Beam Normal Single Spin Asymmetry in the N-to-Δ Transition

2013 Fall Meeting of the APS Division of Nuclear Physics Newport News, VA 26th October 2013

Beam Normal Single Spin Asymmetry

e

Beam Normal Single Spin Asymmetries (BNSSA) are generated when transversely polarized electrons (polarized perpendicular to their direction of motion) scatter from unpolarized targets.

Measured asymmetry

$$A_{M}(\phi) = \frac{\sigma \uparrow - \sigma \psi}{\sigma \uparrow + \sigma \psi} = -A_{N} \overrightarrow{P_{T}} \cdot \hat{n} = A_{N} P_{T} \sin(\phi - \phi_{0})$$

where
$$\hat{n} = \frac{\overrightarrow{k} \times \overrightarrow{k'}}{|\overrightarrow{k} \times \overrightarrow{k'}|}$$
, \overrightarrow{P}_{T} is transverse polarization and A_{N} is BNSSA

 A_N is parity conserving and has a small azimuthal dependence.

Beam Normal Single Spin Asymmetry

- A_N is proportional to two-photon exchange.
- Provides access to the imaginary part of the two-photon exchange amplitude.
- As part of a program of A_N background studies, we made the first measurement of A_N in the N-to- Δ transition using the Q-weak apparatus.

Q-weak Apparatus & Transverse Measurement

Q-weak Apparatus & Transverse Measurement

Q-weak Apparatus & Transverse Measurement

Data on 3 types of targets

- Liquid Hydrogen (primary target)
- Aluminum (to constrain target window background)
- Carbon (to help understand elastic and inelastic BNSSA from nuclei)

Two polarization configurations needed to check the symmetry of the main detector system.

- Vertical transverse polarization
- Horizontal transverse
 polarization

Subedi using Geant-III

Data on 3 types of targets

- Liquid Hydrogen (primary target)
- Aluminum (to constrain target window background)
- Carbon (to help understand elastic and inelastic BNSSA from nuclei)

Two polarization configurations needed to check the symmetry of the main detector system.

- Vertical transverse polarization
- Horizontal transverse polarization

As part of a program of A_N background studies, we made the first measurement of A_N in the N-to- Δ transition

Nuruzzaman DNP 2013

10/26/13

Data on 3 types of targets

- Liquid Hydrogen (primary target)
- Aluminum (to constrain target window background)
- Carbon (to help understand elastic and inelastic BNSSA from nuclei)

Two polarization configurations needed to check the symmetry of the main detector system.

- Vertical transverse polarization
- Horizontal transverse polarization

As part of a program of A_N background studies, we made the first measurement of A_N in the N-to- Δ transition

This talk will focus on hydrogen data in the N-to- Δ transition

Nuruzzaman DNP 2013

10/26/13

Data on 3 types of targets

- Liquid Hydrogen (primary target)
- Aluminum (to constrain target window background)
- Carbon (to help understand elastic and inelastic BNSSA from nuclei)

Two polarization configurations needed to check the symmetry of the main detector system.

- Vertical transverse polarization
- Horizontal transverse
 polarization

Data on both side of the inelastic peak were taken to improve simulation.

Raw Transverse Asymmetries (A_M ⁱⁿ) on LH_2

- ~ 9% statistical measurement of regressed transverse asymmetry in the N-to- Δ transition.
- Not corrected for backgrounds and polarization.
- ~ 90 degree phase offset seen between Vertical and Horizontal transverse fit (as expected).

HYDROGEN-CELL (transverse, 6700 A): Regression-on_5+1 MD PMTavg Asymmetries. FIT_H = $A_M \sin(\phi + \phi_0) + C$, FIT_V = $A_M \cos(\phi + \phi_0) + C$

10/26/13

Summary of Uncertainties for A_M^{in}

- The uncertainty is dominated by statistics.
- Next largest contribution comes from polarization.
- All other systematics are under control.

Uncertainty [ppm]

Uncertainty [ppm]

Beam Normal Single Spin Asymmetry

$$A_N = R_{total} \begin{bmatrix} \frac{A_M^{in}}{P} - \sum_{i=1}^4 A_{bi} f_{bi} \\ \frac{1 - \sum_{i=1}^4 f_{bi}}{1 - \sum_{i=1}^4 f_{bi}} \end{bmatrix}$$

$$f_{bi}$$
 = dilution factors

$$A_{N} = R_{RC}R_{Det}R_{Bin}R_{Q^{2}}\left[\frac{\frac{A_{M}^{in}}{P} - A_{b1}f_{b1} - A_{b2}f_{b2} - A_{b3}f_{b3} - A_{b4}f_{b4}}{1 - f_{b1} - f_{b2} - f_{b3} - f_{b4}}\right]$$

Background Asymmetries, Dilutions and Corrections:

Aluminum target windows:	A _{b1}	f _{b1}
Beamline scattering:	A _{b2}	f _{b2}
Other neutral bkg:	A _{b3}	f _{b3}
Elastics:	A _{b4}	f _{b4}

R_{RC} R_{Det} R_{Bin} R_{Q2} :

Multiplicative Corrections:

Radiative correction
Detector bias
Eective kinematics correction
Q ² calibration

$$A_{N} = R_{RC}R_{Det}R_{Bin}R_{Q^{2}} \left[\frac{\frac{A_{M}^{in}}{P} - A_{b1}f_{b1} - A_{b2}f_{b2} - A_{b3}f_{b3} - A_{b4}f_{b4}}{1 - f_{b1} - f_{b2} - f_{b3} - f_{b4}} \right]$$

Background Asymmetries, Dilutions and Corrections:

Aluminum target windows:	A _{b1}	f _{b1}
Beamline scattering:	A _{b2}	f _{b2}
Other neutral bkg:	A _{b3}	f _{b3}
Elastics:	A _{b4}	f _{b4}

Physics asymmetry is highly diluted by the elastic radiative tail. Careful study is ongoing.

10/26/13

Summary

- As part of Q-weak background studies, we made the first measurement of A_N in the N-to- Δ transition on H_2 .
- The uncertainty in the measured N-to-∆ transverse asymmetry is dominated by statistics. Other large uncertainties come from beam polarization and elastic dilution.

<u>To Do</u>:

• Quantify impact of these results on the parity violating N-to-∆ measurement and talk to theoretician for model calculation.

The Q-weak Collaboration

D.S. Armstrong, A. Asaturyan, T. Averett, J. Balewski, J. Beaufait, R.S. Beminiwattha, J. Benesch, F. Benmokhtar, J. Birchall, R.D. Carlini¹, J.C. Cornejo, S. Covrig, M.M. Dalton, C.A. Davis, W. Deconinck, J. Diefenbach, K. Dow, J.F. Dowd, J.A. Dunne, D. Dutta, W.S. Duvall, M. Elaasar, W.R. Falk, J.M. Finn¹, T. Forest, D. Gaskell, M.T.W. Gericke, J. Grames, V.M. Gray, K. Grimm, F. Guo, J.R. Hoskins, K. Johnston, D. Jones, M. Jones, R. Jones, M. Kargiantoulakis, P.M. King, E. Korkmaz, S. Kowalski¹, J. Leacock, J. Leckey, A.R. Lee, J.H. Lee, L. Lee, S. MacEwan, D. Mack, J.A. Magee, R. Mahurin, J. Mammei, J. Martin, M.J. McHugh, J. Mei, R. Michaels, A. Micherdzinska, K.E. Myers, A. Mkrtchyan, H. Mkrtchyan, A. Narayan, L.Z. Ndukum, V. Nelyubin, Nuruzzaman, W.T.H van Oers, A.K. Opper, S.A. Page¹, J. Pan, K. Paschke, S.K. Phillips, M.L. Pitt, M. Poelker, J.F. Rajotte, W.D. Ramsay, J. Roche, B. Sawatzky, T. Seva, M.H. Shabestari, R. Silwal, N. Simicevic, G.R. Smith², P. Solvignon, D.T. Spayde, A. Subedi, R. Subedi, R. Suleiman, V. Tadevosyan, W.A. Tobias, V. Tvaskis, B. Waidyawansa, P. Wang, S.P. Wells, S.A. Wood, S. Yang, R.D. Young, S. Zhamkochyan

¹Spokespersons ²Project Manager Grad Students

Institutions:

- ¹ University of Zagreb
- ² College of William and Mary
- ³ A. I. Alikhanyan National Science Laboratory
- ⁴ Massachusetts Institute of Technology
- ⁵ Thomas Jefferson National Accelerator Facility
- ⁶ Ohio University
- ⁷ Christopher Newport University
- ⁸ University of Manitoba,
- ⁹ University of Virginia
- ¹⁰ TRIUMF
- ¹¹ Hampton University
- ¹² Mississippi State University
- ¹³ Virginia Polytechnic Institute & State University
- ¹⁴ Southern University at New Orleans
- ¹⁵ Idaho State University
- ¹⁶ Louisiana Tech University
- ¹⁷ University of Connecticut
- ¹⁸ University of Northern British Columbia
- ¹⁹ University of Winnipeg
- ²⁰ George Washington University
- ²¹ University of New Hampshire
- ²² Hendrix College, Conway
- ²³ University of Adelaide

95 collaborators23 grad students10 post docs23 institutions

Backup Slides

$$A_{N} = R_{RC}R_{Det}R_{Bin}R_{Q^{2}}\left[\frac{\frac{A_{M}^{in}}{P} - A_{b1}f_{b1} - A_{b2}f_{b2} - A_{b3}f_{b3} - A_{b4}f_{b4}}{1 - f_{b1} - f_{b2} - f_{b3} - f_{b4}}\right]$$

Background Asymmetries, Dilutions and Corrections:

Aluminum target windows:	A _{b1}	f _{b1}
Beamline scattering:	A _{b2}	f _{b2}
Other neutral bkg:	A _{b3}	f _{b3}
Elastics:	A _{b4}	f _{b4}

Multiplicative Corrections:	
Radiative correction	R_{RC}
Detector bias	R_{Det}
Eective kinematics correction	R_{Bin}
Q ² calibration	R _{Q2} :

Summary of Uncertainties

- The uncertainty is dominated by statistics.
- Next largest contribution comes from polarization.
- All other systematics are under control.

$$A_{N} = R_{RC}R_{Det}R_{Bin}R_{Q^{2}}\left[\frac{\frac{A_{M}^{in}}{P} - A_{b1}f_{b1} - A_{b2}f_{b2} - A_{b3}f_{b3} - A_{b4}f_{b4}}{1 - f_{b1} - f_{b2} - f_{b3} - f_{b4}}\right]$$

Background Asymmetries, Dilutions and Corrections:

Aluminum target windows:	A _{b1}	= 8.432 ± 0.985	ppm	$f_{b1} = 0.033 \pm 0.002$	c _{b1} = 0.278	DocDB 1819
Beamline scattering:	A _{b2}	= 2.229 ± 6.843	ppm	$f_{b2} = 0.018 \pm 0.001$	c _{b2} = 0.040	Elog 782, 784
Other neutral bkg:	A_{b3}	$= 0.000 \pm 0.200$	ppm	$f_{b3} = 0.024 \pm 0.010$	c _{b3} = 0.000	Elog 714, DocDB 1549
Elastics:	A_{b4}	$= -5.305 \pm 0.166$	ppm	$f_{b4} = 0.701 \pm 0.035$	c _{b4} = -3.719	Elog 837, DocDB 1601
Pren						
Multiplicative Corrections:						
Radiative correction	R_{RC}	$= 1.000 \pm 0.000$				Place holder
Detector bias	R_{Det}	$t = 1.000 \pm 0.000$				Place holder
Eective kinematics correction	R_{Bin}	$= 1.000 \pm 0.000$				Place holder
•	_					

Q² calibration

 $R_{02} = 1.000 \pm 0.000$

Place holder

Extracted physics asymmetry $A_N = 41.05 \pm 7.90$ ppm.

title

Beam Normal Single Spin Asymmetries

2γ exchange:

title

Polarimetry

Two independent polarimeters were used to measure beam polarization:

- existing Hall C Møller polarimeter to measure absolute beam polarization to <1% at low beam currents.
- New Compton polarimeter is used to provide continuous, nondestructive measurement of beam polarization at nominal experiment beam current.

A typical measured polarization is shown in the figure.

Measured beam polarization during commissioning period using Moller polarimeter is ~ 89 ± 2 % (Compton results during commissioning was not available)

$$A_{PHYS}^{in} = R_{RC}R_{Det}R_{Bin}R_{Q^2} \left[\frac{\frac{A_M^{in}}{P} - A_{b1}f_{b1} - A_{b2}f_{b2} - A_{b3}f_{b3} - A_{b4}f_{b4}}{1 - f_{b1} - f_{b2} - f_{b3} - f_{b4}} \right]$$

Background Asymmetries, Dilutions and Corrections:

Aluminum target windows:	A _{b1}	f _{b1}	C _{b1}
Beamline scattering:	A _{b2}	f _{b2}	C _{b2}
Other neutral bkg:	A _{b3}	f _{b3}	C _{b3}
Elastics:	A _{b4}	f _{b4}	C _{b4}

$$A_{PHYS}^{in} = R_{RC}R_{Det}R_{Bin}R_{Q^2} \left[\frac{A_M^{in}}{P} - A_{b1}f_{b1} - A_{b2}f_{b2} - A_{b3}f_{b3} - A_{b4}f_{b4}}{1 - f_{b1} - f_{b2} - f_{b3} - f_{b4}} \right]$$

Background Asymmetries, Dilutions and Corrections:

Asymmetry from this analysis shown at the beginning of the talk Elastic dilution is used for Al. target windows correction – J. Magee. (Inelastic dilution for Al. target window is similar as elastic – K. Myers thesis p.122). Need an update.

$$A_{PHYS}^{in} = R_{RC}R_{Det}R_{Bin}R_{Q^2} \left[\frac{A_M^{in}}{P} - A_{b1}f_{b1} - A_{b2}f_{b2} - A_{b3}f_{b3} - A_{b4}f_{b4}}{1 - f_{b1} - f_{b2} - f_{b3} - f_{b4}} \right]$$

Background Asymmetries, Dilutions and Corrections:

Preliminary estimation using Mark. D and Kent's method for 25% paper. Assumed 10 times larger background for inelastic compare to elastic. Error bars are also blown up by factor of 10 to give a conservative estimate. Will update soon. Measured for inelastic beamline background – J. Leacock thesis p. 169)

$$A_{PHYS}^{in} = R_{RC}R_{Det}R_{Bin}R_{Q^2} \left[\frac{\frac{A_M^{in}}{P} - A_{b1}f_{b1} - A_{b2}f_{b2} - A_{b3}f_{b3} - A_{b4}f_{b4}}{1 - f_{b1} - f_{b2} - f_{b3} - f_{b4}} \right]$$

Background Asymmetries, Dilutions and Corrections:

For now just taken from 25% LH_2 paper as place holder. Will update. Should not be a significant correction. Using QTor transport channel analysis – Rakitha (Elog 714)

$$A_{PHYS}^{in} = R_{RC}R_{Det}R_{Bin}R_{Q^2} \left[\frac{\frac{A_M^{in}}{P} - A_{b1}f_{b1} - A_{b2}f_{b2} - A_{b3}f_{b3} - A_{b4}f_{b4}}{1 - f_{b1} - f_{b2} - f_{b3} - f_{b4}} \right]$$

Background Asymmetries, Dilutions and Corrections:

Elastic transverse asymmetry – Buddhini From geant-III simulation – Adesh Elog 837. Most important correction for this data set. This is a conservative estimate of dilution. Assumed \pm 5.0% error on dilution due to 10.0% discrepancy between simulation and data. Need to update.

10/26/13