Proton Form Factor Ratio, $\mathbf{G}_{\mathbf{E}} / \mathbf{G}^{\mathbf{P}}{ }_{\mathbf{M}}$ From

Double Spin Asymmetries

Spin Asymmetries of the Nucleon Experiment (E07-003)

- Introduction
- Physics Motivation
- Detector Setup

Polarized Target

- Elastic Kinematic
- Data Analysis
- Conclusion

Jefferson Lab

OThomas Jefferson National Accelerator Facility

Anusha Liyanage
$12^{\text {th }}$ Annual Graduate Research Symposium The College of William and Mary (March 22, 2013)

Nucleon Elastic Form Factors

- Defined in context of single-photon exchange.
- Describe how much the nucleus deviates from a point like particle.
- Describe the internal structure of the nucleons.
- Provide the information on the spatial distribution of electric charge (by electric form factor, G_{E}) and magnetic moment (by magnetic form factor, G_{M}) within the proton.
- Can be determined from elastic electron-proton scattering.
- They are functions of the four-momentum transfer squared, Q^{2}

$$
\begin{aligned}
& \text { At low }\left|q^{2}\right| \\
& \qquad \begin{array}{l}
G_{E}\left(q^{2}\right) \approx G_{E}\left(\vec{q}^{2}\right)=\int e^{i \vec{q} \cdot \vec{r}} \rho(\vec{r}) d^{3} \vec{r} \\
\quad G_{M}\left(q^{2}\right) \approx G_{M}\left(\vec{q}^{2}\right)=\int e^{i \vec{q} \cdot \vec{r}} \mu(\vec{r}) d^{3} \vec{r}
\end{array}
\end{aligned}
$$

Fourier transforms of the charge, $\rho(r)$ and magnetic moment, $\mu(r)$ distributions in Breit Frame.

The four-momentum transfer squared,

$$
Q^{2}=-q^{2}=4 E E^{\prime} \sin ^{2}\left(\frac{\Theta}{2}\right)
$$

At $q^{2}=0$

$$
\left.\begin{array}{rl}
G_{E}^{p}(0) & =\int \rho(\vec{r}) d^{3} \vec{r}=1 \\
G_{M}^{p}(0) & =\int \mu(\vec{r}) d^{3} \vec{r}=\mu_{P}=+2.79
\end{array}\right\}
$$

Form Factor Ratio Measurements

1. Rosenbluth separation method.

- Measure the electron - unpolarized proton elastic scattering cross section at fixed Q^{2} by varying the scattering angle, $\theta_{\text {e. }}$
- Strongly sensitive to the radiative corrections.

2. Polarization Transfer Technique.

- Measure the recoil proton polarization components from elastic scattering of polarized electron-unpolarized proton.
- Ratio insensitive to absolute polarization, analyzing power.
- Less sensitive to radiative correction.

3. Double-Spin Asymmetry.

- Measure the double asymmetry between even (++,--) and odd (,+--+) combinations of electron and proton polarization.
- Different systematic errors than Rosenbluth or proton recoil polarization methods.
- The sensitivity to the form factor ratio is similar to that of the Polarization Transfer Technique.

Detector Setup/Polarized Target

- $\mathrm{C}, \mathrm{CH}_{2}$ and NH_{3}
- Dynamic Nuclear Polarization (DNP) polarized the protons in the NH_{3} target up to 90% at 1 K Temperature
5 T Magnetic Field
- Temperature is maintained by immersing the entire target in the liquid He bath
- Used microwaves to excite spin flip

Polarized Electron Beam: 4.7, 5.9 GeV
Polarized Proton Target: $\sim \perp$, $\|$

Electron Arm transitions ($55 \mathrm{GHz}-165 \mathrm{GHz}$)

- Polarization measured using NMR coils

- Used only perpendicular magnetic field configuration for the elastic data
- Average target polarization is $\sim 70 \%$
- Average beam polarization is $\sim 73 \%$

Elastic Kinematics

(From HMS Spectrometer)

Spectrometer mode	Coincidence	Coincidence	Single Arm
HMS Detects	Proton	Proton	Electron
E Beam GeV	4.72	5.89	5.89
$\mathrm{P}_{\text {HMS }}$ GeV/c	3.58	4.17	4.40
$\Theta_{\text {HMS }}$ $($ Deg $)$	22.30	22.00	15.40
Q 2 $(\mathrm{GeV} / \mathrm{c})^{2}$	5.17	6.26	2.06
Total Hours (h)	~ 40 $(\sim 44$ runs $)$	~ 155 $(\sim 135$ runs $)$	~ 12 $(\sim 15$ runs $)$
Elastic Events	~ 113	~ 1200	$\sim 5 \times 10^{4}$

Data Analysis

Electrons in HMS

$$
\overrightarrow{e^{-}} \vec{p} \longrightarrow e^{-} p
$$

By knowing,
the incoming beam energy, E, scattered electron energy, E^{\prime} and
the scattered electron angle, $\boldsymbol{\theta}$

$$
Q^{2}=4 E E^{\prime} \sin ^{2}\left(\frac{\theta}{2}\right)
$$

$$
W^{2}=M^{2}-Q^{2}+2 M\left(E-E^{\prime}\right)
$$

Extract the electrons

The relative momentum deviation from the HMS central momentum,

P - Measured momentum in HMS
P_{c} - HMS central momentum
Used momentum acceptance cuts

$$
\begin{aligned}
& -8 \%<\frac{\delta p}{p}<10 \% \& \\
& 10 \%<\frac{\delta p}{p}<12 \%
\end{aligned}
$$

Together with,
Cherenkov and Calorimeter cuts, \# of Cerenkov photoelectrons >2

$$
E_{s h} / p>0.7
$$

$E_{s h}{ }^{-}$Total measured shower energy of a chosen electron track by HMS Calorimeter

Extracted the Asymmetries

The raw asymmetry, A_{r}

$$
\begin{gathered}
A_{r}=\frac{N^{+}-N^{-}}{N^{+}+N^{-}} \Delta A_{r}=\frac{2 \sqrt{N^{+}} \sqrt{N^{-}}}{\left(N^{+}+N^{-}\right) \sqrt{\left(N^{+}+N^{-}\right)}} \\
-8 \%<\frac{\delta p}{p}<10 \%
\end{gathered}
$$

$\mathrm{N}^{+} / \mathrm{N}^{-}=$Charge and live time normalized counts for the $+/$ - helicities
$\Delta A_{r}=$ Error on the raw asymmetry

$$
10 \%<\frac{\delta p}{p}<12 \%
$$

Extracted the Asymmetries

Need
 dilution factor, f
 in order to determine the physics asymmetry,

$$
A_{p}=\frac{A_{r}}{f P_{B} P_{T}}+N_{C}
$$

> and $G^{p}{ }_{E} / G^{p}{ }_{M}$ $\left(\right.$ at $\left.\mathrm{Q}^{2}=2.2(\mathrm{GeV} / \mathrm{c})^{2}\right)$
$P_{B} P_{T} \quad=$ Beam and target polarization
$N_{\mathrm{c}} \quad=A$ correction term to eliminate the contribution from quasi-elastic scattering on polarized ${ }^{14} N$ under the elastic peak (negligible in SANE)

Use MC/DATA comparison for NH_{3} target to extract the dilution factor.....

Determination of the Dilution Factor

What is the Dilution Factor?
The dilution factor is the ratio of the yield from scattering off free protons(protons from H in NH_{3}) to that from the entire target (protons from N, H, He and Al)

The Relative Dilution Factor

Each target type contributions

- The Physics Asymmetry

$-8 \%<\frac{\boldsymbol{\delta} p}{p}<10 \%$

$$
10 \%<\frac{\delta p}{p}<12 \%
$$

- The beam - target asymmetry, A_{p}

$$
A_{P}=\frac{-b r \sin \theta^{*} \cos \phi^{*}-a \cos \theta^{*}}{r^{2}+c}
$$

Here, $r=G_{E} / G_{M}$

$$
a, b, c=\text { kinematic factors }
$$

$$
\theta^{*}, \phi^{*}=\text { pol. and azi. Angles between } \vec{q} \text { and } \vec{S}
$$

$$
\frac{G_{E}}{G_{M}}=-\frac{b}{2 A_{p}} \sin \theta^{*} \cos \phi^{*}+\sqrt{\frac{b^{2}}{4 A_{p}^{2}} \sin ^{2} \theta^{*} \cos ^{2} \phi^{*}-\frac{a}{A_{P}} \cos \theta^{*}-c}
$$

- Error propagation from the experiment

From the HMS kinematics, $\mathrm{r}^{2} \ll$ c

$$
A_{P}=\frac{-b \sin \theta^{*} \cos \phi^{*} r}{c}-\frac{a \cos \theta^{*}}{c}
$$

$$
\Delta r=\Delta\left(\frac{G_{E}}{G_{M}}\right)=\left|\frac{c}{b \sin \theta^{*} \cos \varphi^{*}}\right| \Delta A_{p}
$$

$$
\Delta(\mu r)=\Delta\left(\mu \frac{G_{E}}{G_{M}}\right)
$$

Where , μ - Magnetic Moment of the Proton=2.79

(Electrons in BETA and Protons in HMS)

Definitions:

- X/Yclust - Measured X/Ypositions on BigCal
$X=$ horizontal /in-plane coordinate
$Y=$ vertical / out - of - plane coordinate

> By knowing
the energy of the polarized electron beam, E_{B} and the scattered proton angle, Θ_{p}

We can predict the

- X/Y coordinates , X_HMS, Y_HMS on the BigCal (Target Magnetic Field Corrected)

Elastic Kinematics
(From HMS Spectrometer)

Spectrometer mode	Coincidence	Coincidence	Single Arm
HMS Detects	Proton	Proton	Electron
E Beam GeV	4.72	5.89	5.89
$\mathrm{P}_{\text {HMS }}$ GeV/c	3.58	4.17	4.40
$\Theta_{\text {HMS }}$ $($ Deg $)$	22.30	22.00	15.40
Q (GeV/c)	5.17	6.26	2.06
Total Hours (h)	~ 40	~ 155	~ 12
$(\sim 44$ runs $)$	$(\sim 135$ runs $)$	$(\sim 15$ runs $)$	
e-p Events	~ 113	~ 1200	$\sim 5 \times 10^{4}$

Extract the electrons

Fractional momentum difference,

$$
\frac{\delta p}{p}=\frac{P_{\text {Hus }}-P_{\text {ctat }}}{P_{\text {ceat }}},
$$

$$
\begin{aligned}
& P_{C a l}=\sqrt{\left(v^{2}+2 M v\right)} \quad v=\frac{Q^{2}}{2 M} \\
& Q^{2}=\frac{4 M^{2} E^{2} \cos ^{2} \theta}{M^{2}+2 M E+E^{2} \sin ^{2} \theta}
\end{aligned}
$$

$P_{\text {HMS }}-$ Measured proton momentum by HMS
$P_{\text {cal }}$ - Calculated proton momentum.
$P_{\text {cent }}-H M S$ central momentum

Extract the Raw Asymmetries

Raw yields are normalized with

- Total Charge
- charge average $+/$ - life times

Need

 dilution factor, f in order to determine the physics asymmetry,$$
A_{p}=\frac{A_{r}}{f P_{B} P_{T}}+N_{C}
$$

and $G_{E}{ }_{E} / G^{p}{ }_{M}$

Extract the Physics Asymmetries

- Used the runs of beam polarization $>60 \%$ and $a b s($ target polarization) $>55 \%$
- Used the charge average target and beam polarizations.

Extract the Proton Form Factor Ratio, $G^{p}{ }_{F} / G^{p}$

Preliminary

\mathbf{Q}^{2} $(\mathrm{GeV} / \mathrm{c})^{2}$	2.06	5.72
$\mu \mathrm{G}_{\mathrm{E}} / \mathrm{G}_{\mathrm{M}}$	$0.620 \pm$ 0.157	$0.614 \pm$ 0.358

Conclusion

- Measurement of the beam-target asymmetry in elastic electronproton scattering offers an independent technique of determining the $\mathrm{G}_{\mathrm{E}} / \mathrm{GP}_{\mathrm{M}}$ ratio.
- This is an 'exploratory' measurement, as a by-product of the SANE experiment.
- Extraction of the $\mathrm{G}_{\mathrm{E}}^{\mathrm{E}} / \mathrm{G}_{\mathrm{M}}^{\mathrm{M}}$ ratio from single-arm electron and coincidence data are shown.
- The preliminary data point at $\mathrm{Q}^{2}=2.06(\mathrm{GeV} / \mathrm{c})^{2}$ is very consistent with the recoil polarization data.
- The preliminary weighted average data point of the coincidence data at $Q^{2}=5.72(\mathrm{GeV} / \mathrm{c})^{2}$ has large error due to the lack of elastic events.
- Systematic uncertainty estimation is underway.

SANE Collaborators:

Argonne National Laboratory, Christopher Newport U., Florida International U.,
Hampton U., Thomas Jefferson National Accelerator Facility, Mississippi State U., North Carolina A\&T State U., Norfolk S. U., Ohio U., Institute for High Energy Physics, U. of Regina, Rensselaer Polytechnic I., Rutgers U., Seoul National U., State University at New Orleans ,Temple U., Tohoku U., U. of New Hampshire, U. of Virginia, College of William and Mary, Xavier University of Louisiana, Yerevan Physics Inst.

Spokespersons: S. Choi (Seoul), M. Jones (TJNAF), Z-E. Meziani (Temple), O. A. Rondon (UVA)

Packing Fraction.

- Packing fraction is the actual amount of target material normalized the nominal amount expected for the target volume.
- Determined by taking the ratio of data to MC as a function of W .
- Need to determine the packing fractions for each of the NH3 loads used during the data taking.

- Determine the Packing Fraction

- Compared data to SIMC simulation for the NH3 target for 3 different Packing Fractions.
- Normalized MC_NH3 by 0.93 which is the factor that brings C data/MC ratio to 1 .

- Determined the packing fraction which brings Data/MC ratio to 1 from the plot.
- Packing Fraction=56.3 \%

Pf (\%)	50	60	70
Data/MC Ratio	1.00	0.88	0.78
Data/MC Ratio/0.93	1.075	0.95	0.84

Consistent with Hoyoung kang’s packing fraction determinations !!!!

$$
10 \%<\frac{\boldsymbol{\delta} p}{p}<12 \%
$$

Each target type contributions
(Top target)

- The relative Dilution Factor

The relative dilution factor for two different targets, top and bottom for two different delta regions, both NH3 targets, called NH3 top and NH3 bottom.

- NH3 crystals are not uniformly filled in each targets which arise two different packing fractions and hence two different dilution factors.

Determine The Dilution Factor

- Estimate The Background
- Used the carbon target to estimate the shape of the background.

The relative D.F $=($ data-SIMC_C)_top/data_top

$$
=606-130 / 606=0.785
$$

Bottom Target

$=$ (data-SIMC_C)_bot/data_bot.
$=541-92 / 541$

- Just integrate over the $\delta p / p$ region of $+/-0.02$ for
$=0.830$ the top and bottom.

Elastic Events

