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Abstract

We evaluate the amplitude for yy —~ ir~ir0 to two loops in chiral perturbation theory. The
three new counterterms which enter at this order in the low-energy expansion are estimated with
resonance saturation. We find that the cross section agrees rather well with the available data
and with dispersion theoretic calculations even substantially above threshold. Numerical results
for the Compton cross section and for the neutral pion polarizabilities are also given to two-loop
accuracy.

1. Introduction

The cross section for ‘yy —* ir0ir0 and for yy —* 1T+1T has been calculated some
time ago [1,2] in the framework of chiral perturbation theory (CHPT) [3—7] and
of dispersion relations. For charged pion-pair production, the chiral calculation [1] at
next-to-leading order is in good agreement with the Mark II data [81 in the low-energy
region. On the other hand, for yy —÷ ir0ir0, the one-loop prediction [1,2] disagrees with
the Crystal Ball data [9] and with dispersion theoretic calculations [10—16] even near
threshold.
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In the process yy —~ ir~ir, the leading contribution2 is generated by tree diagrams.
One has a control on higher-order corrections in this case, in the sense that it is
explicitly seen that the one-loop graphs do not modify the tree amplitude very strongly
near threshold [1]. Tree diagrams are absent for yy —÷ ir0ir0 which starts out with
one-loop graphs. It is the aim of this article to establish the region of validity of the
chiral representation of this process by evaluating the amplitude at two-loop order.

Is a next-to-leading order calculation sufficient in this case? If the corrections are
large, the reliability of the result is certainly doubtful. However, a glance at the data
shows that the corrections needed to bring CHPT and experiment into agreement are not
large — a 25—30% change in amplitude is sufficient. Corrections of this size are rather
normal in reactions where pions in an isospin zero S-wave state are present [19]. As
an example we mention the isospin zero S-wave ITIT scattering length, whose tree-level
value [20] receives a 25% correction from one-loop graphs [4]. Corrections of a similar
size are present in the scalar form factor of the pion [21].

The amplitude for yy —~ IT0ir°also describes Compton scattering on neutral pions by
analyticity and crossing. Do sizeable corrections in yy —+ ir0ir0 then also show up in
yir0 —* yir° ? Since there are no strongly interacting particles in the final state in this
case, one might be led to suspect that the one-loop amplitude is a good approximation
for this reaction. We find it interesting that this is not the case — the corrections to the
leading-order term are in fact very large in this channel.

The electromagnetic polarizabilities characterize aspects of the inner structure of
hadrons. With the two-loop expression for the amplitude at hand, it is straightforward to
evaluate the polarizabilities at next-to-leading order in the quark mass expansion. Renor-
malization group arguments show that this expansion contains logarithmic singularities
of the type M~In2 M~and M~-ln M

17., and an order of magnitude estimate reveals that
these contributions may easily be as large as the leading-order term, unless the relevant
Clebsch-Gordan coefficient is small. We find that the latter is the case.

Recently, a reformulation of CHPT has been given [22], where the effective la-
grangian includes into each order additional terms which in the standard CHPT (consid-
ered here) are relegated to higher orders. To all orders, the two perturbative schemes are
identical — in each finite order, they may, however, substantially differ. For an analysis of
the process ‘yy —* ir

0i~~in this generalized framework we refer the reader to Ref. [23].
The article is organized as follows. In sect. 2, we set up the notation. In sect. 3 we

describe the low-energy expansion in a general manner and outline the specific procedure
for the two-loop case in sects. 4 and 5. The low-energy constants which occur in the
amplitude for ~‘y—~ at two-loop order are determined in sect. 6. Sect. 7 contains
a discussion of the amplitude and of the cross section at two-loop order. The Compton
amplitude and the pion polarizabilities are described in sect. 8, whereas sect. 9 is devoted
to a comparison of the chiral expansion with the dispersive analysis of yy —~ ir0~~by
Donoghue and Holstein [13]. Finally, a summary and concluding remarks are presented
in sect. 10.

2 In this article, we denote the first nonvanishing contribution to any quantity by “the leading-order term”,
independently of whether it starts out at tree level or at higher order in the chiral expansion.
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2. Kinematics

The matrix element for pion production

y(q~)y(q~)—*IT°(pI)IT°(p2) (2.1)

is given by

(IT°(pi)IT°(p2)outI y(q~)y(q~)in)= i(2IT)4ô~(Pf — P~)TN, (2.2)

with

TN = e2E~E~V/.LP,

V~,=if dx e 1X+~2Y)(ITO(PI)ITQ(p
2)out I Tj~(x)j~(y)I 0). (2.3)

Here j~is the electromagnetic current, and a = e
2/4IT 1/137. The decomposition

of the correlator V~ into Lorentz invariant amplitudes reads with q~= = 0 (see
Appendix A)

V,~,=A(s, t, u)Ti,.~~+ B(s, t, u)T
21.~~+ C(s, t, u)T3,.~~+ D(s, t,u)T4,.LP

‘r _1
1 — —

T2~~=2sz1~4,— —

2v(q1~Ai,~— q2,~L1~),

T
3~~= ~

T4,Lp = s(qi,,A~— q2~i~)— v(qi,.~qip+ q2/Lq2p),

zl~=(pi P2),u.’ (2.4)

where

s= (qi + q~)
2, t = (pi — qi)2, u = (P2 — qi)2,

(2.5)

are the standard Mandelstam variables. The tensor ~ satisfies the Ward identities

(2.6)

The amplitudes A and B are analytic functions of the variables s, t and u, symmetric
under crossing (t, u) —* (u, t). The quantities C and D do not contribute to the process
considered here (gauge invariance).

It is useful to introduce in addition the helicity amplitudes

H~~=A+2(4M~—s)B,

= 8(M~ ~ B. (2.7)

The helicity components ~ and H~..correspond to photon helicity differences A =

0, 2, respectively. They have partial wave expansions involving even J ~eA,
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H~~= ~ h~(s)d~(cosO),
J=O,2,4...

~ h~(s)d~’0(cosO), (2.8)
J=2,4,6...

where 0 is the scattering angle in the center-of-mass system, q1 •Pi = q1~~p1IcosO.
With our normalization of states KPi I P2) = 2(2IT)

3p~53(p
1— P2), the differential

cross section for unpolarized photons in the center-of-mass system is
00

do~~ a
2s

=—~-~(s)H(s,t),

H(s, t) = I ~ 2 + I H~ 2,

/3(s)=(1 —4M~/s)172. (2.9)

The amplitude for Compton scattering

y(qi)~°(pi) —~ y(q~)i~’° (p~)

may be obtained by crossing. In the center-of-mass system, the cross section for unpo-
larized photons is

d y1T0~/1T0 2
=-~---i~H(t,f), (2.10)

dQ 16s
with

~=(qi+pi)2, i=(q2—ql)2.

Finally, the optical theorem in the Compton channel reads with our phase convention

e2ImBIs~,ts=
4(~M2) ~~°(f). (2.11)

This relation fixes the phase of A through Eq. (2.4).
The physical region for the reactions yy —~ IT°IT° and yiT~—* yIr° is displayed

in Fig. 1, where we also indicate with shaded lines the nearest singularities in the
amplitudes A and B. These singularities are generated by two-pion intermediate states
in the s, t and u channel.

3. Low-energy expansion

We consider QCD with two flavours in the isospin symmetry limit m~= md = iii and
equip the underlying lagrangian with hermitian, colour neutral external fields v, a, s and
p in the standard manner,

= ~QcD + ~y~(v~ + a~y~)q— ~(s — iy5p)q. (3.1)
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Fig. 1. Mandelstam plane showing the three related physical regions. s-channel: yy —. irir, t-and u-channel:
yir —p yir. We indicate the threshold for yy —~ irir(yir —~ yir) by A (P). The shaded lines at s, t, u = 4M~.
indicate the presence of a branch-point in the amplitude, generated by two-pion intermediate states.

Here L~cDdenotes the QCD lagrangian at zero quark mass, whereas th is contained in
the scalar field s(x). The lagrangian (3.1) is invariant under local SU(2)L x SU(2)R X
U( 1) transformations

q—*~[(1+y5)g~+(1—y5)g~]q (3.2)

with

gR,L = ~ VR,L,

VR,L E SU(2),

q5=diag(t/o,~io), ~0eR, (3.3)

provided that the external fields are subject to the gauge transformation

r’,~=gRr~g~+
1’ — ‘ ‘ t
~ —gL~gL + lgLv~g~,

s’ + ip’ =gR(s + ip)g~,

r,U=vf~+a,U., l~=v~—a~. (3.4)

Since the charge is not a generator of SU(2), we consider in the following the case

(a~)=0, (vs) ~ 0, (3.5)
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where (A) denotes the trace of the matrix A. The condition (3.5) is consistent with
the transformation law (3.4). The Green functions of the theory are generated by the
vacuum-to-vacuum amplitude

= ~ I Oin)v,a,s,p . (3.6)

The generating functional Z admits an expansion in powers of the external momenta
and of the quark masses [3—5],

Z=Z~+Z4+4+..., (3.7)

where Z,~denotes a term of order E
0. We write the corresponding expansion of the

amplitudes as

112+14+16+..., I=V~”,A,B, (3.8)

where it is understood that Zn generates ‘n ~. To calculate ~ we set

s=thl, v~=QD,
0, p=r

3j3, a~=0, (3.9)

where

Q = ~diag(2, —1) (3.10)

is the charge matrix, and where i3~.and j3 denote flavour neutral external fields. V’~0is

obtained from the term of order o2p2 in Z.

3.1. Terms at order E2

In the meson sector, Z
2 is given by the classical action

~ (3.11)

where L2 is the nonlinear u-model lagrangian

L2 = ~F
2 (D,.OUD~I~Ut+ x~U+ xU~), (3.12)

evaluated at the solution to the classical equation of motion c5 f L
2 = 0. The 2 x 2 unitary

matrix U contains the pion fields,
2U=u+t~, u+~=1,

~ ~IT~)~ii (3.13)

It transforms as

U~G~~gRUg~ (3.14)

Notice that I,, is not of order E”.
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under G = SU(2) ~. x SU(2) R x U( 1). The covariant derivative is

D,.~U=ê~U—ir,0U+iUl,.1., (3.15)

and the field x denotes the combination

~=2B(s+ip). (3.16)

F is the pion decay constant in the chiral limit, F~= F( 1 + O(fii)), F~ 93 MeV, and
B is related to the order parameter (0 I I 0). The physical pion mass is

M~.=M
2(1+O(th)),

M2=2thB. (3.17)

£2 is referred to as the effective lagrangian at order E2.
The term of order O(i3232) in the classical action Z

2 vanishes and, therefore, one has

A2=B2=V~’=0. (3.18)

3.2. Higher orders in the energy expansion

At higher orders in the energy expansion, the effective lagrangian consists of a string
of terms. Re-introducing momentarily 11, one has

£eff2+hL4+h
2L~

6+.... (3.19)

Here £4 contains all possible contributions with four derivatives, or two derivatives and
one field x’ or x2~and similarly for the higher-order terms (t~contains in addition the
Wess—Zumino—Witten lagrangian £wzw [24]). The generating functional is given by

exP(~Z(v~a~s~P))=f[dU]exP(~fAeffdx)~ (3.20)

and its low-energy expansion is obtained from Z = Z
2 + 1124 + One expands

~ 1=2,4 (3.21)

where L1 denotes the lagrangian £j, evaluated at the solution to the classical equation
of motion ~5f £2 = 0. (To simplify the notation, we have dropped the SU(2) indices in
~ and in the operators C1, D, ) The fluctuation ~ is of order ~1/2 Then one obtains
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c,2DEF~,,2

cc,2---2o~c

Fig. 2. The graphs at order E6 in the chiral expansion. These graphs correspond to the terms in Eq. (3.22).
The framed symbols I stand for the vertices in .C,.. We indicate with the solid-dashed lines the propagator
D~1.

exp(~)=exp(~s~~)f[ dfl exp(~f ~D
2~ dx) A,

A1 — ~f[(E2~3 + flC4~)5(E2~
3+hC

4~)~]dx dy

dx+O(h
2), (3.22)

with Sd = f dx jeff

At order E4, this result amounts to evaluating one-loop graphs generated by £2 and
adding the tree graphs from £2 +11L

4 [4]. These contributions then add up to Z4, which
contains the leading-order term V~.It is a specific feature of the process yy —o 17°1T~
that the counterterms contained in £4 do not contribute to Vt—the sum of the one-loop
graphs is therefore ultraviolet finite [1,2].

The diagrams which generate Z6 are displayed in Fig. 2. The solid-dashed lines stand
for the propagator D~

1,and the framed symbols I denote vertices from £j according
to Eq. (3.21).

In order not to interrupt the argument, we relegate the discussion of the leading
contribution V,~”to Appendix B and continue in the following section with the evaluation
of the next-to-leading order term Vt’.
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4. Renormalization

The evaluation of V/,~is complex. We outline in this and in the following two sections
the procedure — omitting, however, all details.

4.1. The lagrangians £4 and £6

The lagrangian £4 contributes to ~ir through one-loop diagrams, see Fig. 2. Its
general form is [4]

£ (4)4 + WZW,

(4.1)

where

P1 =

P2 =

=

P4 =

P5 =
p ~./4~/LV1

64
1\f+ LU/L~Uv

(4.2)

Here we used the notation

= iu~D,
1Uu~= —iuD,2U~u=

x±=u~xu~±ux~u,
x~i=utD~xuf—uD~x~u,
f~=uF~ut± utF~u, (4.3)

with u
2 = U. The quantity Fj~(Fj~’)stands for the field strength associated with the

nonabelian external field v~+ a
11 (v11 — a11).

The ellipsis in (4.1) denotes polynomials in the external fields which are independent
of the pion variables. These do not contribute to S-matrix elements and are therefore
not needed in the following. Finally, the anomaly term £w~wcontributes to V~’[25].
This is beyond the accuracy of the low-energy expansion considered here.

The realization of G on u is

GU —~ gRuh = hugh, (4.4)

such that
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i £ hlht (4.5)

for the quantities in (4.3). The low-energy constants 1, are divergent, except 17. They
remove the ultraviolet divergences generated by the one-loop graphs — we discuss them
in more detail below.

In the construction of ~ the equation of motion Sf £2 = 0 has been used. It can
be shown that adding terms to ~ which vanish upon use of the equation of motion
affects the generating functional at order E6 by a local term4 — these contributions may
thus be omitted.

The lagrangian £6 contributes a polynomial part to V
6
110 which cancels the ultraviolet

singularities generated by the two-loop diagrams. The general structure of £6 is not yet
available in the literature [261. Concerning the present calculation, we note that the
lagrangian

£6 = ~ (f+~f~+ f
11~f~)T~+...,

Tp~=dI(upu(,)+g~~{d2(u
11u

11)+d3(X+)} (4.6)

generates a polynomial in A6, B6 which has the same structure as the divergent part in
the two-loop contribution,

[16(d3— d2)M
2+ (d

1 +8d2)s] +...,

B6=—~~d1+.... (4.7)

We may therefore remove the divergences in V~by simply dropping the singular parts
in A6 and B6, see below.

4.2. Regularization and renormalization

We use dimensional regularization and set

(4.8)

where d is the dimension of space-time. We introduce the renormalization scale ~asuch
that the calculation is scale-independent at each step. In the following we outline the
procedure [27].

Consider the couplings I~in £(~1) which carry dimension (mass)w. We treat i~as
ia-independent parameters by writing in the minimal subtraction scheme

~ +l~+wl~+O(w2)} , i=1 7, (4.9)

~We thank G. Ecker for an explicit proof of this statement and for illuminating discussions concerning the
material in subsect. 4.2.
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with

diMs diMs~ ~L~14S~ (4.10)
d~

The divergent terms 5,/w remove the one-loop singularities in Z4 (the S~are related to
the y, used in Ref. [4]by 5, = y/16ir~).Since the 1, occur in Z6 via loop insertions,
the constants l1~fS in general also contribute at two-loop order. For an illustration of
the renormalization procedure, we consider the amplitude F

4B which has dimension
(mass)2w. We write for the contribution from the loops

B = !~-~-- {Laurent-series of (pT2WF4B) at w = o} . (4.11)

From ~ only 12 contributes,

B = ~ {M2° ~f(s/M2,t/M2w)+ Mw1
2 g(s/M

2,t/M2co)} , (4.12)

where f and g are singular as w —~ 0,

g=—+go+wg+i+O(w). (4.13)
C,-)

The Laurent-series (4.11) becomes

B=~- {~+~1~~-P11 +/
3Ms+o(w)}. (4.14)

The residues of the pole terms are

t52gl
13l=gI, /31,l=82g0+fl, (4.15)

and for the finite part we find

3MS~!{S2lfl~_+4lMS}lfl~L+cilnM+c2 (4.16)

Here the c, stand for linear combinations of fi g+i~
Without having evaluated any Feynman diagram, we have already obtained significant

information on the structure of the two-loop result [3]:
(i) The residues of the pole-terms in (4.14) are polynomials in the external mo-

menta and in the masses on general grounds [28]. For dimensional reasons, these
polynomials reduce to pure numbers in the present case. In addition, from the
cancellation of the logarithmic terms which are generated by expanding the factors
M

2w and M” in (4.12), it follows that the residue of the double pole in f is
proportional to the residue of the single pole in g,

2f2+52g1 =0, (4.17)
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or

2/32=52/31. (4.18)

(ii) The amplitude f contains a nonlocal singularity fi/w which is generated by
divergent subgraphs. This nonlocality must be cancelled by the nonlocal singular
part 82g0/w in the graphs generated by loops with ~ in such a way that
/3i , I = S2~O+ fi becomes a pure number.

(iii) As is seen from Eq. (4.16), the finite part pMS contains chiral logarithms 1n
2 M2

and ln M2. The coefficient of the leading term 1n2 M2 is proportional to the residue
of the single pole in g, whereas the linear piece In M2 is multiplied with a nonlocal
function. These singular terms cancel the chiral logarithms in c2 and thus generate
a smooth behaviour of the amplitude in the chiral limit flu —~ 0 (at fixed s, t # 0).

(iv) At the Compton threshold s = 0, t = M2, the quantities Cl and C2 are independent
of the quark mass. Therefore, the chiral logarithms ln2 M2 and ln M2 in Eq. (4.16)
remain, and we conclude that the finite part /3MSI~tM2 blows up in the chiral
limit. In other words, the slope of the form factor V

9 = 2sB (see Appendix A) is
infrared singular,

~ ~ (4.19)
ds s=O,t=M

2

where the i~,are independent of the quark mass. Notice that 1n2 M2 occurs together
with l~lnM2 in a particular combination which is dictated by Eq. (4.17).

We now define the renormalized amplitude B~ias

= 1 (
13MS + bMS), (4.20)

where the scale-dependence of bMS is chosen such that B~-”is independent of ~t,

,~.~Bren=o (4.21)
d1s

(The low-energy parameter bMS is the sum of the finite pieces of the relevant counter-
terms at order E

6 in the effective action.)
We have formulated the renormalization procedure in the minimal subtraction scheme,

where ln(4i,-) and I” (1) occur. One may eliminate these terms in the standard manner
[29]. Below we use the conventions of Ref. [4].The final result for B

6 contains one
unknown new parameter bT,

B6= (1617
2F2)2 (4.22)

Analogously, the renormalized amplitude A
6 contains two unknown new parameters a~

and a~,

A6 = +.... (4.23)
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q1

q q +1{ )~+~<
q2 q2-l P2

q2
Fig. 3. One class of Feynman diagrams which contribute to yy — ir

0ir0. The dashed (solid) lines stand for
neutral (charged) pions. The four-point function on the right-hand side is the elastic irir scattering amplitude
at one-loop accuracy in d dimensions (with two legs off-shell), and the symbol d’~lstands for integration
over internal lines with weight (5.1).

The ellipses in (4.22) and (4.23) stand for the finite contributions from the loop-
integrals.

5. Evaluation of diagrams

Here we discuss further aspects of the two-loop calculation.

5.1. The diagrams

It is straightforward to generate from Fig. 2 the diagrams for yy —~ 170170 at two-
loop order — one has simply to insert photon and pion vertices in all possible ways.
For illustration, we display one class of graphs in Fig. 3. The solid (dashed) line
denotes charged (neutral) pions. The four-point function on the right-hand side is the
d-dimensional elastic irrr scattering amplitude at one-loop accuracy, with two pions
off-shell (the one-loop graphs for ~ —* 170170 are thus also included in Fig. 3). The
symbol d’i stands for integration over internal momenta with weight

[M~ — (1 + q~)2][M~ — 1)2]’ (5.1)
where M~denotes the physical pion mass in one-loop approximation,

M~.=M2[i+ ~(2i;+ 3~.2 ln~-)+O(M4)] . (5.2)

The momenta of the charged pions running in the loop are (l + qi)11 and (q~— l)11. We
do not display the remaining diagrams.

5.2. Numerical evaluation of diagrams

The derivative nature of the interaction makes the algebraic part of the calculation
tedious. As for the numerical part, we have to evaluate the amplitudes in the physical
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q1 ,-Pi q1

P2 ~P1

q2 t P2 q2

a) b)

Fig. 4. Graphs which contribute to ~iA,B in the unitary part UAB in Eqs. (7.3), (7.8). In Fig. 4a, the
dash-dotted lines surround the diagram which we represent in the dispersive manner ~5.3). The graph Fig. 4b
is called “acnode graph” [55].

region for ~ ,. 170170 where branch-points and cuts appear. These render the numerical
evaluation of the Feynman integrals nontrivial. To illustrate our procedure to cope
with this difficulty, we consider the two-loop box diagram Fig. 4a. We write for the
subdiagram (enclosed by dash-dotted lines) a d-dimensional spectral representation

J(i,d) = 7 dup(u,d) (53)
4M~,

where I contains loop-momenta. This leads to a spectral representation for the full
diagram,

7 dup(u,d)b(s,t,u,d), (5.4)

4M~,

where b(s, t, u, d) denotes a one-loop d-dimensional box diagram (one of the internal
lines carries mass ~ After removing the subdivergence generated by J(t,d), we
obtain the finite part by writing a fixed-t dispersion relation. This procedure allows one
to evaluate numerically the amplitude also in the region s > 4M~.,t < 9M~..

5.3. Checks on the calculation

As is shown in Appendix A, the most general expression for the amplitude &~‘e~V110
contains five form factors which are linearly related through two Ward identities and
through Bose symmetry,

L1(V~) ~2Vo-j-sV4—(t—u)V5=0
L2(V,) = sV7—(t—u)V9=0 , (5.5)
L3(V~)~ V5+V-,=0.

The amplitudes A and B may be obtained from V4 and V9,

A=—V4, B=V9/2s. (5.6)
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To get an optimal control of the calculation, we have fully evaluated all five form factors
in d dimensions and have made the following consistency checks of the results:
(i) We have verified that the relations (5.5) are satisfied numerically within machine

accuracy in low dimensions (below threshold).
(ii) We have determined the divergence structure at w —~ 0,

(p(2) pU) ‘1
(5.7)

(5) J

and have verified that the residues P,~are polynomials in the external momenta
and in the masses. These polynomials obey Eq. (5.5) as well,

Lm(Pj~)O, m=1,2,3, k=1,2, (5.8)

and are related in the manner discussed in the previous section, see Eq. (4.18) for
p~)and p~2)~

(iii) We have checked that also the finite parts R, satisfy numerically

Lm(Ri)0, m=1,2,3 (5.9)

within machine accuracy below threshold.
At this stage, we have written fixed-t dispersion relations for some of the finite
parts in the manner mentioned above. This allows one to evaluate the complete
amplitude in the physical region for pion-pair production.

(iv) We have then worked out the S-wave projection h~(s) (2.8) and have verified
numerically that this amplitude has the correct phase at s > 4M~,given by the
(tree plus one-loop) elastic 1717 scattering S-wave phase shift (in the appropriate
isospin decomposition).

In addition, we have made many other cross-checks.

6. Low-energy constants at order E6

Once the program described above is carried through, one ends up with ultra-
violet finite and scale-independent amplitudes A and B which contain the parameters
F, M~ l~,l~(i = 1,2, 3,5,6); aç, a~and bT. F is related to the physical pion decay
constant F~[4],

~ ln~)+O(M4)] . (6.1)

We may therefore replace F by F~at the expense of introducing l~.The expressions for
the loop-amplitudes simplify if one uses [4] the scale-independent parameters lj,

i~=~(ii+ln~). (6.2)
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Table 1
Phenomenological values 14,31] and source for the renormalized coupling constants i, i = 1 6. The
quantities 8, in the fourth column determine the scale dependence of the l~(is) according to Eq. (6.2). In the
text we also use = 16 — 15, see Eq. (6.3).

Source 16ir28,

—0.8±1.2 Ke4,iriririr 1/3
2 5.8 ±0.7 K,4, irir —÷mr 2/3
3 2.9 ±2.4 SU(3) mass formulae —1/2
4 4.3 ±0.9 FK/FIT 2
5 13.8±1.3 ir—~evy —1/6
6 16.5±1.1 (r

2)~ —1/3

Table 2
Resonance contributions to the coupling constants a, a and bt. Column 6 contains the sums of those
contributions which have a definite sign. The calculation is presented in Appendix D.

1R 1R

jr w p
0 /‘ A(l~) ~RIR S(0~) f2

a —33.2 —6.1 —0.1 0.0 —39 ±0.8 +4.1
12.5 2.3 ~0 —1.3 13 ±1.3 ±1.0
2.1 0.4 0 0.7 3 0.0 ± 0.5

Their values are displayed in column 2 of Table I. We note that 1~and 16 in the present
application always appear in the combination

lAl6l52.7. (6.3)

[Theconstant IA is related to the low-energy couplings L~and L
0 which occur in

the SU(3)L x SU(3)R version of the one-loop amplitude yy —f IT~Ir [1]by
1A =

192172 (L~+ L
0) .1 Next we observe that we may absorb l~‘s into the low-energy

constants at order E
6, because they contribute a polynomial piece only. We are therefore

left with a, a~and b~as the only new unknowns. We estimate these in the standard
manner [4,30], replacing them at a scale ~s= 500 MeV ... 1 GeV by the contribution
from resonance exchange. Let

Ir(,i)>
1R+Ir(,i) l=a1,a2,b, (6.4)

where the sum denotes contributions from scalar, (axial-) vector and tensor exchange.
Our estimate for F(M~)consists in setting I’~(M~) = 0.

The quantities I~are evaluated in Appendix D. The results of the calculation are dis-
played in Table 2, where the individual resonance contributions 1R are listed. Column 6
contains the sums of those contributions which have a definite sign.

To estimate the effects of the systematic uncertainties in the values of these couplings,
it is useful to furthermore consider the helicity amplitudes ~ and H~.. and the
corresponding low-energy constants h~and h,
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H~s=(l6~F2)2{h~M
2+h~s}+...,

— 8(M — tu) hr +
— s(16rr2F2)2 —

h~=a + 8bT, h~= a — 2br, h~= b’. (6.5)

From column 6 in Table 2 we obtain the central values of these couplings. According
to experience with resonance saturation at order E4, we associate a 30% uncertainty
to the contributions generated by (axial-) vector exchange and a 100% error to the
contributions from scalars and from f2. Adding these errors in quadrature, we find

h~(M~)= —14 ±5,

h(M~)= 7±3,

h~(M~)= 3±1. (6.6)

Notice that tensor exchange does contribute neither to h~.nor to h, because the coupling
(D.8) is purely D-wave. Scalars do not affect h~.

In Ref. [351,these couplings have been determined (i) from vector-meson exchange
and using nonet-symmetry, and (ii) from the chiral quark model, with the result

(h’ h’ hr — f (—18,9,2) vector-mesons (nonet), (67)+, .~‘ —, 11”M~’— ‘l,~, (—12,6,2) chiral quark model,

which agrees within the uncertainties with the values in (6.6).
This completes the determination of the parameters which occur at two-loop order in

~ 1T~1T~.

7. Amplitudes and cross section to two loops

7.1. The amplitudes: analytic results

We obtain the following expression for the amplitude A to two loops:

A=A
4H-A6+O(E

4), (7.1)

or

A = (s — M~)+ UA + PA +O(~). (7.2)

The unitary part UA contains s, t and u-channel cuts, and PA is a linear polynomial in
s. Explicitly,
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UA = c(s) [(s2 — M~)J(s)+ C(s,I~)]+ 24IT2F~(s — M~)J(s)

+ 144~~ (s—4M~){~(s)+4[sO(s) +2M~(G(s) —3J(s))]dg
0}

+z.IA(s,t,u)

(7.3)

with

C(s,I~)=~{2(I~~

—3M~J3+ l2M~,(s— M~)l4— l2sM~+ l5M~.}

d~0=
1~(3cosO2—1). (7.4)

The loop-functions J, etc. are displayed in Appendix C. The quantity G~(s)in
Eq. (7.2) stands for G(s), evaluated with the physical pion mass, and 9 denotes the
scattering angle in the center-of-mass system. The term proportional to d~

0in UA
contributes to D-waves only. For ZIA see below.

The polynomial part is

PA= (1617
2F~)2[aiM~+a

2s],

a1 =a~+ ~ {4l2 + l(812.+ l2l~~— ~) — ~ + i2l~ +

a2=a2 — ~ {12 + 1(212 + l2I~ + ~) — ~ + 12l~+ ~f~}
M
21=ln—
1-. (7.5)
I-C

The result for B is

B=B6+O(E
2), (7.6)

or

B=Ufi+PB+O(E2), (7.7)

with unitary part

(12- ~(s)

UB= 28862F4 +ziB(s,t,u). (7.8)
For the polynomial we obtain

b

PB= (16172F~)2’
b=b’— 1[12+l(21+2)I1+393] (7.9)
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Fig. 5. The yy —÷mr0ir0 cross section cr( I cosO~~ Z) as a function of the center-of-mass energy E at
Z = 0.8, together with the data from the Crystal Ball experiment [9]. The errors shown are statistical only.
The solid line is the full two-loop result, and the dashed line results from the one-loop calculation [1,2]. The
band denoted by the dash-dotted lines is the result of the dispersive calculation by Pennington (Fig. 23 in
Ref. 112]).

The integrals LIA,B(5, t, u) contain contributions from the two-loop box and acnode
diagrams displayed in Fig. 4. It turns out that these contributions are very small for
the cross sections below ~ ~ 400 MeV, both for yy .~ 770170 (0.1% at 400 MeV)
and for the crossed channel yir0 —~ yir° (1.5% at 400 MeV). Therefore, one obtains a
rather compact and accurate representation of the two-loop amplitudes by simply setting
~1A,B=0 in UAB ~.

7.2. The cross section ~ , 170170

In Fig. 5 we display the data for the cross section u(s; I cosOl ~ Z = 0.8) as
determined in the Crystal Ball experiment [9]. They are shown as a function of the
center-of-mass energy E = ~/i The solid line denotes the two-loop result, evaluated6
with the amplitudes (7.2)—(7.9). For the low-energy constants a’

1, a’2 and b’~we have
used the values from column 6 in Table 2, and the values of Ij are the ones displayed
in Table 1. Shown is furthermore, with a dashed line, the one-loop result [1], obtained
by setting UA,B = PA,B = 0, see also Appendix B. Finally, the dash-dotted lines display
the result of a dispersive analysis (Fig. 23 in Ref. [12]). In that calculation, use was
made of the I = 0,2 S-wave irir phase shifts from Ref. [32] (these phase shifts satisfy
constraints imposed by Roy-type equations [33]).

~An analogous result holds for the elastic irmr scattering amplitude, which contains unitarity contributions
with t- and u-channel cuts which are negligible below E 500 MeV for S-waves.

6 We use F,,. = 93.2 MeV, M,,. = M,.5 = 135 MeV, unless stated otherwise.
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Fig. 6. The dependence of the yy ..... cross section o-(~cosOl ~ Z) on the constants ij, at Z = 0.8.
The solid line denotes the two-loop result with the standard values for i~displayed in Table I (without
contributions from resonance exchange, and with ~

1AB = 0), whereas the dashed line is evaluated at Ij = 0.
The dash-dotted line has 11,3 = 0 and the other i~at their standard values.

The two-loop result thus agrees well with the data and with the dispersive analysis of
Pennington [12] in the low-energy region.

We found it interesting to see which contributions are responsible for the increase in
amplitude and cross section near the threshold. In Fig. 6, we display with a solid line
the cross section, evaluated at ~-1A,B= 0 and without resonance exchange. [The change
compared to the full result (solid line in Fig. 5) is 0.2 nb at E = 400 MeV and thus
negligible.] The dashed line corresponds to 1, = 0, and the dash-dotted line is obtained
by setting 11 = l~= 0. We conclude that the increase is due to 12, 14 and l~= 16 — 15. To
make this statement more quantitative, we note that the dependence of the cross section
on the 1,-values can been summarized with the expression

u2b0o~(s) Nrfb0I~(s)

N = 1 + (—5.8 + 5.011 +4.9~— 0.21~+ 5.414 + 3.7l~) x 10—2

= 1 — 0.058 — 0.040 + 0.283 — 0.005 + 0.232 + 0.100

c~l.51, (7.10)

which is accurate to a few percent up to 450 MeV. The analogous expression for the
helicity amplitude ~ at the physical threshold s = 4M~.reads

H2~PS= NH~°~°~,

N = I + (2.5 + 0.61k + 1.212 — 0.213 + 2.714 + 2.7i~) x 102

= 1 + 0.025 — 0.005 + 0.068 — 0.006 + 0.114 + 0.073

~1.27, (7.11)
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086412468

REAL PART

Fig. 7. Real and imaginary part of the amplitudes ± l02M~.H+±at t = u. The solid line is for 102M~H~~.It
incorporates all contributions except ‘JAB. The dashed line is the same amplitude for the one-loop case, and
the dash-dotted line is for —102M~,.H~..with the same input as the solid line. Finally, the crosses refer to
the center-of-mass energy of the ir0IT0 system in 100 MeV steps.

with

M~H~°~°~= 5.8 x 10—2. (7.12)

The contributions from I , l~are 1717 rescattering effects. They amount to a 24% increase
in the cross section (out of 51%) and to 6% in ~ (out of 27%). The renormalization
of F,,. (contribution from 14) amounts to a 23% increase in if.

7.3. The amplitudes: numerical results

To get more insight into the characteristics of the two-loop corrections, we display
in Fig. 7 the real and imaginary part of the helicity amplitudes ±102M~.H~~at t = U.

The solid line shows 102M~H~~.It incorporates all contributions except 44.B The
dashed line is the same amplitude for the one-loop case, and the dash-dotted line is for
—102M~,.H+ with the same input as for the solid line. The curves start at E = 2M,,., and
the crosses refer to the center-of-mass energy of the 770170 system in 100 MeV steps. The
amplitude ~ changes very rapidly just above threshold and is nearly purely imaginary
in the region 350 MeV i~E m~400 MeV. As expected, the amplitude H~.. which starts
out with a D-wave term is very small at low energies. Resonance exchange adds to H++
a positive real part, thus increasing the cross section below ‘-.~400 MeV and decreasing
it above this energy.

In Fig. 8, we display the quantity 102M~H~~at t = u as a function of s/M~.Above
the threshold s = 4M~,the modulus is shown. The solid (dashed) line denotes the full
two-loop (one-loop) result. While the two-loop contribution to the modulus is below
30% in the threshold region, it modifies ~ substantially (percentage-wise) at s = 0,
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s/M~

Fig. 8. The yy —p ir
0mr0 amplitude as a function of s/M~at t = u. For s ~ 4M~.the quantity shown is

1 02M~.H~~and for s ~ 4M~,.we display l02M~,.~~ . The solid line is the result of the two-loop calculation
and the dashed line is the one-loop result. The symbols (o, +) refer to the work of Pennington 112]: o (+)
is from Fig. 19 (23) in that article.

where the amplitude is small, see also the discussion below. Furthermore, we note that
the zero at s = M~,which occurs in the one-loop approximation Eq. (B.6), is only
slightly modified by the loop corrections. Finally, we display with “ (+) the modulus
of the S-wave projected part of ~ taken from Fig. 19 (23) in Ref. [12].

7.4. Error estimates and range of validity of the chiral representation

The uncertainty in the amplitude has two sources. Firstly, the low-energy constants
lj, h~and h used above contain certain errors. For the ij, these are displayed in Table 1.
The systematic errors in the low-energy couplings at order E6 have been estimated in
the previous section, see Eq. (6.6). Secondly, we are concerned here with an expansion
in powers of the quark masses and of the external momenta. Higher-order terms in this
expansion (three loops and beyond) will change the cross section accordingly.

We discuss first the effect of the uncertainty in the low-energy constants and concen-
trate for simplicity on h’+ and h. In Fig. 9 we show the variation of the cross section
according to the error estimates in Eq. (6.6). The calculation is done at /~A,B= 0. The
dashed lines embrace the region generated by assigning all possible combinations of
signs to the systematic errors in the couplings h~and h~according to Eq. (6.6). The
dash-dotted line corresponds to the central value in (6.6).

It is clearly seen that, below 400 MeV, the uncertainties in h’±and in h~do not matter.
(Since we estimate the couplings with resonance saturation, this is a reformulation of
earlier findings [34—39].) Varying the scale at which resonance saturation is assumed
between 500 MeV and 1 GeV results also in a negligible change in the cross section
below E = 400 MeV. Beyond this energy, the uncertainty becomes more pronounced.
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Fig. 9. The uncertainty in the value of the yy —f ir
0mr0 cross section u( cos C~~ Z) at Z = 0.8, evaluated

from the two-loop amplitude at ~.1A.B= 0. The data are from the Crystal Ball experiment [9]. The dashed
lines embrace the region generated by assigning all possible combinations of signs to the systematic errors in
the couplings h~and h,~according to Eq. (6.6). The dash-dotted line corresponds to the central values in
(6.6). Above E 400 MeV, the major part of the uncertainty in the cross section is generated by the error
in h,’.

Because the contribution from H~.. is tiny (see Fig. 7), only h~and h really count.
One might thus be tempted to extract these couplings from more accurate data in the
range E = (400—600) MeV. This would be interesting, because h’~determines the
difference of the electric and magnetic polarizabilities of the neutral pion at two-loop
order, see below. However, in this energy range where s (9—20) M~,h’~is much more
important than h~.It will, therefore, be rather difficult to extract h’~reliably in this
manner [13]. On the other hand, it would be interesting to perform a combined analysis
of the two related processes yy .~ 17.0170 and ~j —+ ir0yy [251 in the framework of
SU(3)L x SU(3)R in order to obtain maximal information on the low-energy coupling
constants which enter these amplitudes7.

Turning now to the corrections from yet higher orders, we use the fact that ~2lOOPS/

hoOP (1 + ~)2 with e 0.25 and estimate (f/if hoOp (1 — c)—2 This amounts
to a 15—20% uncertainty in the two-loop result below 400 MeV. At higher energies,
the error in the cross section is more difficult to assess. It may well turn out, however,
that a more precise determination of the low-energy couplings leads to the conclusion
that the chiral representation of the amplitude at the two-loop level is even valid up to
E = (600—700) MeV in this channel.

We thank J. Bijnens, M. Knecht and J. Stem for pointing this Out to us.
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Fig. 10. The Compton cross Section yIT
0 —~ yir~ as a function of the center-of-mass energy Er,,.. The solid

line is the result of the two-loop calculation and the dashed line is the one-loop result. The dash-dotted line
refers to the two-loop calculation at h~= h = 0, and the dotted line has H+_ = 0 in a full two-loop
calculation.

8. Compton scattering and pion polarizabilities

The amplitudes A and B are analytic functions of s and t. At s ~ 0, they describe
Compton scattering (see Fig. 1),

y(qh)~°(pl) —*y(q2)1r0(p2). (8.1)

We discuss this reaction in the present section, where we also work out the (neutral)
pion polarizabilities at next-to-leading order.

8.1. Compton scattering

The cross section yy —* ii~ir~receives a substantial correction near threshold due
to irir final-state interactions — which are absent in Compton scattering. Are then the
two-loop contributions small in this channel? Fig. 8 shows that this is not the case:
in the one-loop approximation, the amplitude H++ is one order of magnitude larger in
the yy —* 170770 channel than at Compton threshold. Therefore, even tiny corrections in
yy 170170 may appear large in Compton scattering [39]. In Fig. 10 we display the
cross section as a function of the center-of-mass energy Er,,.. The solid line
shows the result of the two-loop calculation and the dashed line displays the one-loop
approximation. They differ by one order of magnitude already near threshold. This is
mainly due to the effect of the low-energy constant h’ in H~ (omega-exchange in
the language of resonance saturation [39]). Putting H+ to zero results in if ‘Y” =
0.7 nb at E-,,.,,. = 350 MeV (dotted line). Purely two-loop effects however also change



104 5. Bellucci et al. /Nuclear Physics B 423 (1994) 80—122

the cross section by roughly a factor of two at Er,,. = 350 MeV (dash-dotted line,
evaluated at h’~= h’~= 0).

In summary, the Compton amplitude is tiny at leading order, and it is therefore rather
unstable against the corrections generated by higher-order terms.

8.2. Pion polarizabilities

For a composite system it is customary to include the electric and magnetic polari-
zabilities among the fundamental parameters — such as the electric charge, the magnetic
moment and the mass — characterizing the low-energy limit of the coupling with the
photon in the Compton amplitude. Hadrons are no exception, hence the theoretical
description of their dynamics can be tested through the experimental determination of
the hadron polarizabilities [40]. To set notation, we first consider Compton scattering
for charged pions,

—3 y(q~)ir~(p~), (8.2)

in the laboratory systemp~= M,,.. (In order to simplify the notation, we use the symbol
MIT to denote both the charged and the neutral pion mass.) The electric (a,,.) and
magnetic (/~,,.)polarizabilities are obtained by expanding the Compton amplitude at
threshold,

fc2[ i .E2*(~ a~whw2) —~(q1 x 1). (q2 x  2*)+...] (8.3)

with qff = (w1, q,). In terms of the helicity components (B.4), one has

(8.4)

where the bar denotes the amplitude with the Born term removed
8. For neutral pions,

one uses the analogous definition,

Ü,,.o ±~,,., = ~—H~~(0,M~), (8.5)

or, in terms of A and B,

&,,.ozr—~—-(A+16M~,.B)
MIT s=0,t=M~,

(8.6)
2M,,. s—o,t=M2

Below we also use the notation

(a±/3)C=ã,r±f3,,.,

(cr± f3)”=ã,,.o±,~,,.o. (8.7)

In first set t = M~.,then s —. 0. We use the Condon—Shortley phase convention.
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An unsubtracted forward dispersion relation for the amplitude B gives with (2.11)
00

N IT I __________ /

(a+P) ~ I (sF_M~.)2°t0t(s), (8.8)4M2

and analogously for the charged channel.

8.3. Data on pion polarizabilities

There exist up to now two determinations of charged pion polarizabilities via measure-
ment of the Compton amplitude. At Serpukhov [41], radiative pion—nucleus scattering

—* iryA has been used. Here the incident pion scatters from a virtual photon in
the Coulomb field of the nucleus. In the pion production process yp ~* y17+fl exam-
ined at the Lebedev Institute [42], the incoming photon scatters from a virtual pion.
Analyzing the data with the constraint (a + ,g)C = 0 gives9

c 1 13.6±2.8 [41],(a—/3) ~40±24 [42]. (8.9)

The Serpukhov data have been analyzed also relaxing the constraint (a +
13)C = 0, with

the result

(a+13)C= 1.4±3.1(stat.)± 2.5(sys.) [43],

(a — /3)1 = 15.6 ±6.4(stat.) ±4.4(sys.) [43] . (8.10)

Here we have converted the value quoted for /

31T into a number for (a — ,~)C adding
the errors in quadrature.

Furthermore, also the process yy —p 1717 may be used to obtain information on the
polarizabilities. Since in this case the amplitude at low energies is mainly sensitive to
S-wave scattering, only (a_f3)C’~I~can be determined from the presently available [8,9]
data. In Ref. [16], unitarized S-wave amplitudes have beeen constructed, which contain
(a — /

3)c1N as adjustable parameters. A simultaneous fit to Mark II and Crystal Ball
data gives

(a_/3)C’= 4.8±1.0 [16],

(a_13)Al=_1.l + 1.7 [16], (8.11)

where we have taken into account that the definition of the polarizabilities in Ref. [16]
is 417 larger than the one used here, see Ref. [44], Eq. (1).

The value (8.11) for (a — ~3)C is consistent with Refs. [42,43] within 1 ~ standard
deviations, but not consistent with Ref. [41]. The large relative error in (a —

reflects the fact that the threshold amplitude yy —~ 77~077~0is quite insensitive to large
relative changes at the Compton threshold, as we discussed above (see also Fig. 10

~We express the polarizabilities in units of l0~ fm
3 throughout.
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in Ref. [13]). The determination of (a — f3)~from yy —~ irir furthermore suffers
from uncertainties which we find difficult to estimate in the approach used by Kaloshin
and Serebryakov [16], which does not provide a systematic way to control the inherent
uncertainties in the model amplitude used to fit the data. It might be interesting to
merge dispersion relations and CHPT at next-to-leading order in the chiral expansion.
This method [45,13], which does provide a control on the approximations made, would
then allow for an experimental determination of (a —

13)cIN at order E, requiring,
however, a two-loop evaluation of yy ~.ir~ir.

In Ref. [46],the bound Ia,roI < 35 has been obtained from a study of the e~e —~

770ir~y reaction.
Finally, information on the charged pion polarizabilities may be obtained from yy

77~+77~ data in the following manner [47]. Both the one-loop expression for the transi-
tion amplitude and the leading-order expression for a,,. and ,~,,. contain the low-energy
constant

1A as the only free parameter. Extracting it from a fit to the cross section then
determines a,,. and /,,. at this order. The result [47] 1A = 2.3 + 1.7 agrees within the
error with the value 1A = 2.7 used in the present work — the corresponding numerical
values for the leading-order expressions of (a + f~)C therefore also agree. The cross
section in the threshold region is dominated by the Born term contribution and is, there-
fore, rather insensitive to IA [1]. This is the main reason for the large uncertainty in
this determination of IA.

8.4. Chiral expansion ofpion polarizabilities

The one-loop result is

(a+p)C=0,

(a+
13)N=0,

(a_~)C=24~~F2 =5.3,

(a_f3)’~’=_482~F2 —1.0. (8.12)

Here we have identified F with the physical value of the pion decay constant, and we
have used the charged pion mass to evaluate of (a — /3) C. It is straightforward to deter-
mine from the amplitudes given in the previous section the neutral pion polarizabilities
to two loops. We find

(a±/3)N=162~F2 {c±+ ~ +O(M~)}~ (8.13)

with

c+ =0,

C_ =
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Table 3
Neutral pion polarizabilities to two loops in units of iO~ fm3. The contribution due to chiral logarithms,
listed in the fifth column with bracketed numbers, is included in the two-loop result quoted in column four.

0(E’) 0(E)

I loop h’~ 2 loops chiral logs Total Uncertainty

(a+$)” 0.00 1.00 0.17 [0.21] 1.15 ±0.30
(a —

13)N —1.01 —0.58 —0.31 [—0.18] —1.90 ±0.20
a,,.0 —0.50 0.21 —0.07 [0.01] —0.35 ±0.10

0.50 0.79 0.24 [0.20] 1.50 +0.20

d+=8h’i—~{144l[l+212]+96l+28812+113+1i+},

d=h’~+~{l44l(3i~—1)+36[8I1—3i3—1214+12I~]+43+4L.}

(8.14)
The quantities zl~(generated by the contributions from liA,B in (7.3, 7.8)) are pure
numbers, independent of I and of 1,. The numerical results are displayed in Table 3. The
second column contains the contribution at order E~, and the third to fifth columns
display the terms of order E. The total values are given in column 6. (The two-loop
contribution (a+/3)” = 0.18 reported earlier [48] and quoted in Ref. [39] corresponds
to slightly different values of 1~and 12.) Finally, our estimate of the errors is shown in
the last column. These are obtained in the same manner as the ones for the couplings h~
and h~in Eq. (6.6). We have not considered correlations in these uncertainties, which
do also not contain effects from higher orders in the quark mass expansion.

The contribution from the chiral logarithms present in the low-energy expansion of the
polarizabilities deserves a comment. As we discussed earlier, the 1n

2 M~/,u2terms occur
in a particular combination which is dictated by the general structure of the renormalized
amplitude,

(a±/3)~
00~~=C±L~+...,

a IT 2 2 2 2 —
L~= (l6ir

2F,~)2 1nMIT/IL {1nMIT/I.L + 212}

Here the ellipsis denotes further single logarithms and terms of order MIT, and C+ are
Clebsch-Gordan coefficients. These terms are potentially very large,

= —1.14 x i0~ fm3

at ,a = M~.It turns out that C~ is small, whereas C even vanishes, see (8.13), (8.14).
We have listed the sum of the In2 M~/,a2 and ln M~./,a2terms at the scale

1a = M,,
in the fifth column of Table 3—these contributions are included in the two-loop result
quoted in column four.

The low-energy constants determined in Ref. [35] give for the contributions from h~
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- - 1 (0.0,0.72) vector-mesons (nonet),
(aITo,/3ITo) = ~ (0.0, 0.50) chiral quark model. (8.15)

The corresponding entries in column 3 of Table 3 are slightly different than the ones from
vector-exchange in Eq. (8.15), because we do not use the nonet-assumption here and
include in addition axial-vector exchange. The slight discrepancy with the chiral quark
model prediction is not serious, because the systematic uncertainties in that framework
are very difficult to assess.

Turning now to a comparison with the data, we note that the two-loop result for
(a — /3)N agrees within the error bars with the value found by Kaloshin and Serebryakov
[16]. As for the charged pion case, the complete expression at order E is not yet
available. The chiral logarithms which occur at this order in the low-energy expansion
can in principle contribute substantially also here. Therefore, to compare the chiral
prediction with the data, a full two-loop calculation is required [49].

9. Comparison with dispersion relations

In this section we compare in some detail the chiral expansion with the dispersive
calculation carried out by Donoghue and Holstein [13].
Consider the S-wave amplitude

F(s) = -~--- I df1H~~(s,t). (9.1)
417 J

We find from the two-loop representation given above

~

+ 24ir2F~(s_M~)(J(s) -~—~)+P~+~,
PF= (l6ir2F~)2 [fiA4±f

2s],

f1=h+—~{2l+~l2—~}
~- ,r 1 147 19
j2nts+ Thl~i2 7~

M
2l=ln—~-, (9.2)

where C(s, 1~)is displayed in Eq. (7.4), and where ~-lFis the S-wave contribution from
~A,B In the region 2M,,. o~E s~400 MeV, the polynomial PF contributes very little
to the amplitude. For the comparison with the dispersive approach in this region we
therefore drop it, together with ~

In the simplest version of their analysis, Donoghue and Holstein write
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FDISP = ~ {(2s — M~)D~(s)+ (s — 2M~)D~(s)}

+ 362~ {D~(s)— D~(s)}, (9.3)

where DI’ is the Omn’es function

D’ = 1 - , (9.4)
“ I —k,s—t7’~l6irJ(s)

with

k0=25~2, k2=—30~,

CA
2SM,T CA_ s—2M~,. (95)

— 32irF~ — — 32irF.~
Expanding D7’ and keeping terms of the same order as in FCHI’T, we find (we count
k, as order E° )

FDISP = -_ ~IT(5) {2F~(s— M~)+ (~2— M~)J(s)+ CDISP}

+ 24~F~{(s—A4)J(s) +~F~s(ko—k
2)}+O(~),

CDISP = ~F,~s[ko(2s — M~)+ k2(s — 2M~~)]. (9.6)

The two representations (9.2) and (9.6) give very similar cross sections up to E ~
400 MeV. This is at first surprising, because the polynomial C(s,l,) in the chiral
representation (9.2) contains rescattering effects which are algebraically quite different
from CDISP (e.g., the leading terms s

2 differ by more than a factor of 3). The
polynomial multiplying L~is also different in the two representations. The combined
effect of these two differences is that the S-wave amplitude (9.6) agrees numerically
quite well with (9.2). [Notice that Fig. 3 in Ref. []31which displays the cross section
according to Eq. (9.3) is not correct [51].]

Donoghue and Holstein then refine their representation (9.3) by adding contributions
from resonance exchange. Their final result for the cross section agrees very well with
our represe~itationbelow E = 400 MeV, see Fig. 11. There we display with a solid line
the two-loop result. The dashed line is the result of Donoghue and Holstein (Fig. 2
in Ref. [13]). The two representations differ in the threshold region, because MIT is
identified with the charged pion mass by these authors.

There are differences in the two representations, though. First, in the dispersive
method, higher-order terms are partially summed up. We consider the fact that the cross
sections agree as an indication that yet higher orders in the chiral expansion do not
affect the amplitude in the threshold region very much. Secondly, CHPT reveals that
the amplitude contains chiral logarithms, generated by pion loops. All of these effects
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Fig. 11. The yy —. ir
0ir0 cross section u( cosO~s Z) as a function of the center-of-mass energy at Z = 0.8,

with the data from the Crystal Ball [9] experiment.The solid line is the two-loop result, whereas the dashed
line is taken from the dispersive analysis of Donoghue and Holstein (Fig. 2 in Ref. [13]).

are not incorporated in the dispersive analysis of Ref. [131. To illustrate, consider the
amplitude F at the Compton threshold, where it determines the difference of the electric
and magnetic polarizabilities,

(a—fl)”=~—F(0). (9.7)

Numerically, the chiral logarithms amount to a 18% correction to the leading-order term
(a —

13)N = —1.01, see Table 3. The result (a — /3)~5’= —1.76 quoted in Ref. [131
corresponds to the one-loop contribution and to vector exchange alone and therefore
differs from our value (a — 13)N —1.90. In ,

8IT~, axial-vectors do not contribute. The
logarithms amount to 0.20 in the final result /3,,.o ~ 1.50 which differs by 20% from the
value ~ = 1.26 in Ref. [13].

10. Summary and conclusion

(i) At leading order in the chiral expansion, the amplitude for yy ~0~0 is generated
by one-loop graphs [1,2]. In the case of SU(2)L x SU(2)~~x U(1) considered here,
it involves the pion decay constant and the pion mass as the only parameters. The
corresponding cross section deviates from the data and from dispersive calculations
already near threshold.

(ii) The neglected terms in this calculation are related to irir final-state interactions
and to three new low-energy constants h~and h~which occur at order E~in the
effective action.

(iii) To investigate these corrections, we have evaluated the next-to-leading order terms
in the chiral expansion (two-loop diagrams) and have estimated the new couplings
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in the standard manner [4,301 by resonance saturation (J~= ~
2~).

(iv) The improved cross section agrees rather well with the data and with dispersion
theoretic calculations at and also substantially above the threshold region, see
Fig. 5 and Fig. 11. The enhancement in the cross section is mainly due to Irir
rescattering and to the renormalization of the pion decay constant.

(v) The two-loop corrections are not unduly large — their size is similar to the corre-
sponding next-to-leading order correction in the isospin zero irir scattering ampli-
tude [4] and in the scalar form factor of the pion [21].

(vi) The couplings h~and h contribute with a negligible amount below E = 400 MeV
[34—391.Above this energy, the inherent uncertainty in h becomes more important
(Fig. 9). The influence of h~is quite small also in the region 400 MeV ~ E ~
600 MeV.

(vii) The amplitude for the crossed reaction yir° —* yir~is small at the threshold
EyIT = MIT. As a result of this, the one-loop representation is substantially distorted
by the next-to-leading order terms, although there are no final-state interactions in
this case. The dominant effect is due to h~ (omega exchange yir0 —* w —~ yir°
in the language of resonance saturation [39]).

(viii) The quark mass expansion of the pion polarizabilities a,..o and ~ contains chiral
logarithms ‘~-~MIT in2 MIT and ‘S-’ MIT ln MIT which contribute substantially to a,~±
~ although their effect is suppressed by small Clebsch-Gordan coefficients. The
effect of the low-energy constants h~on the value of aITO + i8IT~ is large. It will
presumably be difficult to extract these couplings from low-energy yy —~ ir~ir~data
alone and to determine in this manner the polarizabilities at two-loop order [13].

(ix) The DAFNE facility [17,18] will have the opportunity to test the chiral predictions
at next-to-leading order in much more detail than is possible with present data.
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Appendix A. Decomposition of VILV

Here we briefly discuss the correlator

v~= if dx e_7 lx+~2Y)(irO(p
1)irO(p2)out Tj~(x)j~(y)0). (Al)

We decompose V~~Vinto Lorentz and parity invariant amplitudes
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= V0g~4,+ Viqi,5qi~+ V2ql,~q2~+ V3q,~zl~+ V4q1~q210+ V5qi,~4,.+ V6q2,2q2~

+ V7q214 + V8q2~zl~+ V9~i~4,,

i-l,.=(p~ P2),u.

l’~=V~(s,p), i=0 9,

s=(ql +q2)
2, t= (ph —q,)2, u= (P2 —q

1)
2,

v=t—u. (A.2)

From Bose symmetry

V,~~(zl,q,,q
2)=V,2~(—zl,ql,q2)=V~,.,(zi,q2,ql) (A.3)

we find

%‘~(s,v)=V,(s,—~), i=0,1,2,4,6,9,

V,(s,~)=—V~(s,—p), i=3,5,7,8, (A.4)

and

V6=V,, V5=-V7, V8=-V3. (A.5)

The Ward identity

q~V,.5~=0 (A.6)

gives with q~= 0

2V0+sV4 — vV5 =0,
sV1 + i’V3 = 0,

sV7—pV9=0. (A.7)

The second Ward identity q~V,LP= 0 is then automatically satisfied by Bose symmetry.
We are left with four independent form factors which we take to be

A=—V4, B=V9/2s, C=V2, D=V3/s. (A.8)

Insertion into (A.2) gives the decomposition Eq. (2.4) in the text.

Appendix B. yy —+ 171T to one loop

For convenience, we collect here the one-loop expressions for the amplitudes yy
77017017+77— [1,2].
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B.]. ~

The matrix element for

y(q~)y(q~)—~ir~(ph)ir(p2) (8.1)

is given by

~ir~(p1)if(p2)out y(qh)y(q2)in) = i(217)
4~(Pf— P

1)TC, (B.2)

with

pC.. 2 IL

v~,=if dx e_~(q1x+~2Y)(~+~outTj~(x)jV(y)I 0)

=ACT, /L~’+ BCT2ILV + CCT3ILP + DCT41~~,,. (B.3)

The tensors Tj~,,are defined in (2.4). The helicity amplitudes are

H~i~=A’~’+2(4M~—s)BC,

8M
4 )

H~..= IT ~ BC. (B.4)

The low-energy expansion of the amplitudes AC,BC reads [11 in SU(2)L x SU(2)R X
U( 1) with the Condon—Shortiey phase convention

AC=_{M
21+M2l}_~{o(s)+~2}+0(E2),

BC=_~ {M~_ ~+ M~ ~} +0(1). (B.5)

The loop-function G(s) is discussed in Appendix C. We do not split the result into A2,
A4, etc., because the propagators contain the physical pion mass at one-loop order — this
would make the splitting rather useless.

B.2. yy —* 170170

The leading term is generated by one-loop diagrams alone — there is no contribution
from L~t.The result is [1,2]

A4= 4(sM
2)

B
4=0. (B.6)

CHPT thus predicts the cross section at this order in the energy expansion in terms of
the two parameters F and M

2. The amplitude is purely S-wave.
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In order to compare the prediction (B.6) with the data, we identify F(M) with
the physical pion decay constant F,,. (physical pion mass MIT), as this induces only
changes of higher order. The result is shown in Fig. 5, where we display the cross
section o-(s; I cosO I~0.8) according to Eq. (8.6) with a dashed line, together with
the Crystal Ball data [9] as a function of the center-of-mass energy E = ~/i The cross
section is below the data for E < 400 MeV where the low-energy expansion can be
trusted most. It also differs by a similar amount from dispersion theoretic calculations
[10—16].An example (Fig. 23 in Ref. [12]) is shown as dash-dotted lines in the figure.
The solid line is the two-loop result.

The amplitude (B.6) has the peculiar property that its dispersive representation needs
a subtraction, although the absorptive part vanishes at high energy sufficiently fast to
generate a convergent unsubtracted dispersion integral,

ImA=0(~)~ s—~oo. (8.7)

Finally, we note that the leading term (B.6) approaches a constant in the chiral limit,

A(s)=— 1 +0(E2), th~0,s~0. (B.8)

4ir2F2

Appendix C. Loop-integrals

1. The loop-integral G(s) is

c(s) j~f {‘±—~—i~1n(l_~x(1_x))}. (C.l)

~ is analytic in the complex s-plane, cut along the positive real axis for Re s ~ 4M2.
At small s,

— 1 00 / 5 ~ (n!)2
G(s) = ~- (k—) . (C.2)

16ir2 M2 (n+1)(2n+1)!

The absorptive part is

- M2 11+if) 2
ImG(s)=—ln< >, s>4M

8sir 1.1—o-J
o-=~/f_4M2/s. (C.3)

Use of

Li
2(y) +Li2 (11 ~,)=_~1n2(1 —y),

Li2(y)=_f~ln(1_x)~ (C.4)
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gives

M2/ 1—if
1 -i--—— (ln +iirl ; 4M2~s,

S \~ l+o~ /
16

17
2O(s) = 1 _~-~--arctg2( )l/2; 0 ~ s ~ 4M2,

s 4M—s
Al2 2~1

1-j-——ln ; s~0.
S o+l

(C.5)

In the text we also need

G (s) =~(s) — sö~(0). (C.6)

2. The loop-integral J(s) is

J(s)=_~fdxln(1_~x(l_x)). (C.7)

J is analytic in the complex s-plane, cut along the positive real axis for Re s ~ 4M2.
At small s,

00 2
f(s) = ~2 ~1(M2) n(2n±1)L (C.8)

The absorptive part is

Imf(s)=—~1--, s>4M2. (C.9)
1 6ir

Explicitly,

u(ln
1+iir)+2; 4M

2~s,

l6
17

2J(s) = 2_2(4M5)~2arctg(
4~); 0~ s

uin if1+2; s~0.
if+l

(C.10)

In the text we also need

j(s)=J(s) —sf’(O). (C.ll)

3. The loop-function /i is defined in terms of G and J,

fl(s) = (s — 10M
2)f(

5) + 6M
2G(s). (C.12)
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Appendix D. Low-energy constants from resonance saturation

Here we give details of the calculation needed to estimate the renormalized couplings
a~,a~and b~.We consider the exchange of scalar, (axial-)vector and tensor mesons with
mass MR ~ 1.2 GeV and follow the procedure outlined in Ref. [30]. The contributions
of the vector and tensor mesons are evaluated in the framework of SU(2)L x SU(2)R x
U (1). In order to overcome the limitations about the experimental information presently
available on the 1~ and 0~ multiplets we will work in SU(3)L x SU(3)R at large
NC.

D.1. Vector and tensor mesons (J” = 1~,2)

D.1.1. The lagrangian
We set

~‘ —~=V,~r’, V=p,

VIL(l)~ ~ (D.1)

~,
7V1~1, V=w,q5,

and have for the kinetic part

= —~ >(vILPvILY — 2M
2VVILVIL) — ~TILPDILPP~~TP~T, (D.2)

where

VILP =DILVV — DPI/IL,

DILl/I. ~8
1LVP + [FIL,Vu],

= ~ {ut [(9 — ir,2] u + u [o,~— ilIL] ut} . (D.3)

Furthermore, TILV = TYIL denotes the spin-2 field for f2( 1270) with J~= 2~, and

D’-””~°= (E + Mi.) {.~(gILPg1’1T+ gYPg
1517) — gIU7~gPh7}

+ gt~T8IL(9I’+ g~’(9”8° ~— ~(gVUaIL(9P + g~(9~9U+ gILO~9i’(9P+ g~8’~8° ).
(D.4)

The propagator for TILY is obtained in the standard manner by exposing the system to
an external perturbation,

£Lk,n(T) +jIL(~TILv. (D.5)

We find
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G~’~(x)= (2ir) ~ f ~ e’~
MT—p ~

= ~(P~1~ + ~ —

PILPYP~Y=—g~P+--~--, (D.6)
T

with

D’~Gp~r;~(x)= ~ (D.7)

Now consider the couplings of V, T to pions and to photons, linear in the resonance
fields. Since we are interested in terms of order E6 in the effective action, it suffices to
construct interactions which are at most of order E3. We set f~ = 2eQFIL” where FILY
is the photon field, and take

= eEILYP,
7F ~ {Ct~,(VP{u0,Q}) + C~(VPu0~)(Q)}

+ TILp{CT~9~~+ e
2C~f9~7~}, (D.8)

where 9~”(t9~’)is the energy—momentum tensor of the pion (photon) field,

= ~F2(uILu(’)— ~F2gIL~’{(u0~u~)+ (x+)}~
= FILaF(X(’ + ~gIL”FI’°~Fp,,.. (D.9)

The coupling V —÷ ‘n-y (T —~irir, yy) has been considered in Ref. [52](Ref. [25])
for the case of nonet fields and (Q) = 0. The interaction (D.8) for the spin-2 field
differs from the one proposed in Ref. [25]. In particular, our amplitude for yy —~

is smooth at large momenta and purely D-wave also off the f
2-resonance, see below.

D.].2. The amplitudes
We find for the amplitudes from vector exchange

s—4(t+M~) s—4(u+M~,.)
+ /4—u

Bv~ [M21 +M2h] , V=p,w,~, (D.l0)

where [50,34,35,37,39]

C ~ 3F(V~ir
0y)v_~Mv(M2M2)3. (D.ll)

From the published [53] widths we obtain

C~= 0.67 GeV2,

C~=0.12GeV2,

C~=0.2 x 102 GeV2. (D.l2)
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The calculation of the p, w correction to the yy —o 170170 scattering amplitude has been
extended recently to include both photons off shell [54].
Tensor exchange gives 10

AT+2(4M~—s)BT=0,

BT=~1~~T, (D.13)

with
i 2c’Y~2.~,,3~e T~ T

80ir

CIT
2M3 4M2 5/2

F(T —# ir°ir°) = ( T (i — -~~). (D.14)

From the measured widths F(f
2 —~yy), F(f2 —~ ir°ir°)= ~.F(f2 —+ irir) [53],we

find

lC~’I=0.19 GeV~,

IC~I=9.2 GeV’. (D.15)

D.2. Axial-vector and scalar mesons (JI’C = 1+, 0~)

D.2.1. The lagrangian
In this paragraph, A denotes a 3 x 3 matrix. In particular,

th/L~,

+

\/~ \/~ 017
lr jç

0 , (D.16)

K 1(0

and Q = ~ diag(2, —1,—i). (We do not include ~ mixing, as this is of higher order
in the quark mass expansion.) Furthermore, EIL stands for the axial-vector nonet,

(D.17)

and similarly for the scalar nonet S(0~).The kinetic terms are

10 The interaction (D.8) generates tadpole diagrams where T disappears in the vacuum. These graphs give
rise to additional contributions to the amplitudes, which however are of higher order in the energy expansion.
We omit them here.
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L~(S,B) = ~ (DILSDILS — M~S2)—
4(B,,~B — 2M~BBILBIL), (D.18)

where MB denotes the common nonet mass, and the covariant derivatives are the SU( 3)

version of (D.3). The couplings to pions and to photons are [30,25,38]
Lj~,=e

2C~’FILpFb0~(Q2S)+ C~~(SuILuIL)+ C~’(S,~+)

+eCBFILY(W~{Q,fi~}). (D.19)

D.2.2. The amplitudes
We find” for the contribution from the scalar exchange [25]

As=
9F2~,~) [sCsd+2/4(Csm_C~)],

B50, (D.20)

with

(e
2C~)2M~

F(ao—*yy)= 72ir (D.21)
The couplings C~and C~1’have been determined in Ref. [301,

ICS’1~= 3.2 x 102 GeV,
JC~’J= 4.2 x l02 GeV,
C~C~’>0. (D.22)

The quantity ICfl is difficult to estimate. Here we content ourselves with a rough
estimate by relating it to the decay ao —p yy via

F(ao .~yy) = r F~
0~ , (D.23)

F(ao —* ir°’q)

where r = 0.24 keV [53] with a sizeable error. We furthermore assume that the decay
a0 —+ 1r~?7accounts for all of F,~,

= F(ao —~ ir°~). (D.24)

Hence we obtain

IC~I= 8.2 x 102 GeV’. (D.25)

For the contribution from the axial nonet exchange [50,381 we find

The interaction (D.19) generates tadpole diagrams where (.~)disappears in the vacuum. These graphs give
rise to additional contributions to the amplitudes, which however are of higher order in the energy expansion.
We omit them here.
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s+4(t—M~,.) s+4(u—M~)

AB=CB M~—t + /4—u

BB = 7 [M~1 t + M~— (D.26)

with

30 ~ F(b, —p ir~y)
CB=—MB (D.27)

a (M~—M~)3

or

CB = 0.53 GeV2. (D.28)

D.3. Expressions at low energies

At low energies, the above contributions from %~B,S and T sum up to

A
6 = a, /4 + ã2s,

B6 =

- — ~ Cv (40IC(C~”_C~)~ 2~C~C~fl

a,_—16 L~~± ~9 FI~M~S — M~.

- — ~ C~, CB (20 C~’C~I 1 C~C~I

a2 -6 —2 ±~ F~M~+ 2 /4
~- ~i C~,CB~1IC~C~fl (D.29)M

2 M2 4 M2
V=p,&,4 V B T

In Table 2 we list the contributions from the individual resonances to the dimension-
less parameters (16ir2F~)2(a,;a

2b). We used the following values for the resonance
masses: M,, = 782 MeV, M~= 768 MeV, M4 = 1020 MeV, MB = 1232 MeV,
M~= 983 MeV, MT = 1275 MeV.
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