Recent Spectroscopic Investigation of Λ-Hypernuclei by the (e,e'K⁺) Reaction

-Analysis Status of E01-011 & E05-115-

Chunhua Chen & Yuncheng Han Hampton University DNP Oct. 25, 2013

Λ HYPERNUCLEAR SPECTROSCOPY VIA (e,e'K⁺)

Merits of the (e,e'K⁺) experiment

- © Large momentum transfer
- \rightarrow Excitation of deeply-bound state
- \bigcirc p to Λ reaction \rightarrow Mirror and Neutron-rich hypernuclei
- © Spin-flip/non-flip production
- High Energy Resolution due to CEBAF beam's quality

<u>2005(E01-011)</u> 2^{nd} Experiment : ${}^{7}_{\Lambda}$ He ${}^{12}_{\Lambda}$ B, ${}^{28}_{\Lambda}$ Al

- Newly-constructed HKS for K⁺ side
- Apply "Tilt Method" for e' side

2009(E05-115) 3rd Experiment: ${}^{12}{}_{\Lambda}B$, ${}^{7}{}_{\Lambda}He$, ${}^{10}{}_{\Lambda}Be$, ${}^{9}{}_{\Lambda}Li$ and ${}^{52}{}_{\Lambda}V$ ***** Beam Energy 1.8 \rightarrow 2.344 GeV ***** Brand-new e' spectrometer, HES **Calibration by the elementary process** $p(e,e'K^+)\Lambda$ or Σ : CH₂

INTRODUCTION

Physical Goals:

- To understand YN and YY interactions
- To explore and understand nuclear structure using Λ as a probe
 - Model the baryonic many body system
 - Study the role of Λ in the nuclear medium

• Shell Model with Λ -N Effective Potential ($p_N s_\Lambda$) for p-shell hypernuclei

 $V_{\Lambda N} = V_0(r) + V_{\sigma}(r) \boldsymbol{s}_N \cdot \boldsymbol{s}_{\Lambda} + V_{\Lambda}(r) \boldsymbol{L}_{N\Lambda} \cdot \boldsymbol{s}_{\Lambda} + V_N(r) \boldsymbol{L}_{N\Lambda} \cdot \boldsymbol{s}_N + V_T(r) \boldsymbol{S}_{12}$

Radial Integrals Coefficients of operators

 $V_{\Lambda\Sigma}$

Additional Contribution: Λ-Σ coupling

Our results with precise B_{Λ} are important in helping to determine these parameters as well as to explore the full spectroscopy with unseen core states.

Spectrometer System Calibration

Spectrometer system calibration: key to reach sub-MeV energy resolution
Common splitter : Separated single arm calibration is impossible

• Technique: 2-arm coupled calibration for both kinematics and optics

Using known masses of Λ , Σ^0 from CH₂ target and identified known hypernuclear bound states (${}^{12}_{\Lambda}B$ g.s.) for spectrometer calibration

Kinematics coverage

CALIBRATION DATA RESULT

E05-115

E01-011

_{λ2}B Missing Mass

Mean (MeV)	σ (KeV)
-11.41	265
-8.48	231
-5.54	210
-2.539	281
-1.164	240
-0.485	240
0.295	240
1.146	234
	Mean (MeV) -11.41 -8.48 -5.54 -2.539 -1.164 -0.485 0.295 1.146

Resolution:

 σ = ~240 keV or ~ 565 keV FWHM

⁷[,]He

PRL 110, 012502 (2013)

⁷_^He

peak	Mean(Me V)	σ(KeV)
1	-5.54	253
2	-4.01	379
3	-2.97	375

PRELIMINARY RESULT – ¹⁰ Be

վ₀Be Missing Mass

PRELIMINARY RESULT – ¹⁰ Be

Calculated by D.J. Millener

PRELIMINARY RESULT – ¹⁰ Be

Preliminary Status – ²⁸ Al

Preliminary Status – ²⁸ Al

SUMMARY

- Our systematic calibration is almost completed;
- The precise level structure of p-shell Λ hypernuclei (⁷_ΛHe, ¹⁰_ΛBe, and ¹²_ΛB) are evidential and encouraging;
- There is stronger evidence for sd-shell nuclei from spectroscopy of ¹²_AB and ²⁸_AAl;
- $\circ {}^{52}{}_{\Lambda}V$ spectroscopy is coming soon.

12B Missing Mass

peak		Mean(Me V)	σ(KeV)	
1		-11.41	265	
2		-8.48	231	
3		-5.54	210	
4	а	-1.164		
	b	-0.485	240	
	С	0.295		
	d	-2.539	281	
	е	1.146	172	
C. L. Martin	and the second second	and the second second	and the second	

#4 —	2+/1+ 1.146 2+/3+ -0.485 2+/1+ -1.164	$>>$ s ⁴ p ⁶ (sd) \otimes s _{Λ}	peak		Mean(Me V)	σ(KeV)
#3 2			-	L	-11.41	265
	<u> </u>	5.54	2		-8.48	231
			3		-5.54	210
#2 —	18.48			а	-1.164	
#1	-11.41	05115 2 ⁻ -11.356 Preliminary 1 ⁻ -11.535 simulation	4	b	-0.485	240
	E05115			С	0.295	
	Fitting			d	-2.539	281
				е	1.146	234

₁2B Missing Mass

