, infrastructure, installation
- **Hampton University:** GEM luminosity monitor
- **INFN Bari:** GEM electronics
- INFN Ferrara: Target
- INFN Rome: GEM electronics
- MIT: BLAST spectrometer, wire chambers, tracking upgrade, target and vacuum system, transportation to DESY, simulations, slow control, analysis framework
- Petersburg Nuclear Physics Institute: MWPC luminosity monitor
- **University of Bonn:** Trigger, data acquisition, and online monitor
- **University of Mainz:** Trigger, DAQ, Symmetric Moller monitor
- University of Glasgow: TOF scintillators
- University of New Hampshire: TOF scintillators
- A. Alikhanyan National Laboratory (AANL), Yerevan: TOF scintillators

Backup

Comparison of e⁺/e⁻ experiments

	VEPP–3 Novosibirsk	OLYMPUS DESY	EG5 CLAS JLab
beam energy	3 fixed	1 fixed	wide spectrum
equality of e $^\pm$ beam energy	measured	measured	reconstructed
e^+/e^- swapping frequency	half-hour	8 hours	simultaneously
e^+/e^- lumi monitor	elastic low-Q ²	elastic low-Q ² , Möller/Bhabha	from simulation
energy of scattered e $^\pm$	EM-calorimeter	mag. analysis	mag. analysis
proton PID	$\Delta E/E$, TOF	mag. analysis, TOF	mag. analysis, TOF
e^+/e^- detector acceptance	identical	big difference	big difference
luminosity	$1.0 imes10^{32}$	$2.0 imes10^{33}$	2.5×10^{32}
beam type target type	storage ring internal H target	storage ring internal H target	secondary beam liquid H target
data taken	2009, 2011-12	2012	2011

Comparison of e⁺/e⁻ experiments

- Novosibirsk experiment ($E_{beam} = 1.6$, 1 and 0.6 GeV)
- CLAS @ JLab experiment ($E_{beam} = 0.5 \div 4 \text{ GeV}$)
- OLYMPUS @ DESY experiment (*E*_{beam} = 2 GeV)

